
Araştırma Makalesi

 BAUN Fen Bil. Enst. Dergisi, 21(1), 169-183, (2019)

DOI: 10.25092/baunfbed.532619 J. BAUN Inst. Sci. Technol., 21(1), 169-183, (2019)

169

An incremental fuzzy algorithm for data
clustering problems

Elvin NASİBOV, Burak ORDİN*

Ege University, Faculty of Science, Department of Mathematics, Bornova, İzmir

Geliş Tarihi (Recived Date): 28.03.2018
Kabul Tarihi (Accepted Date): 18.08.2018

Abstract

Data Cluster analysis is an important part of data mining. It can be handled as two
types, hard and soft clustering. In hard clustering, a dataset is divided into distinct
clusters and each data in the dataset belongs to exactly one cluster. On the contrary
data can belong to more than one cluster in soft clustering and each data can be
associated with each cluster by a membership degree. Incremental algorithms which
are developed for hard clustering have two main advantages. They based on the
nonsmooth-nonconvex mathematical model which allows significantly reduce the
number of variables and they choose one cluster center for each step that leads to
obtain better objective function. In this paper, we propose an incremental fuzzy
algorithm for soft clustering problems and present results of numerical experiments on
11 real-world datasets. These results demonstrate that the proposed algorithm is
efficient for solving the soft clustering problems.

Keywords: A fuzzy c-means, global k-means algorithm, fuzzy clustering, nonsmooth
optimization.

Veri kümeleme problemleri için artımlı bir bulanık algoritma

Özet

Veri kümeleme analizi veri madenciliğinin önemli bir parçasıdır. Kesin ve esnek
kümeleme olmak üzere iki sınıfta ele alınabilir. Kesin kümelemede bir veri seti kümelere
ayrıldığında herbir veriseti içerisindeki her eleman yalnız ve yalnız bir kümeye ait
olabilir.Esnek kümelemede ise kesin kümelemenin aksine her bir eleman belirli bir
üyelik derecesi ile birden fazla kümeye ait olabilir. Kesin kümeleme için geliştirilmi ş
olan artımlı algoritmalar iki ana avantaja sahiptir.

 Elvin NASİBOV, elvin.nasibov@yahoo.com, https://orcid.org/0000-0002-0105-5447
* Burak ORDİN, burak.ordin@ege.edu.tr, https://orcid.org/0000-0001-7897-3265

NASİBOV E., ORDİN B.

170

Bunlardan birincisi sahip olduğu nonsmooth-nonconvex matematiksel model yapısı
sayaseinde değişken sayısı önemli ölçüde azaltılabilir. Bunun yanısıra her bir adımda
bir tek küme merkezi seçilerek belirli bir k değerine kadar bu devam ettiği için küresel
anlamda amaç fonksiyonu için daha iyi değerler elde edilebilir. Bu çalışmada esnek
kümeleme problemlerinin çözümü için artımlı bir bulanık algoritma hazırlanmıştır ve
algoritmayla gerçek 11 veriseti üzerinde gerçekleştirilen hesaplama denemelerinin
sonuçları sunulmuştur. Sonuçlar esnek kümeleme problemlerinin çözümü için
hazırlanan algoritmanın yararlılığını göstermektedir.

Anahtar kelimeler: Bulanık c-ortalamalar, küresel k-ortalamalar algoritması,
nonsmooth optimizasyon.

1. Introduction

The cluster analysis organizes a collection of patterns into clusters based on similarity.
It is also known as the unsupervised classification of patterns and has many applications
in different areas such as medicine, business, engineering systems, image processing
and etc.

Clustering problem can be examined in various viewpoints. Accordingly, one of them is
to divide clustering problem as hard and soft clustering. Each point of the data set
belongs to exactly one cluster that is known as hard clustering. If data elements can
belong to more than one cluster it is called as soft clustering. In soft clustering, a data
element is connected to each cluster with a membership degree. This idea firstly
suggested by Zadeh in fuzzy set theory [1].

The clustering problem can be considered as a global optimization problem. So, it may
have many solutions and only global solution provides the best cluster structure of a
dataset. To solve this problem, a great deal of optimization techniques have been
developed for last twenty years. These techniques are approaches from differerent
algorithmic methods as interior point methods, branch and bound, cutting plane, the
variable neighborhood search algorithm, dynamic programming, and metaheuristics like
tabu search, genetic algorithms, simulated annealing, [2-14]. Especially, incremental
methods have some advantages as nonsmooth and nonconvex mathematical model that
has less variables and an approach which leads to a global or near global minimizer in
hard clustering.

These algorithms attempt to optimally add one new cluster center at each stage. To
compute k-partition of a dataset, these algorithms start from an initial state with the (k –
1) centers for the (k – 1) clustering problem and try to find best k-th center.

The global k-means (GKM) algorithm, introduced in Ref. [15], is a notable developed
version of the k-means algorithm. In the GKM algorithm, which is an incremental
algorithm, each data point is used as a starting point for the k-th cluster center. The main
purpose of GKM algorithm leads at least to a near global minimizer.

The paper [16] introduces the modified global k-means algorithm. It is also an
incremental algorithm and subproblems are solved iteratively in the modified GKM
algorithm to compute initial solutions for cluster centers. Computational experiments

BAUN Fen Bil. Enst. Dergisi, 21(1), 169-183, (2019)

171

presented in [16] demonstrate that the modified global k-means algorithm has ability to
find a better solutions than the global k-means algorithm.

In 2010 Vanisri D. and Loganathan developed new algorithm to compute initial cluster
centers for k-means clustering. According to this method, data is partitioned by a cutting
plane algorithm in a cell that divides cell in to two smaller cells. Cells are partitioned
one at a time till the number of cells equals to the predefined number of clusters k. The
centers of the k cells become the initial cluster centers for k-means. The computational
experiments show that the proposed algorithm is effective, converge to better clustering
results than those of the random initialization method [17].

Besides many algorithms have been developed as different versions of k-means and
global k-means ([18], [19]).

There is very often no sharp boundary between clusters so that fuzzy clustering is more
appropirate in real applications. So, many researches have studied on fuzzy clustering.

In one of these studies presents a fuzzy c-means (FCM) algorithm that deals with spatial
information into the membership function for clustering [20]. The expressed function in
this method is the summation of the membership function in the neighborhood of each
pixel under the consideration.

