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Abstract 

 

Liquid-vapor critical point for a thermodynamic mixture is an important parameter for the design of mixture 

transportation and processing. The classical critical points model for the multicomponent mixture is based on the 

tangent plane distance in terms of the Helmholtz energy. In this work, we have applied the damped Newton-Raphson 

scheme to solve the model using the critical temperature, critical specific volume and change in mole fraction of each 

component as independent variables. According to numerical experiments, the convergence criteria, initial guesses of 

variables and damped factor formulation were determined. The method was tested on twenty five mixtures 

containing two to eleven components using the SRK and PR equation of state. Comparisons between the calculated 

critical parameters and experimental values illustrated the overall accuracy of the solution method is satisfactory. 

This method can solve all the variables simultaneously using the whole iteration, which is more reliable than the 

nested two-singe variable loops method proposed by Heidemann and Khalil. Thus it can be used for practical 

purposes of locating the liquid-vapor critical points of multi-component mixtures. 

 

Keywords: Liquid-vapor critical points; multicomponent mixtures; equation of state; mathematic model; damped 

Newton-Raphson method. 

 

1. Introduction 

A critical state of a thermodynamic mixture is an 

equilibrium state that is essentially between regions of 

stability and instability with regard to the number of 

phases. A critical state is characterized by its critical point. 

At the critical point, liquid phase and the vapor phase have 

the same thermophysic prosperities such as viscosity, 

density, compressibility factor (Mokhatab et al, 2006). 

Locating the critical point is important for both 

hydrocarbon pipeline transmission and the oil reservoir 

development. For example, the critical point helps to 

determine the safety operating pressure and temperature 

range of liquid petroleum gas (LPG) or CO2 transmission 

pipeline (Li et al, 2010). Also, knowledge of vapor-liquid 

critical is useful in determining the type of gas reservoir 

and whether retrograde condensation of evaporation is 

possible (Tian et al, 2003).  

Normally, there are three ways which are experiments, 

empirical correlations and theoretical models to determine 

the critical points (Hicks et al, 1977). As the critical points 

obtained by experiments are expensive and the applicable 

range is limited, the critical points are frequently 

calculated by mathematical models. 

Gibbs proposed the first rigorous thermodynamic 

definition of critical points for n-component mixtures. The 

Gibbs criterion consists of two equations of partial 

composition derivatives of the Gibbs energy that must 

vanish at a critical point (Peng et al, 1977). Although the 

expressions are relatively simple for binary system, they 

become increasingly complex for the ternary and 

multicomponent system. Thus, the Gibbs criterion is less 

useful for practical calculations. To make the Gibbs 

criterion suitable for use, Heidemann and Khalil 

(Heidemann  et al, 1980, Michelsen et al, 1988) expressed 

the partial derivatives of the molar Gibbs energy in terms of 

partial derivatives of the molar Helmholtz energy through 

transformation of the independent variables. Heidemann 

and Khalil also proposed the solution method for their 

model. The method employs two nested single-variable 

iteration loops using Newton-Raphson and it has been 

adopted by API Technical Databook (API, 2005). Wang 

(1999) used homotopy continuation technique for 

calculating critical points in binary mixtures. Benito et al. 

(2001) also used the Heidmann and Khalil criteria for 

critical points of binary and ternary system in conjunction 

with a numerical technique based on the interval Newton 

analysis method. Henderson et al. (2004) formulated the 

critical points as an optimization problem, which was 

solved by the simulated annealing algorithm. In their 

method, the independent variables are the pressure and 

temperature. Their methods also tested on several ternary 

systems. Luo et al. (2000) solved the Heidmann and 

Khalil’s model using five-point numerical differentiation 

method. Justo-Garcia et al. (2008) applied the simulated 

annealing algorithm for the calculation of critical points of 

binary and multicomponent mixtures by using appropriate 

cooling schedule parameters to minimize the computer time 

for the solution of a critical point formulated as an 

optimization problem. Recently, Henderson et al. (2010) 

used differential evolution algorithms for the first time in 

the prediction of critical points of several multicomponent 
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mixtures, but the critical points could be calculated in a few 

of hundredths of a second. 

Sum of all, except for Justo-Garcia et al. (2008) and 

Henderson (2010), there are scarce literatures have applied 

their methods for the critical points calculation of 

multicomponent mixtures. However, lots of the 

hydrocarbon mixtures such as the condensed gas are 

consisted of more than seven components. Therefore, 

locating the liquid-vapor critical point is a problem worth 

studying.  

