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Abstract 
The paper presents a mathematical model, and its solution, of non-isothermal radial gas 
flow in porous media. The system of partial differential equations has been converted 
into two ordinary differential equations and solved numerically. In the case of the gas 
condensate system the properties of the liquid and gas phases were evaluated using the 
Peng-Robinson equation of state. The condensation process depends on the 
simultaneous decrease of pressure and temperature. These two parameters are 
intrinsically conjugated, and it is not possible to separate each from other. The 
equilibrium model was solved by the Quasi-Newton Successive Substitution (QNSS) 
and Dominant Eigenvalue Method (DEM). A new function describing the saturation of 
drop out condensate for the non-equilibrium process has been proposed. 
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1.  Introduction 

In the classical engineering analysis of 
natural gas reservoirs’ exploitation the changes of 
gas temperature have no significant influence on 
the production schedule.  

However in some important practical applica-
tions the changes in gas temperature have to be 
taken into consideration (Siemek et al. 1987, 
Siemek and Nagy 1993, Siemek and Nagy 2001). 
Two main cases are important: evaluation of the 
skin effect of a well during transient testing and 
the injection/exploitation cycle of Underground 
Gas Storage (UGS) with high rate in the transient 
state.  

The temperature effect in the near-well zone 
may be considered as an additional skin effect in 
the early-time analysis of transient gas well 
drawdown (or gas injection) tests with high 
constant rates at a wellhead. In the case of gas-

condensate reservoirs the high temperature drop 
may cause the additional retrograde condensation 
of heavier components of hydrocarbon mixture.  

The detailed discussions and models of non-
isothermal flow of gas with axial symmetry were 
presented by Siemek (1972).  

2.  Non-isothermal flow model in porous media  

The gas flow in porous media is uniquely 
described by the equations of continuity, motion 
and energy conservation together with the equation 
of state. They are given below. 

In classical problems the Darcy Law describes 
the velocity vector of gas flow:  
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Considering the turbulence effect inside the 
near-well zone, the velocity vector results from the 
equation (Firoozabadi and Katz 1979):

 uuF
k

upgrad b
o

vr
v

⋅⋅+
⋅µ

=−  (2) 

The equation of continuity for one phase fluid 
flow in porous media has the form:  
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The energy conservation law (Burger et al. 
1984):  
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The Peng-Robinson equation of state (EOS) 
(Peng, Robinson 1976):  
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Equations (1-5) represent the mathematical 
model for the solution of non-isothermal single-
phase gas flow in the reservoir and its 
semianalytical solution for non-isothermal flow 
without vertical heat exchange has been proposed 
in the form of function series (Siemek 1972): 
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where coefficients for radial flow are: 
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The Bessel function is 
evaluated using tables (Korn G. A and Korn T. M. 
1968). The  is the so-called “small parameter”.  
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The method proposed in this paper is 
different. Combining equations (4) and (2) (after 
neglecting a dissipation term in (4)) we obtain: 
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where unit volume porous medium and porous 
rock enthalpy changes with time are expressed as: 
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The method of solution is based on the 
conversion of model equations into a 
dimensionless set of an ordinary coupled system 
using the Boltzmann transformation. Assuming 
that the reservoir is homogeneous with uniform 
thickness, infinite extends, using the Buckingham 
theorem and introducing dimensionless variables:  
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the system of model equations comes in following 
the form: 
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To obtain a unique solution, the following 
initial and boundary conditions have been 
assumed: 

τ=0  r>rw,    p=pi,     T=Ti,     ξ   ∞, (17) 

τ>0   r ∞,  p=p→ i,  T=Ti   ξ → ∞, (18) 
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3.  Single Phase Flow Near Well without 
Hydrocarbon Condensation  
The thermodynamic parameters like heat 

capacity, the Joule-Thomson coefficient, viscosity, 
the compressibility coefficient and the heat 
conduction coefficient were assumed to be 
constant.  

The term representing viscous dissipation in 
the energy balance equation was regarded as 
negligible.  

The following data have been chosen for 
calculation:  

Case 1: 100% of methane, (ρc)r=2.82 106 
J/m3 K, λ=1.73 W/m K, φ=0.2, µh= 0.12 K/bar, cp 
= 3.1 kJ/kg K, p=23MPa, T=344.8 K, µ= 2 10-5 Pa 
s, k = 24.1 10-15  m2 , m°(rw) = 8165 kg/h. 