To evaluate volumes of cerebrospinal fluid (CSF), white matter, and gray matter from
transaxial magnetic resonance images (MRI) of the brain are described a new algorithm
in [21]. The algorithm was able to detect the expected increased amounts of CSF and
decreased amounts of white matter characteristic of the hydrocephalic brain.
Antonino Staiano and others describe a novel approach to fuzzy clustering, which
organizes the data in clusters on the basis of the input data and a ‘prototype’ regression
function built, in the output space, as a summation of a number of linear local regression
models. They especially claim the given algorithm to be effective in the training of
RBFNNs leading to improved performance with respect to other clustering algorithms
[22]. Here supervised fuzzy clustering algorithm is using to search for the centroids of
the hidden units of the RBFNNs.

In 2010 Velmurugan and Santhanam working on implementation and performance of
two clustering algorithms namely centroid based k-means and object based c-means.
They show that the behavior of both algorithms depends on the number of data points as
well as on the number of clusters. The input data points are generated by using normal
distribution and another by applying uniform. The running time for each algorithm is
analyzed and the computational experiments are compared with each other [23].

The purpose of this study is to obtain an incremental algorithm in fuzzy clustering
problem which provides better solutions. So, we propose an incremantal fuzzy
clustering algorithm that based on global k-means. The results of numerical experiments
on 12 datasets demonstrate the superiority of the proposed algorithm over the fuzzy
clustering algorithm.

The rest part of the paper is organized as follows: Section 2 gives mathematical models
for clustering problem. Two algorithms for clustering problem are presented in Section
3. A Modified Global k-Means Algorithm on a Fuzzy Model is expressed in section 4.

NASİBOV E., ORDİN B.

172

The results of numerical experiments are given in Section 5. Section 6 concludes the
paper.

2. Mathematical models for clustering problem

This section adresses various mathematical models of clustering problem. Let us take a
finite set of points A in the n-dimensional space ��, that is � = ���, … , ���, where �� ∈ ��,			� = 1, … ,�.

The hard uncontrained partition clustering problem is the distribution of the points of
the set A into a given number k of disjoint subsets Aj ; j = 1,...,k with respect to
predefined criterias:

• �� ≠ ∅,				 = 1,… ,
;
• �� ∩ �� = ∅,				, � = 1, . . . ,
,				 ≠ �;
• � = ⋃ ������ ;
• No constrains are imposed on the clusters �� ,				 = 1, … ,
.

The sets Aj , j=1,...,k are called clusters. Data points from the same cluster are similar
and data points from different clusters are dissimilar to each other. Similarity of data
points is defined by the so-called similarity measure. This measure can be defined by a
distance between data points and their cluster centers. Let d(x ; y) be a distance between
points x and y. Then the clustering problem can be reduced to the following
optimization problem (see [24]):

Min							���,�� = �	 	∑ 	∑ ������� , �������	��� (1)

subject to � = ���, … , ���	�	��×� , (2)
 			∑ ��� = 1	, � = 1,… ,�,���� (3) 																				��� = 0	��	1,			� = 1,… ,�,				 = 1, … ,
 (4)

 where ��� is the association weight of pattern �� with the cluster j, given by
 ��� = �			1, ��	�������	�� 	��	���� ����	��	�h�	 �!����		

0, ��ℎ������ " (5)

and �� = ∑ �����	����∑ ���	���� ,			 = 1,… ,
. (6)

Here � is a � ×
 matrix.

The distance d can be defined using different norms. In this paper we use the following
squared euclidean norm.
 ���, #� = $%|�� − #�|��

��� '� ��

BAUN Fen Bil. Enst. Dergisi, 21(1), 169-183, (2019)

173

The problem (1)-(6) is called the mixed integer nonlinear programming formulation of
the clustering problem.
Nonsmooth nonconvex optimization formulation of the clustering problem (1)-(6) is as
follows (see [24]):
 ���	�����		�!(� �	��	���, … , ���	�	��×� , (7)

 																																			�ℎ��� �����, … , ��� = �	∑ ������,…,�	���� , ���	��� (8)

 � and �� functions are called cluster functions. The objective function � depends on
both binary (���, i=1,...,m, j=1,...,k) and continuous variables (��,...,��), whereas the
function �� depends only on continuous variables ��,...,	��. According to this both
functions are nonconvex. The number of variables in problem (1) - (4) is (� + �) ×

and in problem (6) this number is only � ×
 and the number of variables does not
depend on the number of instances. Problems (1) - (4) and (6) are equivalent in the
sense that their global minimizers coincide.

In the soft unconstrained partition clustering problem, the distribution of the points of
the set � into k clusters Aj , j=1,...,k carry out with memberships. So data points have a
membership degree for each cluster. That is, a particular point can belong to more than
one cluster with certain possibility. Fuzzy clustering is often best suited as there is often
no sharp boundary between clusters for the data. In fuzzy clustering, membership
degrees between zero and one are used instead of crisp assignments of the data to
clusters in real applications. This method was developed by Dunn in 1973 and improved
by Bezdek in 1981 and it is frequently used in pattern recognition [25].

It is based on minimization of the following objective function:
 � = %%!����

���)�� − ��)�, 1 < * < ∞
	
���

where q is any real number greater than 1, !�� is the degree of membership of a d-
dimensional measured data �� in the cluster 	, �� is the d-dimensional center of the
cluster 	, and ||*|| is any norm expressing the similarity between any measured data and
the cluster center. Fuzzy partitioning is carried out through an iterative optimization of
the objective function shown above, with the update of membership !�� and the cluster
centers �� by:
 !�� = �

∑ �����	��
���	�
�����
���, and 		�� = ∑ ���� .������∑ �������� .

This iteration will stop when)+(���) − +(�)) < Ԇ, where Ԇ is a termination criterion
near to 0, whereas t is the iteration steps. This procedure converges to a local minimum
or a saddle point of �.

NASİBOV E., ORDİN B.

174

The following section handles an algorithm based on incremental and for fuzzy
clustering problem in a nonsmooth nonconvex mathematical model.

3. Algorithms for hard and soft clustering problems

In this section we give the global k-means algorithm which is a basic incremantal
algorithm in hard clustering. Also we express fuzzy k-means algorithm in soft
clustering.

The global k-means algorithm proceeds as follows.

Algorithm 1. The global k-means algorithm.
Step 1. (Initialization) Compute the centroid �� of the set �:	 �� = �	∑ �� ,	��� �� ∈ �, � = 1,… ,�

and set t=1.
Step 2. (Stopping criterion) Set t = t + 1. If t > k, then Stop.
Step 3. Take the centers ��, ��, … , ���� from the previous iteration and consider each
point �� of � as a starting point for the t-th cluster center, thus obtaining m initial
solutions with t points ���, … , ����, ��; apply the k-means algorithm to each of them;
keep the best t-partition obtained and it’s centers #�, #�, … , #�.
Step 4. Set �� = #�, i=1,...,t and goto step 2.