The aim of this work is to research the liquid-vapor 

critical point calculation method for multicomponent 

mixutres. In Section 2, we introduced the critical points 

model developed by Heidemann, Khalil and Bentio. In 

Section 3, we applied the damped Newton-Raphson scheme 

to solve the model. In order to obtain the liquid-vapor 

critical point, the independent variables in the model, the 

iteration format, the convergence criteria, initial guesses of 

variables and damped factor were determined. Finally, the 

liquid-vapor critical points of twenty five mixtures from 

literatures are used to test the accuracy and robustness of 

the proposed solution method.  

 

2. Critical Points Model 

Gibbs presented a first critical point criterion which is in 

terms of the Gibbs free energy G. Heidemann and Khalil 

replaced the Gibbs free energy with Helmholtz free energy 

A. On the basis of a Taylor series expansion of A, and 

considering the second and third order terms, Heidemann, 

Khalil  and Bentio et al formulated the critical condition for 

a mixture of C components as follows (Heidemann  et al, 

1980, Benito et al. 2001,): 
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Where, C is the total number of components, ni and nj are 

mole fraction of i
th 

 and j
th 

components, Δni, Δnj , Δnm are 

changes in mole fraction of i
th 

, j
th

 and m
th  

components. fgi is 

fugacity of i
th 

 component. 

In equation (1) and equation (2), the fugacities are the 

most important parameters which are often derived from 

generalized cubic EoS. Equation (1) and equation (2) are 

transformed into the following equations using the Soave 

modification of the Redlich-Kwong (SRK) EoS and Peng-

Robinson (PR) EoS. 
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Where, i is the number of mixtures (i=1,2, …, C). F1, F2 , 

F3 , F4 , F5 , F6, a, b, 
i , N ,  , 

ija , 
i ,   are parameters 

related to the EoS. 

There is an error in the paper Benito et al.(2001). In 

Benito’s paper, the first term in the first bracket of equation 

(4) is 3 2
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equations. Obviously, the total number of the equations is 
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For SRK EoS: 

0.42748  , 20.48 1.574 0.176  i i ic w w , 

0.08664i ci cib RT P , 0 1 u , 0 0 w . 

For PR EoS 

0.45724  , 20.37464 1.54226 0.26992  i i ic w w , 

0.07780 i ci cib RT P , 0 2  u , 0 1 w .

 Where Tc is the critical temperature of the mixture, vc is 

the critical specific volume of the mixture, Tci is the critical 

temperature of i
th 

component, Pci is the critical pressure of 

i
th 

component, wi is the acentric factor of i
th 

component, kij is 

the binary interaction coefficient. These parameters can be 

found in API Databook (API, 2005) or some commercial 

software such as Aspen HYSYS and SIMSCI PIPEPHASE. 

Set  1 2,
T

Cn n n     n . To ensure that it is 

nonzero, the vector Δn is normalized. 

1 0T  Δn Δn                                                            (24) 

Equations (3) (4) and (24) construct the critical points 

model of defined mixtures. Equation (3) should apply to 

each component, thus the model represents a system of C+2 

equations with the C+2 variables Tc, vc and Δni (i=1, 2, …, 

C). The critical temperature Tc, critical specific volume vc 

and Δn can be gained by solving the equations. The critical 

pressure Pc can then be computed directly from the 

pressure-explicit EoS.  

 

3 Model Solution  

3.1 Damped Newton-Raphson Iteration Scheme 

In order to calculate the critical point of a mixture, the 

above equations should be satisfied simultaneously. 

Heidemann and Khalil employed two nested single-variable 

iteration loops and the Newton iteration method to solve the 

model. The inner loop is holding vc constant, and iterates Tc 

to find the equation (3) is equal to zero using a Newton 

iteration scheme. The outer loop is calculating the values of 

Δni and checking whether equation (4) is satisfied on the 

basis of Tc obtained from the inner loop. If it is satisfied, 

exit the iteration. Otherwise, repeat the inner loop and 

obtain the new values of Tc using Newton iteration scheme 

until equation (4) is satisfied (Michelsen et al, 1988; API, 

2005). 

This work replaced the two nested single-variable 

iteration with a whole iteration using Newton-Raphson 

iteration scheme. However, we found that if the total 

number of components is more than five and traditional 

Newton-Raphson method is employed to solve the critical 

points model, the Newton-Naphson method may not 

converge successfully. To overcome the problem, this work 

used the damped Newton-Naphson (Abbasbandy et al, 2003; 

Crisfield et al, 1984). Different with the traditional Newton 

iteration method, the convergence of damped Newton-

Naphson is not only dependent on the initial guesses of 

variables, but also relates to the damped factor.  

