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Abstract

The paper develops the Bayesian estimation procedure for the general-
ized Lindley distribution under squared error and general entropy loss
functions in case of complete sample of observations. For obtaining the
Bayes estimates, both non-informative and informative priors are used.
Monte Carlo simulation is performed to compare the behaviour of the
proposed estimators with the maximum likelihood estimators in terms
of their estimated risks. Discussion is further extended to Bayesian
prediction problem based on an informative sample where an attempt
is made to derive the prediction intervals for future observations.
Numerical illustrations are provided based on a real data example.
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1. Introduction

The one parameter exponential distribution is the most popular distribution for analysing
the lifetime data due to its simplicity and has also been widely applied in many areas.
But its applicability is restricted to constant hazard rate. It seems quite unrealistic to
assume time independent hazard rate for any real-life system. [15] introduced a distribu-
tion in the context of Bayes theorem, as a counter example of fudicial statistics named as
Lindley distribution which overcomes the drawback of exponential distribution as it does
not permit the constant hazard rate. The various papers have been published on the
parameter estimation for Lindley distribution under different set-up. [11] have provided
a comprehensive treatment of the mathematical properties of Lindley distribution. [14]
have discussed the procedures of reliability estimation for progressively type-II censored
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sample under both classical and Bayesian set-up when the data follows the Lindley distri-
bution. They have also suggested that this distribution can be used as a life time model.

The generalizations of exponential distribution are Weibull and Gamma distributions
which are most frequently used lifetime models in survival analysis. However, these dis-
tributions have their own limitations. The Weibull distributions are more popular than
the gamma because the survival function of the latter cannot be expressed in a closed
form and one needs numerical integration. But, the Weibull distribution also has its
own disadvantages. [2] have pointed out that the maximum likelihood estimators of the
Weibull parameters may not behave properly for the whole parameter space. The above
three distributions (exp, Gamma, and Weibull) are inappropriate when the failure rate
is indicated to be uni-modal or bath-tub shaped.

Recently, [16] have introduced a two parameter generalization of Lindley distribution
as an extended model for modelling of bathtub data alternative to gamma, lognormal,
Weibull, and exponentiated exponential distributions. The generalized Lindley distribu-
tion has the following probability density function (PDF)

(1.1) f(x) =
αλ2

(1 + λ)
(1 + x)

[
1− 1 + λ+ λx

(1 + λ)

]α−1

e−λx

It is denoted by GLD(α, λ). The corresponding CDF is given by

(1.2) F (x) =

[
1− 1 + λ+ λx

(1 + λ)
e−λx

]α

For α = 1, it reduces to one parameter Lindley distribution (see Figure 1).

Figure 1: Density function for different values of α and λ

[16] have discussed different properties and the inferential procedure for this distribution
under classical paradigm. They have also checked in many ways the goodness-of-fit of
this distribution to real data set over gamma, Weibull, and log-normal distributions.

In Bayesian approach, a prior distribution for the parameter is considered and there
is no clear cut rule by which one can say that one prior is better than any other. The
prior information is purely subjective assessment of an expert before any data have been
observed. Also [3] argues that when information is not in compact form the Bayesian
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analysis uses non-informative prior consideration.

For some distributions, the posterior density is not in tractable form as it contains
integrals. The Bayes estimation cannot be performed explicitly and becomes quite com-
plicated. In such a situation, some approximate methods are inevitable such as numerical
integration or analytic approximation techniques. Alternatively, many authors use Monte
Carlo morkov chain (MCMC) methods namely Gibbs sampling [22] and Metropolis Hast-
ing [13, 4] algorithms to simulate the deviates from posterior density so that sample based
inference can be done.