Figures 1 and 2 show the pressure and 
temperature changes in time function for various 
reservoir radii in the vicinity of a well. 

4.  Single Phase Flow Near a Well with 
Hydrocarbon Condensation in Porous 
Media – Non-Equilibrium Condensation 
Model 

To solve the mathematical model the 
properties of two phases were evaluated using the 
Peng-Robinson equation of state. For turbulent 
flow near a well a new function describing non-
equilibrium condensation has been proposed. To 
estimate the percentage of liquid molar fractions 
really outcropped from gas during turbulent flow, 
the following model has been proposed (Siemek, 
Nagy 2001): 

Let us assume that  is the 
characteristic time needed for full condensation of 
L(r, ) mole fractions of gas flowing through the 
element dv with width  in time 

r / u∆τ = ∆

τ
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For one mole of gas flowing through the dv' 
element the volume which liquefied is equal to 
(Siemek et al. 1978): 
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As a criterion of full equilibrium 
condensation, the reference velocity u is assumed 
to be at radius r’=10 m for τ=10 days since 
production starts. The choice of reference velocity 
depends on pressure and temperature gradients. 

The assumed value u was chosen on the results of 
sensitivity analysis. 

The equation which describes saturation of 
condensate (defined as a percent of liquid volume 
condensed in the free porous volume) has the form 
(Siemek, Nagy 2001):  
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where the first derivative is evaluated numerically 
and 

τD
Dp  represents substantial derivative of 

pressure and term 
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the change of condensate volume in the element dv 
during equilibrium condensation as a pressure 
function. The integral in equation (20) is calculated 
numerically. 

The calculation was carried out for reference 
filtration velocity value at radius r’=10 m for time 
τ=10 days. The following data have been chosen: 
Case 2 (methane 95%, ethane 2%, propane 1%, n-
hexane 2%), µh=0.4 K/bar, p=10MPa, T=300 K.  

The compositions of equilibrium phases were 
computed using equations: 
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where liquid L and vapor V mole fractions were 
calculated after solution: 
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Equilibrium constants:  
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or using fugacity coefficients 
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were used for solution.  

The fugacity coefficients were calculated 
using the Peng-Robinson equation of state (Peng 
and Robinson 1976). The equilibrium model was 
solved by the Quasi-Newton Successive 
Substitution (QNSS) and Dominant Eigenvalue 
Method (DEM) (Nagy 1991). 
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Figures 3 and 4 show solutions of set of 
equations (9-11) for the near-well zone. It can be 
stated that the temperature drop is large in the well 
vicinity (up to 8.6 K/m). 

Knowing timewise variation of temperature 
and pressure at the reservoir radius and performing 
calculations of Constant Composition Expansion 
(CCE) or Constant Volume Depletion (CVD) 
simulation for vapor-liquid phases’ distributions, it 
is possible to determine the rate of condensate 
saturation in the near-well zone using equation 
(10). 

The pressure-temperature path at the 
reservoir radius 0.5 m inside the phase envelope 
and constant liquid fraction (1%) in the system 

(Case 2) is shown in Figure 5 and the change of 
main component (methane, hexane) volumes of 
liquid condensate in the system at the reservoir 
radius 0.5 m versus descending depletion pressure 
is presented in Figure 6.  

Increase of condensate saturation with time 
for a selected reservoir radius for the proposed 
non-equilibrium condensation model is shown in 
Figure 7.  

The results of simulation (pressure and 
temperature) in the vicinity of a well for Case 2 are 
presented in TABLE I. The composition of a liquid 
phase is presented in TABLE II for reservoir 
radius r=0.5 m (Case 2). 
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Figure 1.  The change of pressure in the near-well zone  (Case 1) 
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Figure 2.  The change of temperature in the near-well zone (Case 1) 
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Figure 3.  The change of pressure in the near-well zone (Case 2) 
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Figure 4.  The change of temperature in the near-well zone (Case 2) 

TABLE I.  THE RESULTS OF SIMULATION (PRESSURE AND TEMPERATURE) IN VICINITY OF 
WELL FOR CASE 2. 