Nominate the equations (3) is f11-f1c, equation (4) is f2 

and equation (24) is f3. Based on Taylor series expansion of 

the C+2 equations, and considering the first order terms, the 

iteration format can be built as follows: 
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Where, ΔTc, Δvc, ΔΔni are the correction terms of the 

critical temperature, critical specific volume of the mixture 

and change in mole fraction of i
th 

component respectively. 

x(k) is the variables set of the k
th

 iteration time, 
          1, , , ,
k k k k k

cx T v n n     . 

To ensure the results calculated are the vapor-liquid 

critical points, based on the method introduced in API Data 

Book and numerical experiments, we proposed the initial 

values of the variables can be set as follows. 

Initial value of the critical specific volume: 
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Initial value of the critical temperature: 
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Initial values of the change in mole fraction of each 

component: 
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Where, vci is the critical specific volume of i
th 

component. 
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To ensure the iteration is convergent, the damped factor 

is calculated by equation (29). 
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If Q=0, the damped Newton-Raphson scheme is entirely 

equivalent to traditional Newton-Raphson scheme. 

Considering there are magnitude difference between the 

temperature and the other variables, the different 

convergence criterion for each variable are proposed as 

follows: 

 

0.2T    (30) 
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0.01 1,2, ,in i C      (32) 

 

When above convergence criteria are satisfied 

simultaneously, exit the iteration and output the results. 

 

3.2 Determining the damped factor 

In equation (29) the damped factor is dependent on Q 

which can be obtained by numerical experiments. We take a 

condensate gas which contains eleven components as a test 

sample. For different Q, the convergent curves of Tc and vc 

are depicted in Figure 1 and Figure 2. 

Table 1. Molar composition of the tested condensate gas. 

Component Mole fraction Component Mole fraction 

CO2 0.0150 nC4H10 0.0329 
N2 0.0033 iC5H12 0.0402 
CH4 0.5205 nC5H12 0.0458 
C2H6 0.0823 C6H14 0.0503 
C3H8 0.0633 C7H16+ 0.1162 
iC4H10 0.0302   

 

As depicted in Figure 1, the temperature cannot 

converge to a certain value if Q=0 (traditional Newton-

Raphson scheme) and Q=400. However, the desired 

temperature can be obtained when Q is equal to or larger 

than 500. The similar phenomena also can be seen in Figure 

2. Also, the critical specific volume cannot converge to a 

correct value if Q=0 or Q=400, while it converge to the 

same and correct value when Q=500 and Q=600. Then, we 

can give the correct liquid-vapor critical temperature is 

407.6 K, critical specific volume is 1.523 m
3
/kmol, the 

critical pressure is 13706 kPa, corresponding changes in 

mole fraction of all components are 0.0055, -0.0056, -

0.1936, 0.1100, 0.1650, 0.1065, 0.1271, 0.1926, 0.2310, 

0.3102, 0.8420.  

Note that the total iteration time is 35 when Q=500 and 

total iteration time is 36 when Q=600. That can be 

explained that the step length of each variable modification 

is decreasing with the increasing of Q. Finally, we choose 

500 as the optimal value of Q. Then equation (29) is 

expressed as: 
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Figure 1. The critical temperature convegent curves. 

 

 
Figure 2. The critical specific volume convegent curves. 

 

The choice of the initial values, convergence criteria 

and damped factor is a very important aspect in the 

implementation of the solution method since it strongly 

affects the robustness of the method. The proposed initial 

values, convergence criterions and damped factor make the 

iteration method robust for locating critical points of 

multicomponent mixtures up to 11 components. 

 

4. Results and Discussion 

The solution procedures for locating the liquid-vapor 

critical point involve a large amount of matrixes calculation. 

In order to test the procedures presented, the computer 

program was developed using Microsoft Visual Basic and 

MATLAB hybrid programming technical (Li et al, 2010).  

In this example, critical temperatures and pressures have 

been calculated for a total for twenty five mixtures which 

were gained from 11 literatures. This compositions for all 

the mixtures studied are given in Table 2. This table 

includes two two-component mixtures, eight three-

component mixtures, four four-component mixtures, three 

five-component mixtures, one six-component mixture, one 

seven-component mixture , one ten-component mixture and 

four eleven-component mixtures, containing from methane 

to n-heptane, CO2, N2 were used to test the solution 

program.  