It is often seen that usual squared error loss function (SELF) is considered for Bayesian
procedure which is symmetrical and associates equal importance to the losses due to over-
estimation and underestimation of equal magnitude. But it may be illogical to assume
symmetric loss function. In some situation overestimation is more serious than under-
estimation or vice-versa. For example, in the estimation of reliability and failure rate
functions, an overestimation is usually much more serious than an underestimation. A
more appropriate asymmetric loss function, general entropy loss function (GELF) is in-
troduced by [5], defined as

(1.3) L
(
θ, θ̂
)

=

(
θ̂

θ

)C
− C log

(
θ̂

θ

)
− 1

Where, θ̂ is the estimate of θ and C is the loss parameter which reflects the departure
from symmetry. The loss parameter C allows different shapes of this loss function. For

C > 0, a positive error
(
θ̂ > θ

)
causes more serious consequences than a negative error

and vice versa. The Bayes estimate θ̂G of θ under GELF is given by

(1.4) θ̂G =
[
Eπ
(
θ−C |x

∼

)](−1/C)

provided that the expectation Eπ
(
θ−C |x

∼

)
exits and is finite. Here, Eπ denote the ex-

pectations with respect to posterior pdf of θ. The Bayes estimate of θ under SELF is
the posterior mean of θ. For C = −1, equation (4) provides the Bayes estimator under
SELF for θ.

The performance of the Bayes estimators depends upon the prior distribution and
the loss functions to be considered. Many authors have been studying the performance
of the Bayes estimator under various assumptions regarding the prior belief and loss
functions (symmetric and asymmetric). [21] and [7] have obtained the Bayes estimators
under different loss functions for inverse Gaussian distribution and generalized exponen-
tial distribution respectively. [20] have proposed to obtain the Bayes estimator for the
parameter of exponentiated gamma distribution under general entropy loss function as
they have found that the Bayes estimator obtained under GELF have the smaller risk
than considered existing estimators.

Prediction of future observations based on information from existing data is con-
cerned topic in Statistics, arising in many contexts in a natural way. [9] have developed
the Bayesian procedure to the prediction problems of future observables. Prediction
problems can be generally classified into two types. 1.) One sample prediction 2.) Two
sample prediction. In earlier case, the variable to be predicted comes from the same
sequence of variables observed and is dependent on observed data, and arises in case of
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censored data. In two sample prediction, the variable to be predicted comes from another
independent future sample follow the same distribution function. Bayesian prediction for
future observations based on certain distributions has been discussed by several authors
[see 8, 23, 19, 1, 17, 10, 18, 12, and references cited therein].

This distribution is not considered earlier in literature through Bayesian setup. There-
fore in this paper, our aim is to perform the Bayesian estimation for the unknown param-
eters of the generalized Lindley distribution under different forms of the gamma priors in
case of symmetric and asymmetric loss functions. We have also discussed the two sample
prediction problems for considered model.

The rest of the paper is organized as follows. In section 2, the maximum likelihood es-
timators under type II censored data, along with its asymptotic properties are discussed.
In section 3, for obtaining the Bayes estimates for α and λ the MCMC techniques have
been utilized. To implement the Gibbs algorithm full condition posteriors for α and λ are
derived. Bayesian prediction is discussed in section 4. We have also constructed the pre-
dictive bounds for future observations. In section 5, a simulation study is conducted to
check the behaviour of our proposed estimators. In section 6, a real data set is analyzed.
Finally, conclusions have been given in section 7.

2. Maximum likelihood estimates

Suppose that {x1, x2, ..., xn} is the independent and identical (IID) random sample of
size n obtained from (1). Then the likelihood equation is given by

(2.1) L
(
x
∼
|α, λ

)
=

[
αλ2

(1 + λ)

]n
e
−λ

n∑
i=1

xi
n∏

i=1

(1 + xi)

[
1− 1 + λ+ λxi

(1 + λ)

]α−1

Then, the log likelihood function can be written as

(2.2) LogL = n log

[
αλ2

(1 + λ)

]
−λ

n∑

i=1

xi+

n∑

i=1

log(1+xi)+(α−1)

n∑

i=1

log

[
1− 1 + λ+ λxi

(1 + λ)

]

The MLEs of α and λ can be obtained as the simultaneous solution of the following
equations

(2.3)
n

α
+

n∑

i=1

log

[
1− 1 + λ+ λxi

(1 + λ)

]
= 0

(2.4)
2n

λ
− n

(1 + λ)
+
λ(α− 1)

(1 + λ)2

n∑

i=1

(2 + xi + λ(1 + xi))[
1− 1+λ+λxi

(1+λ)

] xie
λxi

In order to solve the above equations, we can apply any suitable iterative procedure such

as Newton RaphsonÔÇÖs method.

