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Abstract 

Neutral tellurium detected in three metal-poor stars enriched by products of r-process nucleosynthesis by 
using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the 
Hubble Space Telescope. Tellurium (Te, Z=52) was found at the second r-process peak (A≈130) associated 
with N=82 neutron shell closure [1]. The beta decay rates of unstable isotopes may be drastically changed 
under stellar conditions. In this work, we have been investigated the first forbidden (|∆J|=0, 1 and 2) 
transitions strength of some neutron rich Tellurium isotopes. The theoretical framework is based on a proton 
neutron quasiparticle random phase approximation (pn-QRPA) in the particle-hole (ph) channel. The 

transition probabilities in the Woods-Saxon potential basis have been calculated within the -approximation 

[2]. The calculated first forbidden -decay logft values are in better agreement with experimental data [3]. 
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1. INTRODUCTION 

For the physical condition prediction many supernova models fails to explain successfully the r-process 

nucleosynthesis. Sound knowledge of many properties of neutron rich nuclei are required for the description 

of production of r-process isotopes. The weak decay processes are important elements in astrophysical 

measures. Due to weak interactions core collapse of massive stars activates the supernova explosions. In 

neutronization of stellar core via electron capture by nuclei and by free protons weak interactions plays an 

important role. In evolution of massive this process effects the creation of heavier elements beyond iron in 

late phase of evolution in r-process. In supernova outburst weak rates determines the mass of the core and 

estimates the strength of the shock waves produced [4,5]. To study the r-process better understanding of β-

decay properties of neutron rich nuclei is obligatory. In astrophysical environment it is believed that r-

process take place at neutron density greater than 1020𝑐𝑚−3 and temperature greater than 109𝑘 and the 

neutrons are captured rapidly than competing the β-decay and at small neutron separation energy of ≲
3𝑀𝑒𝑉 the r-process goes through the neutron rich domain. Weak processes explanation is an open question 

for structure based nuclear theories and is important to explore the physics beyond the standard model [6]. 

Better agreement of estimation of beta decay half-lives is a challenging task in nuclear physics. Various 

models are used for the calculations of beta decay half-lives. Gross Theory statistical in nature was used by 

Tkahashi et al. for the calculations of these rates [7]. But it was realized the need of microscopic model and 

then for the calculations of weak rates of large scaled r-process uses two different microscopic models have 
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been used, the Shell model and the quasiparticle random phase approximation (QRPA). In the studies of β-

decay the proton-neutron QRPA theory has been widely used. In pn-QRPA a quasiparticle basis using 

pairing interaction is constructed and Schematic Gamow-Teller (GT) residual interaction is solved using 

RPA equation. Sorensen and Halbleib [8] modifying the RPA model for the calculations of relevant 

transitions developed this model. Later on this model was extended for deformed nuclei as well by many 

authors for deformed [9-17] and for spherical nuclei [18-21]. For allowed weak rates, from atomic number 

6-114 microscopic calculations were carried out by [22]. Both beta decay [23] and electron capture [24] 

were studied for the calculations of β-decay properties for the nuclei far from the line of stability. Under 

terrestrial conditions the same model was used for the calculations of unique first-forbidden (U1F) 

transitions (|∆𝐽| = 2) by [25,26]. It was shown that for nuclei near to stability and near to magic nuclei 

U1F transition has more contribution to the total strength (Fig. 9 and table IX of [25]). Nabi and Klapdor 

used this model for the first time in stellar matter to calculate weak interaction rates [27-29]. Nabi and 

Stoica modifies the same code for the calculations of U1F rates in stellar environment [30]. Borzov further 

modified the QRPA based on Fayans energy function for calculations of role allowed and first-forbidden 

(FF) in the half-lives [4]. Large scale shell model is used for half-lives of r-processed waiting point nuclei 

which includes FF contributions.  

 

Suhonen studied the ground state transition in allowed and FF β-decays [31]. Civitarese et al. studied 

dependence of spin-isospin on even-even, odd-odd and FF β-decay transitions for |∆𝐽| = 0, 2  [32]. Çakmak 

et al. used QRPA model for spherical nuclei in the mass range 90-214 to study the 0+↔ 0- transitions [33] 

and the results were in better agreement with the experimental results and previous calculations. Thus is 

concluded that in total decay rates the FF transitions plays an important role and must take into account for 

the calculation of half-lives. 