The basic parameters, such as binary interaction 

parameters, molar weight, acentric factor and critical 

parameters of each component are obtained from the 

software named Aspen HYSYS 2006.  

Table 3 presents the calculated critical pressures and 

temperatures for the twenty-five mixtures given in Table 2 

using PR EoS and SRK EoS. To analyze the accuracy of the 

solution method, two kinds of error evaluation methods are 

defined. The first one is relative error (RE) defined by 

equation (34). 
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Table 2. Compositions of multicomponent systems studied. 

Mixture 

no. 

Mixture composition (mole fraction) 

CO2 N2 CH4 C2H6 C3H8 iC4H10 nC4H10 iC5H12 nC5H12 C6H14 C7H16+ 

1   0.1000 0.9000        

2 0.9500 0.0500          

3  0.0700 0.4600       0.4700  

4    0.4290   0.3730    0.1980 

5    0.7260   0.1710    0.1030 

6    0.5140   0.4120    0.0740 

7    0.8010    0.0640   0.1350 

8    0.6120    0.2710   0.1170 

9    0.6150    0.2960   0.0890 

10  0.0465 0.4530  0.5005       

11  0.0490 0.4345 0.0835 0.4330       

12    0.6168   0.1376 0.0726   0.1730 

13    0.2542 0.2547  0.2554  0.2357   

14     0.4858  0.3316  0.1213 0.0613  

15   0.2019 0.2029 0.2033  0.2038  0.1881   

16   0.7057 0.0669 0.0413  0.0508  0.1353   

17   0.6626 0.1093 0.1057    0.0616 0.0608  

18   0.1015 0.3573  0.2629  0.1794  0.0657 0.0332  

19  0.0140 0.9430 0.0270 0.0074  0.0049  0.0010 0.0027  

20 0.0120  0.9089 0.0440 0.0191 0.0033 0.0060 0.0021 0.0013 0.0015 0.0018 

21 0.0109 0.0884 0.8286 0.0401 0.0174  0.0030 0.0055 0.0019 0.0012 0.0014     0.0006 

22 0.0091 0.2441 0.6870 0.0333 0.0144 0.0030 0.0040 0.0016 0.0010 0.0011 0.0014 

23 0.0020 0.2400 0.7364 0.0120 0.0053 0.0010 0.0015 0.0005 0.0004 0.0004 0.0005 

24 0.0030 0.1130 0.8580 0.0150 0.0060 0.0012 0.0018 0.0006 0.0004 0.0004 0.0006 

25 0.0100 0.1611 0.7625 0.0369 0.0160 0.0028 0.0051 0.0018 0.0011 0.0012 0.0015 

 

Table 3. Critical parameters obtained from calculation and experiments. 

Mixture 

no. 

Number. of 

components 

Experimental 

 

SRK EOS   PR EOS  Data 

 Source 
Tc(K) Pc(kPa) Tc(K) Pc(kPa)  Tc(K) 

Pc(kPa

) 

1 2 299 5322  295 5235  299 5328 (API, 2005) 

2 2 302 8300  301 8124  300 8092 (Seevam,2007) 

3 3 462 1170  463 1168  459 1178 (Benito,2001) 

4 3 438 6612  442 6375  439 6320 (Brunner,1990) 

5 3 386 7605  390 7591  388 7462 (Brunner,1990) 

6 3 400 6405  405 6298  404 6224 (Brunner,1990) 

7 3 391 8101  396 8416  392 8260 (Brunner,1990) 

8 3 421 7156  423 7085  420 7009 (Brunner,1990) 

9 3 416 7060  417 6947  414 6879 (Brunner,1990) 

10 3 313 9232  324 9205  321 9141 (Yarborough,1970) 

11 4 313 8963  318 9093  316 9028 (Yarborough,1970) 

12 4 423 7412  426 7477  423 7389 (Ekiner,1965) 

13 4 406 5113  411 5095  409 5037 (Etter,1961) 

14 4 418 4506  420 4443  419 4410 (Etter,1961) 

15 5 387 7220  396 7091  393 6998 (Etter,1961) 

16 5 308 13700  320 14884  316 14499 (Hanson,1945) 

17 5 310 13748  324 14706  318 14443 (Hanson,1945) 

18 6 376 6536  382 6508  380 6456 (Etter,1961) 

19 7 201 5578  202 5938  202 5906 (Gonzalez,1968) 

20 10 211 6378  211 6635  211 6602 (Gore,1952) 