Under some regularity conditions, the MLEs (α̂, λ̂) is approximately bi-variate normal

with mean (α̂, λ̂) and covariance matrix I−1
(
α̂, λ̂

)
i.e.(α̂, λ̂) ∼ N2

([
α̂ λ̂
]′
, I−1

(
α̂, λ̂

))
.

where I
(
α̂, λ̂

)
is the observed FisherÔÇÖs information matrix, and defined as

I
(
α̂, λ̂

)
=



− dlogL

dα2 − dlogL
dλdα

− dlogL
dαdλ

− dlogL
dλ2




(α̂,λ̂)
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The diagonal elements of I−1
(
α̂, λ̂

)
provides the asymptotic variances for the parame-

ters α and λ respectively. Then two-sided 100(1−γ)% normal approximation confidence

interval of α and λ can be defined as

{
α̂∓ Zγ/2

√
var(α̂)

}
and

{
λ̂∓ Zγ/2

√
var(λ̂)

}

respectively.

3. Bayes estimation

In this section, we have developed the Bayesian estimation procedure for the parame-
ters of GLD(α, λ) assuming independent informative priors for the unknown parameters.
It is assumed that the parameters α and λ are independent. The variation in the param-
eters α and λ have been incorporated in the analysis through Gamma priors having the
following density function

(3.1) g(λ) =
ab11
Γb1

e−a1λλb1−1;λ, a1, b1 > 0

(3.2) g(α) =
ab22
Γb2

e−a2ααb2−1;α, a2, b2 > 0

Where, a1, a2, b1, and b2 are the hyper-parameters. Then, the joint posterior PDF of α
and λ is defined as

(3.3) π
(
α, λ | x

∼

)
=

L
(
x
∼
|α, λ

)
g(α)g(λ)

∞∫
0

∞∫
0

L
(
x
∼
|α, λ

)
g(α)g(λ)dαdλ

The Gibbs sampling techniques is used for simulating the sample from the joint poste-
rior density. The full conditional posterior density, for implementing the Gibbs algorithm,
of each of unknowns is obtained by regarding all other parameters in (11) as known. Then,
we have

(3.4) π1

(
α | λ, x

∼

)
∝ αn+b2−1e−αa2

n∏

i=1

[
1− 1 + λ+ λxi

(1 + λ)
e−λxi

]α−1

(3.5) π2

(
λ | α, x

∼

)
∝ λ2n+b1−1

(1 + λ)n
e
−λ(a1+

n∑
i=1

xi)
n∏

i=1

[
1− 1 + λ+ λxi

(1 + λ)
e−λxi

]α−1

The Gibbs algorithm consist the following steps

(1) Start with j=1, and initial values of {α(0), λ(0)}.
(2) Generate new draws for α and λ as follows:

(a) α(j) ∼ π1

(
α | λ(j−1), x

∼

)

(b) λ(j) ∼ π2

(
λ | α(j), x

∼

)

In this step, the Metropolis algorithm is used to generate deviates from the full
conditional posterior densities by choosing any arbitrary proposal distribution.

(3) Repeat step 2 for all j= 1, 2,..., M and obtained (α1, λ1), (α2, λ2), ...(αM , λM ).

Once we have the posterior sample, we can use discrete formulas, applied to these
samples to approximate the integrals of interest. By this sampling approach, the Bayes
estimates of α and λ with respect to the general entropy loss function are as follows

α̂G =
[
Eπ
(
α(−C) | x

∼

)](−1/C)

≈
(

1

M −M0

M−M0∑

k=1

α−Ck

)(−1/C)
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λ̂G =
[
Eπ
(
λ(−C) | x

∼

)](−1/C)

≈
(

1

M −M0

M−M0∑

k=1

λ−Ck

)(−1/C)

Where, M0 is the burn-in-period of Markov Chain. The HPD credible intervals for α
and λ can be constructed by using algorithm given in [6]. Let {(α(i), λ(i)); i = 1, 2, ...,M}
be the corresponding ordered MCMC sample of {(αi, λi); i = 1, 2, ...,M}. Then construct
all the 100(1− ψ)% credible intervals for of α and λ as

(α[1], α[M(1−ψ)]), ..., (α[Mψ], α[M ]) and (λ[1], λ[M(1−ψ)]), ..., (λ[Mψ], λ[M ]).