The modified global k-means algorithm, introduced in [8], is also an incremental
clustering algorithm. The algorithm starts with the computation of one cluster center,
that is with the computation of the centroid of the dataset, and attempts to optimally add
one new cluster center at each iteration for solving k-partition problem,. As using the (k-
1) centers for the (k-1)-partition problem and the remaining k-th center is placed in an
appropriate place to solve k-partition problem. An auxiliary cluster function is defined
using k-1 cluster centers from the (k-1)-th iteration and is minimized to compute the
starting point for the k-th center. Then this new center together with previous k-1 cluster
centers is an input as a starting point for the k-partition problem. This is a good idea for
to find a global or a near global solution to hard clustering problem.

The general scheme of fuzzy k-means algorithms for finding the k-partition of the set �
is as follows:

Algorithm 2. The fuzzy k-means algorithm
Step 1. Initialize randomly + = [!��] matrix denoted as +(�). Set iteration number: � = 0.
Step 2. For the iteration t, calculate the centers �� , 	 = 1. .
, according to the
precomputed +(�).
Step 3. Update membership degrees according to recently computed cluster centers, and
denote as +(���).
Step 4. If)+(���) − +(�)) < Ԇ then Stop; otherwise set � = � + 1, and return to step
2.

BAUN Fen Bil. Enst. Dergisi, 21(1), 169-183, (2019)

175

In fuzzy k-means algorithm, the centroid of a cluster is computed as being the mean of
all points, weighted by their degree of belonging to the cluster and the degree of being
in a certain cluster is related to the inverse of the squared distance to the cluster.

By using the above mentioned algorithms, we obtain an incremental fuzzy algorithm for
soft clustering problem in the next section.

4. An incremental fuzzy algorithm for clustering problems

In this section we describe an incremental fuzzy algorithm for solving soft clustering
problems. Our algorithm builds clusters dynamically adding one cluster center at a time.
The incremental fuzzy clustering for finding the k-partition of the set � proceeds as
follows:

Algorithm 3. A fuzzy global k-means algorithm
Step 1. Initialize + = [!��] matrix, +(�). Compute the centroid �� of the set �:	 �� = �	∑ �� ,	��� �� ∈ �, � = 1,… ,�

and set t=2.
Step 2. Take the centers ��, ��, … , ���� from the previous iteration and consider each
point a of � as a starting point for the t-th cluster center, thus obtaining m initial
solutions with t points ���, … , ����, ��; apply the fuzzy k-means (with
 ≡ �) algorithm
to each of them; keep the best t-partition obtained and its centers #�, #�, … , #�.
Step 3. Set �� = #�, i=1,...,t; Set t = t + 1; if � ≤
, go to step 2 else Stop.

The aim of this algorithm is to gather advantages of incremental algorithms in hard
clustering for fuzzy clustering. The algorithm starts with the computation of one cluster
center, that is with the computation of the centroid of the dataset, and attempts to
optimally add one new cluster center at each iteration for solving a subproblem. Each
new center together with previous k-1 cluster centers is an input as a starting point for
the subproblem.

5. Computational experiments

To verify the efficiency of the proposed algorithm numerical experiments with a
number of real-world datasets have been carried out on a PC Intel(R) Core(TM) i5 with
CPU 2.90 GHz and RAM 6 GB. We also compare the proposed algorithm with the
fuzzy k-means algorithm. 11 datasets have been used in numerical experiments [26].
The brief description of the datasets is given in Table 1.

Table 1. The brief description of datasets.

Datasets
Number of
instances

Number of
attributes

BAVARIA1 89 3
BAVARIA2 89 4

IRIS 150 4
WINE 178 14

CLEVELAND 297 13

NASİBOV E., ORDİN B.

176

Table 1. (Continued).

LIVER 345 6
IONOSPHERE 351 34

DIABETS 768 8
TSP 1060 2

PAGE BLOCK 5473 10
PENDIGIT 10992 16

The following notations are used in the numerical experiments.

• k is the number of clusters;
• fopt is the best known value of the cluster ;
• f is average value of the clustering for FCM algorithm after calculating 10 times

and the only value for FGMCM (results are the same for every time calculating
by FGMCM – this is global solution)

• E is the error in %;
• t is the CPU time;
• Dave is average value of calculated distances for FCM after calculating 10 times

and the only value for FGMCM (results are the same for every time calculating
by FGMCM – this is global solution)

• FGMCM stands for the proposed algorithm.

The error E is computed as
 , = (�̅�����)���� ∙ 100,

where � ̅is the best value of the objective function obtained by an algorithm.
Results for small datasets, bavaria 1, bavaria 2, irish plants, are presented in tables 2, 3,
4.

Table 2. Results for dataset Bavaria1.

k FCM (average of 10 times running) FGMCM
 f E t Dave f E t Dave
2 99.3 * 1010 71.63 00:00:00.5500000 445 579.00 * 109 0.00 00:00:00.5530413 356
3 39 * 1010 71.06 00:00:00.5600000 3123.9 228.00 * 109 0.00 00:00:00.9480302 7031
4 15 * 1010 25.79 00:00:00.5700000 7796.4 119.00 * 109 0.00 00:00:00.8381701 13439
5 12.8 * 1010 174.01 00:00:00.5270000 7431.5 46.80 * 109 0.00 00:00:01.1524557 21894
6 11.5 * 1010 269.90 00:00:00.6100000 12762.6 31.00 * 109 0.00 00:00:01.4022011 32040
7 11.4 * 1010 379.07 00:00:00.6400000 18752.3 23.80 * 109 0.00 00:00:01.9470050 40762
8 6.84 * 1010 227.18 00:00:00.6270000 22570.4 20.90 * 109 0.00 00:00:02.1952856 45746
9 4.86 * 1010 161.19 00:00:00.6500000 25712.1 18.60 * 109 0.00 00:00:02.4449404 52154
10 10.1 * 1010 511.86 00:00:00.5800000 14952 16.50 * 109 0.00 00:00:02.6445966 67284
11 7.65 * 1010 451.52 00:00:00.6570000 27901.5 13.90 * 109 0.00 00:00:03.1785964 73158
12 8.23 * 1010 550.79 00:00:00.6800000 40584 12.60 * 109 0.00 00:00:03.5773653 91314
13 7.35 * 1010 516.36 00:00:00.6500000 32743.1 11.90 * 109 0.00 00:00:03.9459486 100570
14 8.36 * 1010 679.65 00:00:00.7530000 30651.6 10.70 * 109 0.00 00:00:04.3622616 122998
15 3.56 * 1010 274.26 00:00:00.7370000 82770 9.51 * 109 0.00 00:00:04.6280423 209773
20 2.27 * 1010 310.65 00:00:00.7870000 75116 5.52 * 109 0.00 00:00:08.8072048 511750
25 2.18 * 1010 408.66 00:00:00.9370000 138840 4.28 * 109 0.00 00:00:11.2148460 800021
30 1.52 * 1010 7503.97 00:00:00.9600000 134301 0.20 * 109 0.00 00:00:19.7241270 1624517
35 0.475 * 1010 3767.35 00:00:01.2130000 223034 0.12 * 109 0.00 00:00:25.4283391 2744671
40 0.908 * 1010 8417.33 00:00:01.2770000 262728 0.11 * 109 0.00 00:00:30.0118952 3716462
45 0.52 * 1010 7081.97 00:00:01.4170000 289161 0.07 * 109 0.00 00:00:41.7922911 4356906
50 0.579 * 1010 9446.19 00:00:01.5030000 344875 0.06 * 109 0.00 00:00:38.7687368 5464689