Radius [m] 
0.15 5 10 20 

 Time 
[days] 

T[K] p[bar] T[K] p[bar] T[K] p[bar] T[K] p[bar] 
6.0 10-5 299.97 99.6 299.97 99.9 299.97 99.9 299.97 99.9 
3.5 10-3 299.38 94.5 299.97 99.1 299.97 99.5 299.97 99.9 
4.2 10-2 296.79 90.0 299.97 99.0 299.97 99.4 299.97 99.9 

1.0 292.80 85.2 299.97 95.8 299.97 97.8 299.97 99.9 
10.0 290.45 81.8 298.24 92.3 299.38 94.5 299.79 97.5 
100.0 287.33 77.7 296.08 89.1 297.50 90.9 298.61 94.2 
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Figure 5. The pressure-temperature path at the reservoir radius 0.5 m inside the phase envelope and 

constant liquid fraction (1%) in the system (Case 2) 
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Figure 6. The percentage change of main components (methane, hexane) of liquid condensate 

 in the system at the reservoir radius 0.5 m versus descending depletion pressure (Case 2)  

TABLE II. LIQUID COMPOSITION (MOLE FRACTIONS) FOR RESERVOIR RADIUS R=0.5 M AS 
THE FUNCTION OF TIME: 1.5 HR, 1.5 DAY, 10 DAYS, 40 DAYS, 1 YEAR, 2 YEARS (CASE 2). 

Time 1.5 hr 1.5 day 10 days 40 days 1 year 2 years 
T[K] 299.33 299.10 296.46 296.00 291.58 289.90 
P[MPa] 9.45 9.34 8.90 8.64 8.325 8.11 
Methane 0.4348 0.4311 0.4195 0.4102 0.4068 0.4017 
Ethane 0.0279 0.0279 0.0282 0.0282 0.0291 0.0294 
Propane 0.0307 0.0309 0.0320 0.0324 0.0342 0.0350 
N-hexane 0.5066 0.5101 0.5203 0.5292 0.5299 0.5340 
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Figure 7 Condensate saturation increases versus time for a selected reservoir radiusfor proposed 

non-equilibrium condensation model (Case 2). 
 
5. Conclusions  

The temperature effect in the near-well zone 
may be considered as an additional skin-effect in 
the early-time analysis of transient gas well 
drawdown (or gas injection) tests with high 
constant rates at a wellhead. In the case of thin, 
non-isolated upper- and underburden reservoirs, 
equation (4) must be modified considering heat 
losses in a vertical direction. 

The Joule-Thomson effect is a main factor 
which influences temperature changes of flowing 
fluid.  

In the case of condensate reservoirs the high 
temperature drop may cause the additional 
retrograde condensation of heavier components of 
a hydrocarbon mixture. The effect of retrograde 
condensation has been regarded in case of an 
increase of condensate saturation up to the critical 
value. If the value of liquid saturation is greater 
than critical, the flow must be considered as the 
two-phase flow.  

Nomenclature  

a, b  coefficients in EOS  
A1 coefficient in equation (8) 
c   compressibility 
cp  specific heat at constant pressure 
Fb  turbulence coefficient 
h   reservoir thickness 
H   specific enthalpy 
k   permeability coefficient 
L,L' mole fraction of liquid phase 
Mg  molecular mass of gas phase 
ML molecular mass of condensate 
p   pressure 

1p (x, t)  function defined by equation (8) 

r   radial distance 
rw  well radius 
R   universal gas constant 
S   condensate saturation of porous media 
T   temperature 
v  specific volume 
ur  velocity vector 
Zg  compressibility factor of gas phase 
ZL compressibility factor of condensate 

0 1 0 1Y (u), Y (u), J (u), J (u)  Bessel function in 
equation (8) 

Greek Letters 
βu  correction factor for non-equilibrium 

condensation 
φ porosity coefficient 

sη  parameter defined by equation (10) 

λ heat conductivity coefficient 
µ viscosity coefficient 
µh   Joule-Thomson coefficient 
ρ density  
(ρc)o specific heat of volume unit 
(ρH)o  enthalpy of porous medium volume unit 
τ time 
ξ dimensionless parameter 
ψ dissipation energy function 
v   volume 
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