Here, [x] denotes the largest integer less than or equal to x. Then the HPD credible
interval is that interval which has the shortest length.

4. Bayesian Prediction

In this section, we have discussed the Bayesian prediction of future ordered sample
on the basis of observed data. Let y(1), y(2), ..., y(m) be another sample (called future
sample) of size m, independent of the informative sample x(1), x(2), ..., x(m) from the
same distribution. The density function of y(s) th ordered future sample is

(4.1)

p
(
y(s) | α, λ

)
=

m!

(s− 1)!(m− s)!
[
F
(
y(s) | α, λ

)]s−1 [
1− F

(
y(s) | α, λ

)]m−s
f
(
y(s) | α, λ

)

By substituting (1) and (2) in (14), we get

(4.2)

p
(
y(s) | α, λ

)
=

m!αλ2

(s− 1)!(m− s)!
(1 + y(s))

(1 + λ)
e−λy(s)

m−s∑

j=0

(−1)j
(
m− s
j

)(
1− 1 + λ+ λy(s)

(1 + λ)
e−λy(s)

)α(s+j)−1

The Bayesian predictive density of y(s)th ordered future sample can be obtained as

(4.3) p
(
y(s) | x∼

)
=

∞∫

0

∞∫

0

p
(
y(s) | α, λ

)
π
(
α, λ | x

∼

)
dαdλ

It is to be noted that p
(
y(s) | x∼

)
cannot be expressed in closed form and hence it

cannot be evaluated analytically. The MCMC sample {(αi, λi); i = 1, 2, ...,M} obtained

from π
(
α, λ | x

∼

)
using Gibbs sampling has been utilized to obtain the consistent estimate

of p
(
y(s) | x∼

)
. It can be obtained as

(4.4) p̂
(
y(s) | x∼

)
=

1

M

M∑

i=1

p
(
y(s) | αi, λi

)

Thus, we can obtain the two sided 100(1 − ψ)% prediction interval (L,U) for future
sample by solving the following two equations:

P
(
Y(s) > U | x

∼

)
= ψ

2

and
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P
(
Y(s) > L | x

∼

)
= 1− ψ

2

It is not possible to obtain the solutions analytically. We need to apply suitable numerical
techniques for solving these non-linear equations.

5. Simulation Study

This section contains the simulation study which is carried out to compare the be-
haviour of the different Bayes estimators and Maximum likelihood estimators of the shape
and scale parameters. The comparisons are made on the basis of simulated risk (expec-
tation of loss function over sample space) and width of the confidence/HPD intervals.
The risk function of the estimators cannot be expressed in closed form. Therefore, the
risks of the estimators are estimated on the basis of simulated sample. For this purpose,
we generate 1000 samples of size n (small sample size n = 20, moderate sample size n
= 30, and large sample size n = 50) from generalized Lindley distribution by using in-

version method suggested by [16]. The estimators α̂M and λ̂Mdenote the MLEÔÇÖs of

the parameters α and λ respectively.(α̂G, λ̂G) and (α̂s, λ̂s) are the corresponding Bayes
estimators under GELF and SELF respectively. The risks of the estimators under GELF
and SELF are denoted by RG(· ) and Rs(· ) respectively. We have looked into many ways
to view the clear picture of the performance of the considered competing estimators.

(1) For varying sample size when parameters are fixed (see Tables 1 and 2).
(2) For different values of hyper parameters along with increasing sample size when

both shape and scale parameters are fixed (see Tables 1 and 2).
(3) For the choice of the loss parameter C of GELF when sample size and model

parameters are fixed (see Figures 2, 3, 4 and 5).
(4) For variation in the model parameters for fixed sample size, loss parameter, and

hyper parameters (see Tables 3, 4, 5 and 6).