 

In this paper, we studied the FF transitions of Te isotopes by using pn-QRPA for spherical nuclei in the 

Woods-Saxon potential. For the calculations of FF transitions we considered the particle-hole term of the 

effective interactions of the β-decay. 

 

2. THE pn-QRPA (WS) FORMALISM 

FF transitions logft values have been calculated using spherical schematic model within the framework of 

pn-QRPA (WS) method. The Woods-Saxon potential with Chepurnov parametrization has been used as a 

mean field basis in numerical calculations. The eigenvalues and eigenfunctions of the Hamiltonian with 

separable residual GT effective interactions in particle-hole (ph) channel were solved within the framework 

of pn-QRPA model. 

The model Hamiltonian which generates the spin-isospin dependent vibrations modes with 𝜆𝜋 =
 0− , 1− and 2− on odd-odd nuclei in quasi boson approximation is given as  

 

Ĥ =  Ĥsqp + ĥph                                    (1) 

 
The single quasi-particle Hamiltonian of the system is given by 

 

Ĥsqp =  ∑ εjr
αjrmr

†
jr

αjrmr(τ=p,n)               (2) 

 

where εjr
 and 𝛼𝑗𝑟𝑚𝑟

†
 (𝛼𝑗𝑟𝑚𝑟

) are the single quasi-particle energy of the nucleons with angular momentum 𝑗𝑟 

and the quasi-particle creation (annihilation) operators, respectively. 

The ℎ̂𝑝ℎ is the spin-isospin effective interaction Hamiltonian which generates 0− , 1− , 2− vibration modes 

in particle-hole channel and given as 
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ℎ̂𝑝ℎ = 2𝜒𝑝ℎ ∑ 𝑇𝜆𝜇
+ 𝑇𝜆𝜇

−
𝜇  ,               𝑇𝜆𝜇

− = (𝑇𝜆𝜇
+ )

+
                            (3) 

 

where  𝑇𝜆𝜇
±   is the first forbidden beta decay operator and 𝜒𝑝ℎ is particle-hole effective interaction constant. 

Tλμ
± = {

gV ∑ t±(k)rkY1μ(θk, φk)                                for  dipole interactionsk

gA ∑ t±(k)rk[Y1μ(θk, φk), σ1(k)]
λ
                for spin − dipolek  interactions

           (4) 

where λ is 0, 1 and 2 values. The beta decay operator in quasiparticle space is written as follows 

𝑇𝜆𝜇
+ = ∑ [�̅�𝑝𝑛𝐶𝑛𝑝

+ (𝜆, 𝜇) + (−1)𝜆+𝜇+1𝑏𝑝𝑛𝐶𝑛𝑝(𝜆, −𝜇)]𝑝,𝑛 + 

                     (5) 

∑[𝑑𝑝𝑛𝐷𝑛𝑝
+ (𝜆, 𝜇) + (−1)𝜆+𝜇�̅�𝑝𝑛𝐷𝑛𝑝(𝜆, −𝜇)]

𝑝,𝑛

 

The 𝐶𝑛𝑝
+ (𝜆, 𝜇) and 𝐷𝑛𝑝

+ (𝜆, 𝜇) are the quasi boson operators and given as 

𝐶𝑛𝑝
+ (𝜆, 𝜇) = √

2𝜆 + 1

2𝑗𝑛 + 1
∑ (−1)𝑗𝑝−𝑚𝑝(𝑗𝑝𝑚𝑝𝜆𝜇/𝑗𝑛𝑚𝑛)𝛼𝑗𝑛𝑚𝑛

+ 𝛼𝑗𝑝−𝑚𝑝

+

𝑚𝑛,𝑚𝑝

 

𝐷𝑛𝑝
+ (𝜆, 𝜇) = √

2𝜆+1

2𝑗𝑛+1
∑ (𝑗𝑝𝑚𝑝𝜆𝜇/𝑗𝑛𝑚𝑛)𝛼𝑗𝑛𝑚𝑛

+ 𝛼𝑗𝑝𝑚𝑝𝑚𝑛,𝑚𝑝
                      (6) 

