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A classification theorem on totally umbilical
submanifolds in a cosymplectic manifold

Siraj Uddin* and Cenap Ozel

Abstract

In the present paper, we study totally umbilical submanifolds of cosym-
plectic manifolds. We obtain a result on the classification of totally
umbilical contact CR-submanifolds of a cosymplectic manifold.
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1. Introduction

The notion of CR-submanifolds of a Kaehler manifold was introduced by A. Bejancu
[1]. Later on, many researchers worked on these submanifolds for different structures [5].
These submanifolds are the natural generalization of both holomorphic and totally real
submanifolds of a Kaehler manifold. Totally umbilical CR-submanifolds of a Kaehler
manifold have been studied by A. Bejancu [2], B.Y. Chen (see [6]), S. Deshmukh and S.I.
Husain [8].

The submanifolds of a cosymplectic manifold have been studied by G.D. Ludden
[10]. Recently, we have obtained some results for the existence or non-existence of warped
submanifolds in a cosymplectic manifold [11]. In this paper, we classify all totally um-
bilical contact CR-submanifolds of a cosymplectic manifold.
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2. Preliminaries

Let M be a (2n + 1)—dimensional almost contact manifold with almost contact
structure (¢, &, n), that is ¢ is a (1,1) tensor field, £ is a vector field and 7 is a 1—form,
satisfying the following properties

¢*=—I+n®E ¢&=0, nop=0, n(E) =1 (2.1)

In this case we call (M, ¢,&,m) an almost contact manifold. There always exists a Rie-
mannian metric g on an almost contact manifold M satisfying the following compatibility
condition

9(¢X,¢Y) = g(X,Y) = n(X)n(Y) (2:2)

for any X,Y tangent to M; with this metric the almost contact manifold is called an
almost contact metric manifold.

An almost contact structure (¢, £, n) is said to be normal if [¢, ¢] + 2dn ® € vanishes
identically on M, where [¢,d](X,Y) = ¢*[X,Y] + [¢X, ¢Y] — [ X,Y] — ¢[X, $Y] for
any vector fields X, Y tangent to M is the Nijenhuis tensor of ¢.

The fundamental 2-form ® on M is defined as ®(X,Y) = g(X, ¢Y), for any vector

fields X, Y tangent to M. If ® = dn, the almost contact structure is a contact structure.

A normal almost contact structure with & closed and dn = 0 is called cosymplectic
structure. It is well known that the cosymplectic structure is characterized by
Vx¢=0 and Vxn=0, (2.3)

where V is the Levi-Civita connection of g on M. From (2.3), it follows that Vx& = 0.
If we denote the curvature tensor of a cosymplectic manifold M by R, then we have

R(¢X,$Y) = R(X,Y) and R(X,Y)¢Z = ¢R(X,Y)Z. (2.4)

Blair and Goldberg [5] studied the cosymplectic structure on a Riemannian manifold
from topological viewpoint. They have given a typical example of simply connected
cosymplectic manifold which is the product of a simply connected Kaehler manifold
with R. They proved that a complete simply connected cosymplectic manifold is almost
contact isometric to the product of a complete simply connected Kaehler manifold with
R. On the other hand the natural example of a compact cosymplectic manifold is given
by the product of a compact Kaehler manifold (V,J,h) with the circle S*, where J is
almost complex structure and h is almost Hermitian metric on V. The cosymplectic
structure (¢,£,n,g) on the product manifold M = V x S is defined by

b=To(r)., E=2, n=clpry),0), 9= ).+ pr). 090,

where * is the symbol for tangent map and pr; : M — V and pry M — S' are the
projections of V x S onto V and S respectively, 0 is the length element of S*, E is its
dual vector field and c is a non-zero real number [5]. In [7], De Leon and Marrero studied
compact cosymplectic manifold with positive constant ¢-sectional curvature.