The MCMC sample have been utilize for Bayesian analysis so that sample based in-
ference can be done. We check the convergence of the MCMC sample and it is found that
Markov chain converges rapidly with any arbitrary initial starting. All computational
algorithms are calculated with help of R software.

In case of non-informative prior, we take a1 = a2 = b1 = b2 = 0. For informative
prior, the hyper parameters can be chosen easily if we take prior mean (say, ν) equals to
the true value of the parameter with varying prior variance (say, η). The prior variance
indicates the confidence of our prior guess. A large prior variance shows less confidence
in prior guess and resulting prior distribution is relatively flat. On other hand, small
prior variance indicates greater confidence in prior guess. Another case is also considered
where prior mean is taken away from the true value of the parameter with moderate
variance.

From the Table 1, it is observed that the risks of all the estimators decrease as sample
size increases in all the considered cases. The width of the confidence/HPD intervals also
decreases as sample size increases. As confidence of prior guess decreases, the risks of the
estimators and width of the HPD intervals both increases. We can also conclude that
the maximum likelihood estimator is less efficient than the Bayes estimator since MLE
shows the larger Risk/MSE in all the cases.

The risks of all the estimators under GELF increases as loss parameter C increase
in all the considered cases, although the increase is more for maximum likelihood esti-
mators. The behaviour of all considered estimator remain same for all combinations of
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model parameters and hyper parameters. ThatÔÇÖs why; we are presenting selected
figures. When over estimation is more serious than under estimation i.e. C > 0, the

risks of α̂G and λ̂G under GELF are found to be least among the considered competing
estimators (see Figure 3). When under estimation is more serious than over estimation
i.e. C < 0, the magnitudes of the risks of the estimators obtained under SELF and GELF
for both parameters are more or less same but least than that of MLEs (see Figure 2).

Under SELF, the risks of α̂G and α̂G are going to be smaller than that of α̂s and α̂s
when C > 0. When under estimation is more serious than over estimation, the Bayes
estimators obtained under GELF have smaller risk than that of obtained under SELF for
C < −1, and for C > 1, the Bayes estimators obtained under GELF become less efficient
than Bayes estimators obtained under SELF (see Figures 4 and 5).

For comparing the performance of the estimators for different combination of model
parameters, we fix C = 1.5 when over estimation is more serious than under estimation
and C = −0.5 in case of under estimation is more serious than over estimation.

Table 3, 4, and 5 shows the performance of the proposed estimators for the variations
of the model parameters α and λ under for fixed values of n = 20 and C. it is to be
noticed that as the value of α increases the magnitude of the risk of the estimators of
α increases but reveres trend have found in the magnitude of the risk of the estimators
of λ for fixed values of λ under both loss functions. Further, it is also noticed that as
λ increases for fixed α the magnitude of the risk of α decreases but increment in the
magnitude of the risk of λ is noticed under both functions for any given values of n and
C. The similar trends are found in case of the width of the confidence/HPD intervals (see
Table 6).

6. Real data analysis

In this section, a real data set is analyzed to verify our proposed estimation procedure.
The data set of relief times of twenty patients has taken from [16]. It has been observed
by [16] that the generalized Lindley distribution can be effectively used to analyse this
data set. The relief times of the twenty patients are as follows: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8,
1.6, 2.2, 1.7, 2.7, 4.1,1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.