 

The Hamilton operator of even mass nuclei and the effective interactions in the particle-hole channel are 

given 

𝐻 = 𝐻0 + ℎ𝐶𝐷                                         (7) 

ℎ𝐶𝐷 = 2𝜒𝑝ℎ ∑ [𝑇𝜆𝜇
+ (𝐶)𝑇𝜆𝜇

− (𝐷) + 𝑇𝜆𝜇
+ (𝐷)𝑇𝜆𝜇

− (𝐶)]𝜇                         (8) 

 

The equation of motion the pn-QRPA may be written and 

[H, Ω𝑗𝑘𝑚𝑘

𝑗+
] = 𝑊𝑗𝑘

𝑗
Ω𝑗𝑘𝑚𝑘

𝑗+
                            (9) 

The secular equation for the 
k

nω  energies is found as follows 

 

𝑊𝑗𝑘

𝑗
− 𝜀𝑗𝑘

=
2𝜆+1

2𝑗𝑘+1
∑

{2𝜒𝑝ℎ[𝑀𝑖
+(0+→𝜆𝑖

−)𝑑𝜈𝑘+𝑀𝑖
−(0+→𝜆𝑖

−)�̅�𝜈𝑘]}
2

𝑊𝑗𝑘

𝑗
−𝜔𝑖−𝜀𝑗𝜈

𝑖,𝑗𝜈
                       (10) 
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2.1 Investigation Of The Beta Moment Matrix Elements  

The relativistic beta moment matrix elements has an important role when the non relativistic beta moment 

matrix elements is small, depending on microscopic structure of the states.  

The relativistic and non-relativistic matrix elements, respectively, for  𝜆𝜋 =  0− are given by 

 

M∓(ρA, λ = 0) =  
gA

√4πc
∑ t∓(k)(σk. ϑk),k           (11a) 

 

M∓(ρA, κ = 1, λ = 0) =  gA ∑ t∓(k)rk{Y1(rk)σk}o,k                      (11b) 

 
The relativistic and the non-relativistic matrix elements, respectively, 𝜆𝜋 =  1− are given by 

 

M∓(jv, κ = 0, λ = 1, μ) =  
gA

√4πc
∑ t∓(k)rk(ϑk)1μ,k                     (12a) 

 

𝑀∓(𝜌𝑣 , 𝜆 = 1, 𝜇) =  𝑔𝐴 ∑ 𝑡∓(𝑘)𝑟𝑘𝑌1𝜇(𝑟𝑘),𝑘                       (12b) 
 

M∓(jv, κ = 1, λ = 1, μ) =  gA ∑ t∓(k)rk{Y1(rk)σk}1μ,k                      (12c) 

 
The non-relativistic matrix element for  𝜆𝜋 =  2− is given as  

 

M∓(jA, κ = 1, λ = 2, μ) =  gA ∑ t∓(k)rk{Y1(rk)σk}2μ,k             (13) 

 

Also, the transition probabilities 𝐵(𝜆𝜋 =  0−, 1−, 2−;  𝛽∓) are given by  

 

𝐵(𝜆𝜋 =  0−, 𝛽∓) =  |〈0𝑖
− ‖𝑀

𝛽∓
0 ‖ 0+〉|

2
 

 

𝑀
𝛽∓
0 =  ∓𝑀∓(𝜌𝐴, 𝜆 = 0) − 𝑖

𝑚𝑒𝑐

ℏ
𝜉𝑀∓(𝜌𝐴, 𝜅 = 1, 𝜆 = 0)             (14) 

 

𝐵(𝜆𝜋 =  1−, 𝛽∓) =  |〈1𝑖
− ‖𝑀

𝛽∓
1 ‖ 0+〉|

2
 

 

𝑀
𝛽∓
1 =  𝑀∓(𝑗𝑣, 𝜅 = 0, 𝜆 = 1, 𝜇) ± 𝑖

𝑚𝑒𝑐

√3ℏ
𝑀∓(𝜌𝐴, 𝜆 = 1, 𝜇) +  

𝑖√
2

3

𝑚𝑒𝑐

ℏ
𝜉𝑀∓(𝑗𝐴, 𝜅 = 1, 𝜆 = 1, 𝜇)                                 (15) 