BAUN Fen Bil. Enst. Dergisi, 21(1), 169-183, (2019)

177

Table 3. Results for dataset Bavaria2.

k FCM (average of 10 times running) FGMCM
 F E t Dave f E t Dave
2 82.36 * 109 99.72 00:00:00.5600000 623 41.24 * 109 0.00 00:00:00.6280775 534
3 20.36 * 109 9.92 00:00:00.6130000 5713.8 18.52 * 109 0.00 00:00:00.3438855 3471
4 19.26 * 109 214.95 00:00:00.5930000 5233.2 6.11 * 109 0.00 00:00:00.5036629 20915
5 9.17 * 109 137.06 00:00:00.6130000 10724.5 3.87 * 109 0.00 00:00:00.7406861 36045
6 8.09 * 109 190.63 00:00:00.6630000 8917.8 2.78 * 109 0.00 00:00:00.9049078 45123
7 9.29 * 109 321.79 00:00:00.6600000 12709.2 2.20 * 109 0.00 00:00:01.2423689 86241
8 1.79 * 109 0.00 00:00:00.6630000 30117.6 1.97 * 109 10.05 00:00:01.5564978 88377
9 1.71 * 109 1.34 00:00:00.6500000 23949.9 1.69 * 109 0.00 00:00:01.7100315 99591
10 7.03 * 109 388.00 00:00:00.6600000 21271 1.44 * 109 0.00 00:00:02.2136175 147651
11 4.69 * 109 247.89 00:00:00.9100000 28978.4 1.35 * 109 0.00 00:00:02.4434161 151567
12 7.75 * 109 564.92 00:00:00.7170000 20185.2 1.17 * 109 0.00 00:00:02.9141849 188947
13 3.38 * 109 238.55 00:00:00.6800000 33784.4 1.00 * 109 0.00 00:00:03.6026968 245640
14 3.36 * 109 256.84 00:00:00.6370000 31773 0.94 * 109 0.00 00:00:03.7007947 270560
15 3.25 * 109 270.96 00:00:00.6830000 46324.5 0.88 * 109 0.00 00:00:04.1765584 297260
20 3.04 * 109 350.57 00:00:00.7200000 55002 0.67 * 109 0.00 00:00:07.0666346 520650
25 0.81 * 109 47.23 00:00:00.9970000 150187.5 0.55 * 109 0.00 00:00:11.6787706 1288097
30 1.08 * 109 125.60 00:00:01.0700000 180225 0.48 * 109 0.00 00:00:16.1523527 1706664
35 0.55 * 109 31.55 00:00:01.0900000 185031 0.42 * 109 0.00 00:00:21.3133292 2628882
40 0.85 * 109 126.34 00:00:01.4000000 196156 0.38 * 109 0.00 00:00:28.3237560 3768883
45 0.42 * 109 28.66 00:00:01.3300000 251514 0.32 * 109 0.00 00:00:35.6682668 4565967
50 0.13 * 109 0.00 00:00:01.4030000 266555 0.29 * 109 116.46 00:00:42.4022704 5305913

Table 4. Results for dataset IRIS.

k FCM (average of 10 times running) FGMCM
 f E t Dave f E t Dave
2 340.16 163.90 00:00:00.2270000 780 128.90 0.00 00:00:00.9375454 1500
3 151.82 150.91 00:00:00.2200000 3600 60.51 0.00 00:00:01.5426924 35250
4 92.31 121.56 00:00:00.2900000 15900 45.82 0.00 00:00:02.0846915 37050
5 44.20 30.86 00:00:00.3100000 29850 38.72 0.00 00:00:02.0913297 38550
6 43.88 77.45 00:00:00.2800000 33480 33.22 0.00 00:00:02.6636480 40350
7 37.31 83.01 00:00:00.2770000 24150 20.59 0.00 00:00:03.1572483 71850
8 19.84 13.02 00:00:00.3270000 33120 17.67 0.00 00:00:03.7352598 82650
9 22.75 47.68 00:00:00.3400000 45360 15.40 0.00 00:00:04.3483871 165000
10 19.10 36.84 00:00:00.3900000 79500 13.67 0.00 00:00:04.8610650 223500
11 24.67 104.71 00:00:00.3400000 41415 12.05 0.00 00:00:06.0355337 358800
12 16.54 48.41 00:00:00.4070000 84420 11.73 0.00 00:00:06.0276412 364200
13 19.00 83.64 00:00:00.4600000 99840 10.07 0.00 00:00:07.5465784 473400
14 9.44 2.07 00:00:00.6200000 183120 9.23 0.00 00:00:07.9796838 588900
15 15.52 77.23 00:00:00.5000000 106875 8.69 0.00 00:00:08.7852087 703650
20 6.28 0.00 00:00:00.6200000 170100 6.57 4.76 00:00:16.1532486 1217550
25 5.39 1.70 00:00:00.8400000 294000 5.36 0.00 00:00:21.1573325 1631550
30 4.41 2.91 00:00:00.8070000 243450 4.28 0.00 00:00:28.9922859 3335700
35 3.24 0.00 00:00:01.2930000 474075 3.50 10.43 00:00:37.5927287 4514550
40 4.13 33.49 00:00:01.0370000 324600 3.07 0.00 00:00:45.6548817 5996400
45 2.42 0.00 00:00:01.6930000 675675 2.79 12.33 00:00:55.5718831 8160300
50 2.06 0.00 00:00:01.6630000 655500 2.51 19.26 00:01:12.1013739 10182000

These results clearly demonstrate that for small datasets the proposed algorithm finds
either better or very similar solutions in comparison with average FCM algorithm. This
algorithm fails a few time for Bavaria2 and IRIS, but generally gives much more good
solutions than average FCM on small datasets. CPU computition time for both
algorithm is not very different. According to that this algorithm can be considered as an
alternative for FCM algorithm for small datasets.