The maximum likelihood estimates, Bayes estimates under SELF along with their con-
fidence/HPD intervals and Bayes estimates under GELF are presented in Table 7. The
MLEs of shape and scale parameters are same as obtained by [16]. The width of the HPD
interval is smaller than that of classical interval for both parameters. For this data set,
Bayesian analysis is carried out in case of non-informative priors. The MCMC iterations
of α and λ are plotted in Figure 6(a) and 6(b) respectively. Trace plots are indicating that
the MCMC samples are well mixed and stationary achieved. The 3−D histogram of the
posterior samples of α and λ is plotted in Figure 7. This figure indicates that posterior
distributions of α and λ are symmetric. [16] have checked the goodness-of-fit to the real
data set using maximum likelihood estimates. For demonstrating the goodness-of-fit of
the this real data set for the Bayes estimates, We have applied Kolmogorov-Smirnov (KS)
one sample test and KS distances are presented in the Table 9. The empirical CDF and
fitted CDF (for maximum likelihood estimates and Bayes estimates) have been plotted
in figure 10. It is observed that the goodness-of-fit to the real data set is quite acceptable
even with the Bayes estimates.
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We also predict the first three and last observations of independent future sample of
size m(= 5, 10, 15, 20, and 30) corresponding to real data set. Bayesian point predictions
and along with their confidence bounds are presented in Table 8. It is to be noticed that
the width of the predictive bounds increases as s increases. The density function (16)
for first ordered statistics of future sample is plotted for different values of m in Figure
8. Figures 9(a), 9(c), and 9(e) are the MCMC trace plots of y(1), y(2), and y(3) future
sample for m = 5. The posterior densities of simulated y(1), y(2), and y(3) are plotted in
Figures 9(b), 9(d), and 9(f) respectively.

7. Discussion

In this paper, we have considered the problem of estimation of the parameters of the
generalized Lindley distribution under Bayesian paradigm. On the basis of compression
of simulated risks of estimators, it is found that Bayes estimators perform better than
maximum likelihood estimation and Bayes estimator under GELF is also more efficient
than the Bayes estimator under SELF in most of the situation. From the above men-
tioned discussion, we may conclude that the Bayes procedure discussed in this paper can
be recommended for their use.
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(0.6173) (0.5657) (0.5341) (0.2692) (0.563) (0.5494)

λ 2.12204 2.10035 2.09862 2.07749 2.1002 2.11056
(0.1543) (0.1469) (0.1434) (0.1057) (0.1467) (0.1458)

50 α 2.16842 2.14088 2.13817 2.10441 2.14079 2.15339
(0.3091) (0.2924) (0.2842) (0.1961) (0.2920) (0.2907)

λ 2.07563 2.06292 2.06238 2.05392 2.06292 2.0696
(0.0862) (0.0835) (0.0824) (0.0688) (0.0835) (0.0834)
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Table 2. The average 95% confidence intervals and HPD credible in-
tervals when α = 2 and λ = 2.

n Parameters MLE Bayes
a1 = b1 = 0 η = 2 η = 2 η = 2 η = 3
a2 = b2 = 0 ν = 8 ν = 0.5 ν = 100 ν = 8

20 α 0.66531 1.43837 1.43402 1.43266 1.43881 1.47635
4.16755 3.28692 3.25047 2.92185 3.28363 3.28279

λ 1.29705 1.65981 1.6584 1.65404 1.65913 1.67981
3.04538 2.61849 2.61175 2.53719 2.61718 2.62601

30 α 0.95444 1.5371 1.53588 1.53209 1.53742 1.5638
3.60962 2.95623 2.94134 2.77382 2.95495 2.96393

λ 1.42057 1.7162 1.71586 1.71469 1.71665 1.73011
2.82352 2.48552 2.48254 2.44366 2.48559 2.49306

50 α 1.20733 1.62981 1.62974 1.63008 1.63024 1.64592
3.12951 2.6680 2.66209 2.59496 2.66732 2.67594

λ 1.54166 1.77032 1.77072 1.77143 1.77076 1.77881
2.6096 2.35619 2.35533 2.33853 2.3564 2.36166

Table 3. Average estimates and (risks of the estimators under SELF)
for fixed n = 20, a1 = α/8, a2 = λ/8, b1 = α2/8 and b2 = λ2/8

α λ Rs(α̂M ) Rs(α̂s) Rs(α̂G) Rs(λ̂M ) Rs(λ̂s) Rs(λ̂G)
C = 1.5 C = −0.5 C = 1.5 C = −0.5

1 1 1.18926 1.1496 1.09209 1.13836 1.10603 1.08415 1.05623 1.0787
(0.2413) (0.2068) (0.1676) (0.1985) (0.0881) (0.0808) (0.0746) (0.0794)

2 1.18016 1.14091 1.08628 1.13022 2.22522 2.1779 2.11736 2.16609
(0.2222) (0.1895) (0.1551) (0.1821) (0.3907) (0.3494) (0.3193) (0.3429)