Let M be a submanifold of an almost contact metric manifold M with induced
metric g and if V and V* are the induced connections on the tangent bundle 7'M and
the normal bundle T+M of M, respectively. Denote by F(M) the algebra of smooth
functions on M and by I'(T'M) the F(M)-module of smooth sections of tangent bundle
TM over M, then Gauss and Weingarten formulae are given by

VxY =VxY +h(X,Y) (2.5)

VxN = —AxX + V%N, (2.6)
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for each X, Y € T(TM) and N € T'(T* M), where h and Ay are the second fundamental
form and the shape operator (corresponding to the normal vector field N) respectively

for the immersion of M into M. They are related as

where g denotes the Riemannian metric on M as well as induced on M. The mean
curvature vector H on M is given by

H= % Xn: h(ei, e:) (2.8)

where n is the dimension of M and {e1, e2,- - ,en} is a local orthonormal frame of vector
fields on M. 5
A submanifold M of a Riemannian manifold M is said to be totally umbilical if

h(X,Y) = g(X,Y)H. (2.9)

If h(X,Y) =0 for any X,Y € I'(TM) then M is said to be totally geodesic submanifold.
If H =0, then it is called minimal submanifold.

If M is totally umbilical, then from (2.9), the equations (2.5) and (2.6) reduce to
the following equations, respectively;

VxY = VxY +g(X,Y)H, (2.10)
VxN = —g(H,N)X + VxN. (2.11)

Now, for any X € I'(T'M), we write
¢X = PX + FX, (2.12)

where PX is the tangential component and FX is the normal component of ¢.X.
Similarly for any N € T'(T*M), we write

¢N = BN + CN, (2.13)

where BN is the tangential component and CN is the normal component of ¢N. The
covariant derivatives of the tensor fields ¢, P and F are respectively defined as

(Vx@)Y = VxoY — ¢VxY, V X,Y € I(TM), (2.14)
(VxP)Y = VxPY — PVxY, V X,Y € I(TM), (2.15)
(VxF)Y = VxFY — FVxY, ¥V X,Y € I(TM). (2.16)

3. Contact CR-submanifolds

In this section we consider the submanifold M tangent to the structure vector field &
and defined as follows: A submanifold M tangent to ¢ is called a contact CR-submanifold
if it admits a pair of differentiable distributions D and D+ such that D is invariant and its
orthogonal complementary distribution D~ is anti-invariant i.e., TM = DOD @ (¢) with
#(Dy) C D, and ¢(DZ) C Ty M, for every x € M. Thus, a contact CR-submanifold M
tangent to £ is invariant if D* is identically zero and an anti-invariant if D is identically
zero, respectively. If neither D = {0} nor D+ = {0}, then M is proper contact CR-
submanifold.

Let M be a proper contact CR-submanifold of an almost contact metric manifold
M, then for any X € I'(TM), we have

X = PiX + PX 4+ n(X)¢, (3.1)
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where P1 and P, are the orthogonal projections from TM to D and D=, respectively.
For a contact CR-submanifold, from (2.12) and (3.1), we obtain

PX = ¢P,X and FX = ¢P,X.

Let M be a contact CR-submanifold of an almost contact metric manifold M. Then
the normal bundle T+ M is decomposed as

T+M = ¢D* & p, (3.2)

where y is the orthogonal complemetary distribution of D~ in T* M and is a ¢—invariant
subbundle of T% M.