Results for medium size datasets are presented in Tables 5- 9.

NASİBOV E., ORDİN B.

178

Table 5. Results for dataset WINE.

k FCM (average of 10 times running) FGMCM
 f E t Dave f E t Dave
2 558.74 * 104 50.60 00:00:00.9070000 783.2 371.01 * 104 0.00 00:00:01.6639851 1780
3 177.64 * 104 0.31 00:00:00.9430000 17355 177.09 * 104 0.00 00:00:01.7457751 42898
4 107.68 * 104 14.35 00:00:01.0570000 38519.2 94.17 * 104 0.00 00:00:02.7418371 55714
5 65.26 * 104 0.35 00:00:01.2030000 66216 65.03 * 104 0.00 00:00:04.0991923 114454
6 45.87 * 104 0.85 00:00:01.0930000 50196 45.49 * 104 0.00 00:00:05.6628581 139018
7 41.59 * 104 4.49 00:00:01.2170000 67159.4 39.80 * 104 0.00 00:00:07.3178803 151478
8 33.18 * 104 0.00 00:00:01.2670000 72481.6 33.92 * 104 2.23 00:00:09.4445816 195622
9 29.35 * 104 0.00 00:00:01.3830000 97401.6 30.78 * 104 4.86 00:00:12.3898409 397474
10 20.58 * 104 44.39 00:00:01.4770000 126380 14.25 * 104 0.00 00:00:15.2490709 598614
11 16.79 * 104 31.20 00:00:01.4230000 117088.4 12.80 * 104 0.00 00:00:18.8798232 831616
12 17.88 * 104 50.11 00:00:01.8670000 233678.4 11.91 * 104 0.00 00:00:21.7609895 902104
13 9.57 * 104 10.19 00:00:01.8970000 231168.6 8.68 * 104 0.00 00:00:26.0773774 1258460
14 13.15 * 104 56.76 00:00:01.4130000 100427.6 8.39 * 104 0.00 00:00:29.9118022 1340696
15 8.00 * 104 8.38 00:00:01.9730000 247776 7.38 * 104 0.00 00:00:33.3743522 1434146
20 5.10 * 104 0.00 00:00:02.2270000 302244 5.18 * 104 1.71 00:00:57.4538352 2306168
25 3.89 * 104 0.00 00:00:02.0100000 223390 4.82 * 104 24.07 00:01:30.7781916 4970650
30 2.30 * 104 0.00 00:00:03.5400000 525456 4.61 * 104 100.40 00:02:06.0206362 6861544
35 1.88 * 104 0.00 00:00:04.0470000 765667 4.09 * 104 117.17 00:02:47.5433922 8542576
40 1.52 * 104 0.00 00:00:04.6930000 947672 3.37 * 104 121.49 00:03:47.4724369 14463568
45 1.28 * 104 0.00 00:00:05.5900000 1198296 3.00 * 104 135.23 00:04:49.4770356 17905554
50 1.07 * 104 0.00 00:00:05.5200000 1172130 2.51 * 104 135.26 00:05:46.8838754 20414820

Table 6. Results for dataset CLEVELAND.

k FCM (average of 10 times running) FGMCM
 f E t Dave f E t Dave
2 319.34 2.23 * 102 00:00:00.8430000 1485 98.77 * 100 0.00 00:00:03.3924531 1188
3 118.93 322.00 * 102 00:00:01.1970000 3118.5 0.37 * 100 0.00 00:00:03.3290343 2970
4 34.29 138.00 * 1027 00:00:01.7030000 7484.4 0.25 * 10-25 0.00 00:00:05.4786372 6534
5 4.86 19.60 * 1027 00:00:01.4570000 12028.5 0.25 * 10-25 0.00 00:00:08.0853441 9504
6 21.74 134.00 * 1027 00:00:01.6100000 15147 0.16 * 10-25 0.00 00:00:11.5452714 13068
7 1.81 12.10 * 1027 00:00:01.6000000 16839.9 0.15 * 10-25 0.00 00:00:14.7463253 17226
8 14.73 148.00 * 1027 00:00:01.6530000 14256 0.10 * 10-25 0.00 00:00:20.2609879 24354
9 1.26 15.30 * 1027 00:00:01.5870000 19780.2 0.08 * 10-25 0.00 00:00:23.7485486 29700
10 1.47 19.30 * 1027 00:00:01.6530000 21087 0.08 * 10-25 0.00 00:00:30.4869915 44550
11 1.64 21.50 * 1027 00:00:01.6630000 30709.8 0.08 * 10-25 0.00 00:00:35.1628026 51084
12 1.43 40.30 * 1027 00:00:01.6630000 32432.4 0.04 * 10-25 0.00 00:00:42.1137532 76032
13 1.04 29.10 * 1027 00:00:01.7430000 33976.8 0.04 * 10-25 0.00 00:00:49.6678915 83754
14 0.99 19.20 * 1027 00:00:01.9170000 35758.8 0.05 * 10-25 0.00 00:00:56.1926109 117018
15 0.29 5.71 * 1027 00:00:01.6730000 28066.5 0.05 * 10-25 0.00 00:01:02.1736826 125928
20 0.23 10.10 * 1027 00:00:01.9230000 37422 0.02 * 10-25 0.00 00:01:47.2848947 225720
25 0.30 9.63 * 1027 00:00:02.1030000 53460 0.03 * 10-25 0.00 00:02:58.2028488 3590136
30 0.09 4.16 * 1027 00:00:02.2570000 56133 0.02 * 10-25 0.00 00:04:11.9694065 7576470
35 0.00 0.00 00:00:02.0730000 60291 0.02 * 10-25 0.00 00:05:42.8086813 12821787
40 0.26 13.80 * 1027 00:00:02.2270000 91476 0.02 * 10-25 0.00 00:07:28.2022964 18659322
45 0.00 0.00 00:00:02.2770000 77517 0.02 * 10-25 0.00 00:09:10.5472465 19073637
50 0.00 0.00 00:00:02.3600000 86130 0.02 * 10-25 8.14 00:11:01.4780363 19442511

BAUN Fen Bil. Enst. Dergisi, 21(1), 169-183, (2019)

179

Table 7. Results for dataset LIVER.