3 1.17671 1.13645 1.08309 1.12601 3.35374 3.27324 3.17764 3.25459
(0.2146) (0.1804) (0.1480) (0.1735) (0.9502) (0.8122) (0.7374) (0.7961)

2 1 2.51594 2.39503 2.24553 2.36759 1.08876 1.06803 1.0493 1.0648
(1.6743) (1.2070) (0.9205) (1.1514) (0.0635) (0.0564) (0.0532) (0.0558)

2 2.48721 2.37191 2.23164 2.34598 2.18462 2.1422 2.10237 2.13519
(1.5061) (1.1019) (0.8525) (1.0532) (0.2723) (0.2394) (0.2247) (0.2368)

3 2.47464 2.3591 2.2233 2.3854 3.28637 3.21833 3.15587 3.23048
(1.4331) (1.0434) (0.8121) (1.0944) (0.6494) (0.5572) (0.5209) (0.5652)

3 1 3.93621 3.6472 3.40706 3.59098 1.08289 1.06056 1.04617 1.05653
(5.4476) (2.9496) (2.2087) (2.7431) (0.0557) (0.0463) (0.0442) (0.0454)

2 3.88236 3.61435 3.38874 3.55775 2.17115 2.1265 2.09612 2.11717
(4.8483) (2.7246) (2.0681) (2.5149) (0.2354) (0.1962) (0.1861) (0.1912)

3 3.85709 3.60264 3.39322 3.5421 3.26405 3.19776 3.15249 3.18051
(4.5762) (2.6409) (2.0425) (2.4092) (0.5567) (0.4619) (0.4382) (0.4458)
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Table 4. Table 4: Risks of the estimators of α under GELF for fixed
n = 20, a1 = α/8, a2 = λ/8, b1 = α2/8 and b2 = λ2/8

C = −0.5 C = 1.5
α λ RG(α̂M ) RG(α̂s) RG(α̂G) RG(α̂M ) RG(α̂s) RG(α̂G)

1 1 0.01478 0.01393 0.01374 0.19217 0.17097 0.14699
2 0.01404 0.01317 0.01299 0.17968 0.15908 0.13774
3 0.01374 0.01275 0.01259 0.17467 0.15278 0.13257

2 1 0.02052 0.01825 0.01793 0.29859 0.23729 0.19487
2 0.01931 0.01717 0.01687 0.27468 0.21975 0.18232
3 0.01876 0.01654 0.01684 0.26415 0.20996 0.17491

3 1 0.02514 0.01999 0.01958 0.39748 0.2604 0.21068
2 0.02362 0.01883 0.01846 0.36345 0.24328 0.19875
3 0.02289 0.01823 0.01787 0.39748 0.2604 0.21068

Table 5. Risks of the estimators of λ under GELF for fixed n =
20, a1 = α/8, a2 = λ/8, b1 = α2/8 and b2 = λ2/8

C = −0.5 C = 1.5

α λ RG(λ̂M ) RG(λ̂s) RG(λ̂G) RG(λ̂M ) RG(λ̂s) RG(λ̂G)

1 1 0.00773 0.0075 0.00748 0.08351 0.07823 0.07452
2 0.00834 0.00793 0.00791 0.09137 0.08371 0.07912
3 0.00884 0.00813 0.0081 0.09784 0.08617 0.08102

2 1 0.00593 0.0056 0.00559 0.06212 0.0565 0.05448
2 0.00626 0.00586 0.00585 0.06608 0.05957 0.05719
3 0.00656 0.00601 0.00603 0.06966 0.06141 0.05879

3 1 0.00531 0.00473 0.00472 0.05497 0.04725 0.0458
2 0.00554 0.00493 0.00492 0.05783 0.04967 0.04801
3 0.00578 0.00507 0.00506 0.05497 0.04725 0.04580

Table 6. The average 95% confidence intervals and HPD credible in-
tervals for fixed n = 20, a1 = α/8, a2 = λ/8, b1 = α2/8 and b2 = λ2/8

α λ α̂M λ̂M α̂s λ̂s
1 1 0.43419, 1.94432 0.61290, 1.59915 0.72157, 1.59942 0.78885, 1.38292