Let M be a contact CR-submanifold of a cosymplectic manifold M, then for any
Z,W € T(D1) and U € T(T M), we have

9(Ayw 2,U) = g(h(Z,U), oW).
Using (2.5), we obtain
By the structure equation (2.3), we get
9(Aew Z,U) = —g(VudZ,W).
Thus, from (2.6), we derive
9(Aew Z,U) = g(ApzU, W) = g(h(W,U), $Z).
Again Using (2.5), we obtain
9(Aew Z,U) = g(VwU,¢Z) = —g(U,VwdZ).
Then from (2.6), we get
9(Aow Z,U) = g(Apz W, U).
Hence, for a contact CR-submanifold of a cosymplectic manifold we conclude that
AgwZ = ApzW N Z, W e D(D). (3.3)
Now, for any X € I'(D @ (¢)) and Z, W € I'(D*), we have

9([Z,W],0X) = g(VzW — VwZ, ¢X)

= g(eVwZ — ¢V W, X).
Thus, from (2.14) and (2.3), we obtain

9((Z,W],¢X) = g(VwoZ — V2¢W, X)

= g(AswZ — AgzW, X).

Thus, from (3.3), we obtain g([Z,W],$#X) = 0. This means that [Z, W] € T(D*), for
any Z,W € I'(D1), that is, Dt is integrable. Now for any X,Y € T'(D & (£)), we have

h(X,PY)+ VxPY = VxPY = Vx¢Y.
As M is cosymplectic, then by (2.14) and the structure equation (2.3), we obtain
h(X,PY)+ VxPY = ¢VxY.
Using (2.5), (2.12) and (2.13), we derive
h(X,PY)+ VxPY = PVxY + FVxY + Bh(X,Y) + Ch(X,Y).
Equating the normal components, we get
FVxY = h(X,PY) — Ch(X,Y). (3.4)
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Similarly,

FVyX = h(Y, PX) — Ch(X,Y). (3.5)
Thus from (3.4) and (3.5), we obtain

F[X,Y] =h(X,PY)— h(Y,PX). (3.6)

Hence, we conclude that F[X,Y] = 0 if and only if h(X, PY) = h(Y, PX), that is the
distribution D @ (£) is integrable if and only if h(X, PY) = h(Y,PX), for all X,Y €
I(Da(€)).

We give the following main result of this section.

3.1. Theorem Let M be a totally umbilical contact CR-submanifold of a cosymplectic
manifold M. Then at least one of the following statements is true

(i) M is totally geodesic,
(ii) the anti-invariant distribution DL is one-dimensional, i.e., dim D+ =1,
(iii) the mean curvature vector H € T'(u).

Proof. For a cosympectic manifold, we have
Vz¢W = ¢VzW,
for any Z, W € T'(D1). Using (2.10) and (2.11), we derive

—g(H,oW)Z + N 7z¢W = ¢V 2z W + g(Z, W)$H. (3.7)
Taking the product with Z € I'(D1) in (3.7), we get
9(H,oW)||Z|]* = (2, W)g(H, $2). (3.8)
Interchanging Z and W in (3.8), we obtain
g(H,Z)|W|* = (2, W)g(H,oW). (3.9)
Thus, from (3.8) and (3.9), we deduce that
9(Z,W)*
9(H,¢2) = - 9(H, ¢Z).
2112w 2
That is )
9(Z, W)
g(H,02){1 — L) A _ g 3.10)
Mz (

Hence, the equation (3.10) has a solution if at least one of the followings holds
(i) H=0 or (ii) Z||W or (iii) H L ¢D".
That is either M is totally geodesic or as Z and W are parallel to each other for any

Z,W € T(D*) that is these two vectors are linearly dependent and hence dim D+ = 1
or H € T'(u), this proves the theorem completely. O

3.2. Example Consider a flat manifold of real dimension 6 which have a complex
Kaehler structure of dimension 3, that is (C?,.J, h) be a Kaehler manifold with complex
structure J and Euclidean Hermitian metric h. Then M = C® x R is a cosymplectic
manifold with the structure vector field £ = %, dual 1-form n = dt and the metric
g = h+dt®>. Now, consider M = R3 x S', where S! is a unit circle being taken as totally
real submanifold of C*. Then M is a contact CR-submanifold of M with the invariant
distribution D = R?, anti-invariant distribution D+ = T'(S") and the 1-dimensional dis-

tribution (§) = R.
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