k FCM (average of 10 times running) FGMCM
 f E t Dave F E t Dave
2 36.11 * 104 2.51 00:00:02.0700000 1932 35.22 * 104 0.00 00:00:02.3444286 2760
3 20.87 * 104 0.40 00:00:01.9700000 45643.5 20.79 * 104 0.00 00:00:03.3543936 74175
4 15.16 * 104 2.77 00:00:02.3230000 49818 14.75 * 104 0.00 00:00:03.6011962 82455
5 11.47 * 104 1.66 00:00:02.0530000 61237.5 11.29 * 104 0.00 00:00:06.3070420 229080
6 9.23 * 104 0.00 00:00:02.1600000 123372 9.23 * 104 0.02 00:00:06.7393495 311880
7 7.96 * 104 1.37 00:00:02.1900000 80419.5 7.86 * 104 0.00 00:00:10.2360135 343275
8 6.83 * 104 0.50 00:00:02.4100000 160632 6.79 * 104 0.00 00:00:18.2921962 456435
9 6.04 * 104 0.75 00:00:02.3270000 156802.5 5.99 * 104 0.00 00:00:14.3302942 807300
10 5.49 * 104 1.91 00:00:02.5470000 211140 5.39 * 104 0.00 00:00:16.3938192 1052250
11 4.87 * 104 0.00 00:00:02.5430000 229977 4.89 * 104 0.53 00:00:21.6681558 1192665
12 4.49 * 104 2.61 00:00:02.9200000 421038 4.37 * 104 0.00 00:00:24.6618096 1975125
13 4.13 * 104 2.76 00:00:02.6830000 275827.5 4.02 * 104 0.00 00:00:27.6341652 2441565
14 3.84 * 104 2.58 00:00:02.9530000 391230 3.74 * 104 0.00 00:00:30.1996937 2552655
15 3.72 * 104 6.67 00:00:02.5300000 186817.5 3.49 * 104 0.00 00:00:34.0220685 2925255
20 2.69 * 104 4.57 00:00:04.2100000 917010 2.57 * 104 0.00 00:01:00.6380743 5621085
25 2.10 * 104 2.74 00:00:04.7100000 1113487.5 2.04 * 104 0.00 00:01:32.7546106 10701210
30 1.75 * 104 3.24 00:00:06.1630000 1687050 1.70 * 104 0.00 00:02:03.4281892 14406510
35 1.51 * 104 3.36 00:00:07.2170000 2169877.5 1.46 * 104 0.00 00:02:42.0318315 20134200
40 1.32 * 104 2.08 00:00:06.9530000 2042400 1.29 * 104 0.00 00:03:27.3590131 24714420
45 1.15 * 104 1.14 00:00:07.7770000 2376877.5 1.13 * 104 0.00 00:04:41.2715947 39758145
50 1.04 * 104 2.90 00:00:07.9070000 2178675 1.01 * 104 0.00 00:06:21.4615916 63304050

Table 8. Results for dataset IONOSPHERE.

k FCM (average of 10 times running) FGMCM
 f E t Dave f E t Dave
2 31.75 14.72 00:00:01.7370000 1404 27.68 0.00 00:00:04.5004389 1404
3 16.95 107.82 00:00:01.8870000 2106 8.16 0.00 00:00:09.7954798 35100
4 10.70 117.54 00:00:02.1770000 2808 4.94 0.00 00:00:17.8372711 183924
5 9.05 249.33 00:00:02.0400000 3510 2.59 0.00 00:00:27.7795093 385749
6 5.42 196.28 00:00:01.8170000 4212 1.83 0.00 00:00:38.8232925 453141
7 3.91 220.60 00:00:01.8300000 4914 1.22 0.00 00:00:51.5455842 541593
8 3.96 344.87 00:00:01.9570000 5616 0.89 0.00 00:01:07.1292686 701649
9 2.88 332.88 00:00:01.9370000 6318 0.66 0.00 00:01:26.8850087 1371357
10 2.17 316.95 00:00:01.9930000 7020 0.52 0.00 00:01:44.8668367 1522287
11 2.24 480.95 00:00:02.0530000 7722 0.39 0.00 00:02:08.2191856 2004912
12 1.70 403.31 00:00:02.0700000 8424 0.34 0.00 00:02:35.1415130 2902068
13 1.87 587.76 00:00:01.9970000 9126 0.27 0.00 00:03:03.7613350 3969810
14 0.88 273.56 00:00:02.0070000 9828 0.23 0.00 00:03:35.9019093 5060718
15 1.47 580.17 00:00:02.5100000 10530 0.22 0.00 00:04:02.2875618 5108103
20 0.73 546.47 00:00:02.2870000 14040 0.11 0.00 00:07:05.4621985 9009468
25 0.48 446.55 00:00:02.4070000 17550 0.09 0.00 00:11:33.8665315 16988049
30 0.32 377.05 00:00:02.4630000 21060 0.07 0.00 00:16:33.5639800 27455571
35 0.23 251.52 00:00:02.6800000 24570 0.06 0.00 00:23:29.2769294 45186687
40 0.19 202.08 00:00:02.7630000 28080 0.06 0.00 00:30:40.8971535 60633846
45 0.11 78.37 00:00:02.8000000 31590 0.06 0.00 00:39:59.4908467 86223852
50 0.16 155.87 00:00:02.9300000 35100 0.06 0.00 00:48:49.4123436 106847559

NASİBOV E., ORDİN B.

180

Table 9. Results for dataset DIABETS.

k FCM (average of 10 times running) FGMCM
 f E t Dave f E t Dave
2 27659.72 17.51 00:00:04.1670000 3072 23538.96 0.00 00:00:07.2175795 3072
3 9763.50 0.37 00:00:04.6100000 149068.8 9727.04 0.00 00:00:16.5557688 79104
4 5487.53 0.00 00:00:05.3130000 538521.6 5487.53 0.00 00:00:26.1325551 678144
5 3455.16 0.18 00:00:05.8700000 619776 3448.99 0.00 00:00:39.6741339 1000704
6 2359.75 0.00 00:00:05.9230000 814694.4 2359.70 0.00 00:00:58.4543885 2341632
7 1992.64 13.02 00:00:08.7770000 1237555.2 1763.07 0.00 00:01:19.9486974 3782400
8 1318.21 0.00 00:00:08.7370000 1731993.6 1318.21 0.00 00:01:46.6716950 6381312
9 1048.69 2.40 00:00:08.4670000 1774310.4 1024.11 0.00 00:02:15.4989234 8648448
10 866.82 10.02 00:00:09.6730000 1499136 787.85 0.00 00:02:44.2900472 10184448
11 710.54 4.16 00:00:10.7700000 2257305.6 682.19 0.00 00:03:22.6204079 14408448
12 588.96 2.34 00:00:10.3570000 2547302.4 575.50 0.00 00:03:54.6121772 14804736
13 531.67 4.30 00:00:11.2700000 2432102.4 509.77 0.00 00:04:33.5251038 18099456
14 464.47 1.24 00:00:13.8970000 3114854.4 458.80 0.00 00:05:10.9153024 18572544
15 391.31 2.15 00:00:10.4730000 2287872 383.06 0.00 00:05:55.2400818 21314304
20 215.37 0.00 00:00:21.6330000 6248448 229.15 6.40 00:10:30.6439724 42306048
25 133.48 0.00 00:00:26.3530000 7981440 148.92 11.56 00:16:43.5791164 77933568
30 83.12 0.00 00:00:22.0000000 6465024 113.66 36.73 00:23:36.1694973 105924096
35 51.83 0.00 00:00:20.8870000 5693184 89.01 71.74 00:31:41.5688671 136035072
40 30.39 0.00 00:00:26.2900000 7928832 57.61 89.57 00:40:03.2513109 149618688
45 10.58 59.94 00:00:17.3500000 4064256 6.61 0.00 00:49:30.0585452 157671168
50 1.83 95.69 00:00:13.2730000 1693440 0.94 0.00 00:59:55.9337937 168603648