2 0.45081, 1.90950 1.19498, 3.25545 0.72461, 1.57792 1.56223, 2.80175
3 0.45795, 1.89547 1.75541, 4.95207 0.72605, 1.56817 2.32549, 4.23455

2 1 0.60628, 4.42559 0.66304, 1.51448 1.40878, 3.44031 0.82630, 1.31148
2 0.66147, 4.31296 1.30680, 3.06245 1.41862, 3.37987 1.64299, 2.64491
3 0.68665, 4.26262 1.93453, 4.63822 1.42277, 3.34938 2.45219, 3.99012

3 1 0.58566, 7.28676 0.68251, 1.48326 2.11234, 5.28990 0.84815, 1.27310
2 0.69299, 7.07173 1.35003, 2.99225 2.12769, 5.19606 1.68985, 2.56415
3 0.58566, 7.28676 0.68251, 1.48326 2.11234, 5.28990 0.84815, 1.27310
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Table 7. MLE and Bayes estimates along with their confidence /HPD
intervals for real data set.

MLE

Bayes

SELF
GELF

C = −0.5 C = 1.5

27.876 26.5648
26.2139 24.7238

α -9.714 = 0, 65.4664 15.4246, 38.9235
2.5395 2.51002

2.5074 2.49682
λ 1.6581, 3.4209 2.1715, 2.8020

Table 8. Bayesian point prediction of future observations and corre-
sponding predictive bounds for varying m and s for real data set

Size

S

Predictive
(m)

SELF
GELF bounds

C = −0.5 C = 1.5

5 1 1.28808 1.28085 1.25130 0.908644, 1.652350
2 1.54413 1.53781 1.51235 1.179738, 1.951884
3 1.75999 1.75403 1.73012 1.380534, 2.174262
5 2.53550 2.51722 2.44541 1.715948, 3.367726

10 1 1.15339 1.14781 1.12496 0.836256, 1.415345
2 1.33655 1.33221 1.31459 1.047185, 1.634530
3 1.48345 1.47947 1.46325 1.189963, 1.781339
10 2.82503 2.80789 2.74140 2.019081, 3.720739

15 1 1.10226 1.09658 1.07293 0.794486, 1.359548
2 1.21866 1.21436 1.19681 0.936517, 1.506165
3 1.35761 1.35421 1.34043 1.077485, 1.653755
15 2.99531 2.97918 2.91633 2.165752, 3.874245

20 1 1.05936 1.03511 1.05464 0.794045, 1.315908
2 1.19595 1.19213 1.17651 0.928652, 1.454710
3 1.30105 1.29783 1.28471 1.041361, 1.567923
20 3.14707 3.13062 3.06668 2.326170, 4.067767

Table 9. Kolmogorov-Smirnov test statistics summary for real data set

MLE SELF
GELF

D(20,0.05)C=-0.5 C=1.5

0.1377 0.1389 0.1359 0.1224 0.294
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Figure 2. Risks plot of the estimators of α and λ under GELF (C < 0) for fixed
n = 20, α = 2, λ = 2, a1 = a2 = 0.25 and b1 = b2 = 0.5.

Figure 3. Risks plot of the estimators of α and λ under GELF (C > 0) for fixed
n = 20, α = 2, λ = 2, a1 = a2 = 0.25 and b1 = b2 = 0.5.
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Figure 4. Risks plot of the estimators of α and λ under SELF for fixed C < 0, n = 20, α =
2, λ = 2, a1 = a2 = 0.25 and b1 = b2 = 0.5.

Figure 5. Risks plot of the estimators of α and λ under SELF for fixed C > 0, n = 20, α =
2, λ = 2, a1 = a2 = 0.25 and b1 = b2 = 0.5.
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Figure 6. MCMC trace plots of simulated samples (a) for α and (b) for λ for real data set.

Figure 7. 3-D histogram of simulated α and λ for real data set.
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Figure 8. Density function plot of the first future observation with varying m for real
data set.

Figure 9. Trace and density plots of simulated y(1), y(2), and y(3) the first three future
observations when m = 5 for real data set.
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Figure 10. Empirical and fitted distribution function for real data set.
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