 

𝐵(𝜆𝜋 =  2−, 𝛽∓) =  |〈2𝑖
− ‖𝑀

𝛽∓
2 ‖ 0+〉|

2
, 

 

𝑀
𝛽∓
2 =   𝑀∓(𝑗𝐴, 𝜅 = 1, 𝜆 = 2, 𝜇)                                           (16) 

 
In eqs. (14) and (15), the upper and lower signs refer to 𝛽− and 𝛽+decays, respectively. 
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The ft values are given by the equation 

 

(𝑓t)𝛽∓ =  
𝐷

(
𝑔𝐴
𝑔𝑣

)
2

 4 𝜋𝐵(𝐼𝑖→𝐼𝑓,𝛽∓)
                                            (17) 

 
where  

 

𝐷 =  
2𝜋3ℏ2𝑙𝑛2

𝑔𝑣
2𝑚𝑒

5𝑐4 = 6250𝑠𝑒𝑐.           
𝑔𝐴

𝑔𝑣
=  −1.254.  

 

3. RESULT AND COMPARISON 

The FF β-decay logft values of tellurium (Te) isotopes calculated within pn-QRPA (WS) formalism is 

shown in table 1. Only particle-hole interaction strength was considered for FF calculations within the pn-

QRPA(WS) formalism. A quenching factor wasn't applied for all pn-QRPA(WS) calculations.  

The pairing correlation constants were taken a 𝐶𝑝 = 𝐶𝑛 = 12 √𝐴⁄ . The strength parameters of the effective 

interaction are 𝜒𝛽 = 30𝐴−5/3𝑀𝑒𝑉𝑓𝑚−2,  𝜒𝛽 = 55𝐴−5/3𝑀𝑒𝑉𝑓𝑚−2 and 𝜒𝛽 = 99𝐴−5/3𝑀𝑒𝑉𝑓𝑚−2 for 

rank0, rank1 and rank2, respectively. As seen from Table 1, calculated the logft values of the 0+ ↔ 0− 

transitions for Te-119 and Te-133 isotopes, the 0+ ↔ 1− transitions for Te-119, Te-129 and Te-133 

isotopes and the 0+ ↔ 2− transitions for Te-119, Te-121, Te-127, Te-129, Te-131 and Te-133 isotopes. 

The calculated logft values are also compared with experimental data. The data of ref. [3] has been used 

for experimental logft values. It can be seen that the pn-QRPA(WS) model calculates logft values in better 

agreement with the measured logft values. The FF contributions to the total beta decay half-lives are very 

important to understand stellar beta decay rates. When the Te isotopes becomes more and more neutron-

rich, the phase space enhancement for U1F (Δ𝐽 = 2) transitions decreases but still is bigger than the phase 

space for allowed transitions and lead to a significant U1F contribution to the total β-decay rates. 

 
Table 1. The logft values of some neutron rich Te isotopes for FF beta transitions. 

 

 

 

Transitions 

 

Logft 

 

∆𝑱= 0 ∆𝑱= 1 ∆𝑱= 2 

 

Exp.a  pn-QRPA 

(WS) 

Exp.a pn-QRPA 

(WS) 

Exp.a  

 

pn-QRPA 

(WS) 

𝑇𝑒52
119 + 𝑒− → 𝑆𝑏51

119 + 𝜈 6.9 6.79 7.01 6.87 9.39 

 

9.21 

𝑇𝑒52
121 + 𝑒− → 𝑆𝑏51

121 + 𝜈 - - - - 9.7 

 

9.65 

𝑇𝑒52
127 → 𝐼53

127 + 𝑒− + �̅� - - - - 10.21 

 

9.87 

𝑇𝑒52
129 → 𝑆𝑏53

129 + 𝑒− + �̅� - - 9.91 9.47 10.14 

 

9.92 

𝑇𝑒52
131 → 𝐼53

131 + 𝑒− + �̅� - - - - 10.78 

 

10.3 

𝑇𝑒52
133 + 𝑒− → 𝑆𝑏51

133 + 𝜈 7.67 7.52 6.99 6.81 9.9 

 

9.84 

 
a The experimental values are taken from B. Singh et al. [3].  
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