These results for medium size datasets demonstrate that the proposed algorithm finds
also better or very similar solutions for many times in comparison with average FCM
algorithm. This algorithm fails only for big number of clusters k on WINE and
DIABETS datasets. But gives always good solutions for CLEVELAND, LIVER,
IONOSPHERE datasets. Although it is needed more CPU computation time for
proposed algorithm according to computition operations, it can be used to get more
effective solutions.

Results for large size datasets are presented in tables 10, 11, 12.

Table 10. Results for dataset TSP.

k FCM (average of 10 times running) FGMCM
 f E t Dave f E t Dave
2

97.19 * 1014
19.5

6 00:00:06.1130000 5300 81.29 * 1014 0.00 00:00:04.0158374 8480
3 46.65 * 1014 0.48 00:00:05.9170000 198750 46.43 * 1014 0.00 00:00:16.3566228 145220
4 31.60 * 1014 1.90 00:00:06.0170000 256520 31.01 * 1014 0.00 00:00:22.8667654 509860
5 23.01 * 1014 0.20 00:00:10.3300000 601020 22.96 * 1014 0.00 00:00:24.6412358 780160
6 18.21 * 1014 0.68 00:00:07.7300000 587028 18.09 * 1014 0.00 00:00:34.2224419 1079080
7 14.81 * 1014 0.00 00:00:06.4770000 454104 15.85 * 1014 7.05 00:00:43.1700302 1093920
8 12.16 * 1014 1.05 00:00:10.5770000 919232 12.03 * 1014 0.00 00:00:49.4258591 1687520
9 10.70 * 1014 3.60 00:00:07.1370000 776556 10.33 * 1014 0.00 00:01:06.7601022 2393480
10 9.42 * 1014 5.94 00:00:08.1330000 1555020 8.89 * 1014 0.00 00:01:18.3914718 3061280
11 7.93 * 1014 1.20 00:00:08.2370000 1449338 7.83 * 1014 0.00 00:02:22.6365732 4472140
12 7.10 * 1014 1.13 00:00:07.7800000 1235112 7.02 * 1014 0.00 00:02:21.8094964 5985820
13 6.35 * 1014 0.00 00:00:08.3100000 1588834 6.48 * 1014 2.02 00:02:48.5704486 6123620
14 5.68 * 1014 0.00 00:00:10.8930000 2916060 5.69 * 1014 0.26 00:03:07.8699913 8572220
15 5.23 * 1014 0.00 00:00:09.0870000 2012940 5.23 * 1014 0.02 00:02:46.2050137 10639220
20 3.65 * 1014 2.65 00:00:10.8270000 3014640 3.56 * 1014 0.00 00:04:48.1725781 26112040
25 2.69 * 1014 0.00 00:00:15.4200000 5936000 2.71 * 1014 0.85 00:06:53.4707062 57902500
30 2.14 * 1014 0.00 00:00:14.9930000 5440980 2.20 * 1014 2.74 00:09:23.3998918 74704560
35 1.70 * 1014 0.00 00:00:19.8470000 8614620 1.77 * 1014 4.00 00:12:33.1384653 121143160
40 1.47 * 1014 0.00 00:00:18.6770000 7844000 1.48 * 1014 1.24 00:15:55.8313359 137049520
45 1.25 * 1014 0.00 00:00:16.4770000 6057900 1.31 * 1014 4.22 00:20:46.8459217 194088120
50 1.08 * 1014 0.00 00:00:21.9500000 9736100 1.20 * 1014 11.08 00:23:52.5072863 232558700

BAUN Fen Bil. Enst. Dergisi, 21(1), 169-183, (2019)

181

Table 11. PAGE Results for dataset BLOCK.

k FCM (average of 10 times running) FGMCM
 f E t Dave f E t Dave
2 71.34 * 106 58.51 00:00:05.6570000 21892 45.01 * 106 0.00 00:05:38.5083680 21892
3 26.20 * 106 5.58 00:00:07.7530000 666611.4 24.82 * 106 0.00 00:14:22.9942258 4356508
4 14.70 * 106 0.00 00:00:08.4230000 849409.6 15.70 * 106 6.95 00:24:54.6211853 11537084
5 10.20 * 106 16.61 00:00:09.9600000 1526967 8.74 * 106 0.00 00:38:29.0036795 18405699
6 7.57 * 106 20.22 00:00:11.4900000 2026104.6 6.29 * 106 0.00 00:53:55.8814841 25236003
7 6.35 * 106 24.17 00:00:13.3400000 2654952.3 5.12 * 106 0.00 01:13:28.3586868 44391503
8 4.34 * 106 28.57 00:00:11.4700000 1983415.2 3.38 * 106 0.00 01:35:12.7572140 66283503
9 3.66 * 106 36.64 00:00:14.5870000 3088413.9 2.68 * 106 0.00 01:58:17.4563351 90912003
10 2.69 * 106 24.12 00:00:18.9670000 4641104 2.17 * 106 0.00 02:23:59.2562800 106510053
11 2.03 * 106 12.32 00:00:25.8730000 7200278.8 1.81 * 106 0.00 02:52:30.4134416 117948623
12 2.03 * 106 34.02 00:00:25.0570000 6928818 1.52 * 106 0.00 03:23:12.9475463 147896879

Table 12. Results for dataset PENDIGIT.

k FCM (average of 10 times running) FGMCM
 f E t Dave f E t Dave
2 228.11 * 104 26.02 00:00:11.7670000 43968 181.01 * 104 0.00 00:09:23.5020858 43968
3 56.72 * 104 0.00 00:00:15.3000000 890352 57.05 * 104 0.59 00:23:57.9966188 241824
4 31.40 * 104 1.53 00:00:16.9430000 1336627.2 30.92 * 104 0.00 00:42:33.2228959 8551776
5 17.80 * 104 2.75 00:00:27.7370000 4105512 17.31 * 104 0.00 01:04:21.6022562 13278336
6 12.80 * 104 0.00 00:00:32.9870000 5427849.6 13.08 * 104 1.81 01:31:24.1976474 13542144
7 8.27 * 104 0.95 00:00:25.8970000 3777950.4 8.20 * 104 0.00 02:03:20.1091332 20082384
8 6.39 * 104 2.98 00:00:33.7400000 5751014.4 6.21 * 104 0.00 02:39:49.8736324 21489360

On TSP dataset the proposed algorithm gives 11 times better, 8 times very similar
(with Error ≤ 5%) and 2 times worth solutions. On BLOCK and PENDIGIT datasets
proposed algotithm gives better solutions for small number of clusters k.

Results represented in Table 2-12 demonstrate that average calculation time for FCM
running 10 times are faster for large datasets with big cluster count, but the aim function
value for FGMCM is better than average FCM running 10 times for small, medium and
large datasets.

6. Conclusion

In this paper, we have developed a new algorithm for solving fuzzy clustering problems.
We used nonsmooth nonconvex formulation of the hard clustering problem and
obtained an incremental algorithm for solving of the fuzzy clustering problem. Such an
approach allows us to use powerful incremental algorithms in hard clustering for
solving of fuzzy clustering problem. We presented the results of numerical experiments
using 11 real-world datasets and compared the proposed algorithm with fuzzy k-means
algorithm. The results of numerical experiments clearly demonstrate that the proposed
algorithm is more accurate than the fuzzy k-means in finding global minimizers of the
clustering function.

References

[1] Zadeh, A.L., Fuzzy sets, Information and Control , 8, 338-353, (1965).
[2] Al-Sultan, K.S., A tabu search approach to the clustering problem, Pattern

Recognition, 28(9), 1443-1451, (1995).

NASİBOV E., ORDİN B.

182

[3] Brown, D.E., Entail, C.L., A practical application of simulated annealing to the
clustering problem, Pattern Recognition, 25, 401-412, (1992).

[4] Diehr, G., Evaluation of a branch and bound algorithm for clustering, SIAM J.
Scientific and Statistical Computing, 6, 268-284, (1985).

[5] Dubes, R., Jain, A.K., Clustering techniques: the user's dilemma, Pattern
Recognition, 8, 247-260, (1976).

[6] Hanjoul, P., Peeters, D., A comparison of two dual-based procedures for solving
the p-median problem, European Journal of Operational Research, 20, 387-
396, (1985).

[7] Hansen, P., Jaumard, B., Cluster analysis and mathematical programming,
Mathematical Programming, 79(1-3), 191-215, (1997).

[8] Hansen, P., Mladenovic, N., J-means: a new heuristic for minimum sum-of-
squares clustering, Pattern Recognition, 4, 405-413, (2001).

[9] Hansen, P., Mladenovic, N., Variable neighborhood decomposition search,
Journal of Heuristic, 7, 335-350, (2001).

[10] Koontz, W.L.G., Narendra, P.M., Fukunaga, K., A branch and bound clustering
algorithm, IEEE Transactions on Computers, 24, 908-915, (1975).

[11] Du Merle, O., Hansen, P., Jaumard, B., Mladenovic, N., An interior point
method for minimum sum-of-squares clustering, SIAM Journal on Scientific
Computing, 21, 1485-1505, (2001).

[12] Selim, S.Z., Al-Sultan, K.S., A simulated annealing algorithm for the clustering,
Pattern Recognition, 24(10), 1003-1008, (1991).

[13] Spath, H., Cluster Analysis Algorithms, Ellis Horwood Limited, Chichester,
(1980).

[14] Sun, L.X., Xie, Y.L., Song, X.H., Wang, J.H., Yu, R.Q., Cluster analysis by
simulated annealing, Computers and Chemistry, 18, 103-108, (1994).

[15] Likas, A., Vlassis, N. and Verbeek, J., The global k-means clustering algorithm,
Pattern Recognition, 36, 451 – 461, (2001).

[16] Bagirov, A.M., Modified global k-means algorithm for minimum sum-of-
squares clustering problems, Pattern Recognition, 41, 3192- 3199, (2008).

[17] Vanisri, D. and Loganathan, C., An efficient fuzzy clustering algorithm based on
modified k-means, International Journal of Engineering Science and
Technology, 5949-5958, (2010).

[18] Ordin, B., Bagirov, A., A heuristic algorithm for solving the minimum sum of
squares clustering problems, Journal of Global Optimization, 61, 341–361,
(2015).

[19] Bagirov, A., Ordin, B., Ozturk, G., Xavier, A.E., An ıncremental clustering
algorithm based on hyperbolic smoothing, Computational Optimization and
Applications, 61(1), 219-241, (2015).

[20] Chuang, K., Tzeng, H., Chen, S., Wu, J. and Chen, T., Fuzzy c-means clustering
with spatial information for image segmentation, Computerized Medical
Imaging and Graphics, 30, 9–15, (2006).

[21] Brandt, M.E., Bohant, T.P., Kramer, L.A. and Fletcher, J.M., Estimation of CSF,
white and gray matter volumes in hydrocephalic children using fuzzy clustering
of Mr Images, Computerized Medical Imaging and Graphics, 18(1), 25–34,
(2004).

[22] Staianoa, A., Tagliaferria, R. and Pedrycz, W., Improving RBF networks
performance in regression tasks by means of a supervised fuzzy clustering,
Neurocomputing, 69, 1570-1581, (2005).

BAUN Fen Bil. Enst. Dergisi, 21(1), 169-183, (2019)

183

[23] Velmurugan, T. and Santhanam, T., Performance evaluation of k-means and
fuzzy c-means clustering algorithms for statistical distributions of input data
points, European Journal of Scientific Research, 3, 320-330, (2010).

[24] Bagirov, A.M., Yearwood, J., A new nonsmooth optimization algorithm for
minimum sum-of-squares clustering problems, European Journal of
Operational Research, 170(2), 578–596, (2006).

[25] Bezdek, J.C., Ehrlich, R., Full, W., FCM: The fuzzy c-means clustering
algorithm, Computers & Geosciences, 10(2–3), 191–203, (1984).

[26] UC Irvine Machine Learning Repository (http://archive.ics.uci.edu/ml/)