21 11 204 6584  204 6982  204 6704 (Davis,1954) 

22 11 189 6708  180 6112  181 6238 (Davis,1954) 

23 11 183 5618  184 6081  183 6108 (Davis,1954) 

24 11 193 5829  193 5937  193 5916 (Davis,1954) 

25 11 198 6674  192 6573  194 6878 (Davis,1954) 

 

 

Figure 3. Relative errors for critical pressures 
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Figure 4. Relative errors for critical temperatures 

 

exp

exp

100%
calx x

RE
x


                      (34) 

Where, xcal represents the calculated critical temperature 

or pressure, xexp represents the critical temperature or 

pressure from experiments. 

The relative errors between the experimental and 

calculated values are depicted in Figure 3 and Figure 4. The 

average relative error of critical pressures calculated using 

SRK EoS is 3.00%, while that calculated using PR EoS is 

2.85%. The average relative error of critical temperatures 

calculated using SRK EoS is 1.43%, and the corresponding 

error of PR EoS is 0.92%. That means accuracy of the 

critical temperatures prediction is better than that of the 

critical pressures prediction. The overall critical parameters 

prediction accuracy of PR EoS is better than SRK EoS.  

The second one is average absolute deviation (AAD) 

defined by equation (35). 

exp

1

1
max

N

cal

i

AAD x x
C 

    (35) 

The AAD of critical temperatures calculated using SRK 

EoS is 4.44K, and that calculated using PR EoS is 2.80K. 

The AAD of critical pressures calculated using SRK EoS is 

240.28kPa, and that calculated using PR EoS is 209.40kPa. 

The overall accuracy of the solution method is slightly 

better than the simulated annealing technique reported by 

Justo-Garcia et al.(2008). 

 

5. Conclusions  

Based on the damped Newton-Raphson scheme, this 

paper researched the solution method of the critical model 

proposed by Hidemann and Khalil and developed by Stradi 

et al. This method used the critical temperature, critical 

specific volume and mole change in mole fraction of each 

component as independent variables. All the variables can 

be solved simultaneously through a whole iteration, which 

is more reliable than the nested two-singe variable loops 

method. Furthermore, the initial guesses of variables, 

convergence criteria of the iteration, and the damped factor 

were determined by using of numerical experiments. the 

choice of the values makes the iteration method robust for 

locating critical points of multicomponent mixtures. 

The solution method was tested successfully on 25 

mixtures which contain hydrocarbons from methane to n-

heptane, CO2, N2. The analysis of errors presented the 

overall accuracy of the method is satisfactory. The method 

provides a practical way to locating the liquid-vapor critical 

point of the multicomponent mixtures. 

 

6. Nomenclature 

C                  total number of components 

n                  mole fraction of component  

Δn               change in mole fraction 

T                 temperature 

v                 critical specific volume,  

fg                 fugacity 

Tc                         critical temperature of the mixture 

 vc               critical specific volume of the mixture  

Pc                         critical pressure of the mixture 

Tci                        critical temperature of i
th 

component  

Pci               critical pressure of i
th  

component 

vci                critical volume of i
th 

component 

w                 accentric factor 

 kij                        binary interaction coefficient. 

ΔT              correction term of the critical temperature 

 Δv              correction term of the critical specific volume 

ΔΔn             correction term change in mole fraction 

Q                 parameter in damped Newton iteration method 

F1, F2 , F3 , F4 , F5 , F6, a, b, i , N ,  , ija , i ,   

parameters related with equation of state. 

Subscripts 

i                 i
th 

component 

j                 j
th 

component 

m               m
th 

component 

c                critical condition 

 

Superscripts 

k                k
th

 iteration step 
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Appendix:The Derivation of Equations (3) and (4)  

The general form of SRK EoS and PR EoS is 

  1 2

RT a
P

v b v bD v bD
 

  
  (A1) 

The parameters in the equation are listed in the paper. 

Based on the EoSs, the fugacity of component i  can be 

written as follows: 

 

 

   
   

1 1 2 1

1 2 2 1 2 1 2 2

1 1
ln ln ln lni i

gi i
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b ab v bD bD bD v bDa
f RT n

v b b b D D v bD v bD v bD n b D D v bD

         
                                

 (A2) 

 

The derivates in the quadratic form are: 
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 (A3) 

The terms in the cubic form are  
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(A4) 
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  (A6) 
Considering the parameters defined in the main text of the 

paper, and reorganizing the same terms in the equations  

(A3) and (A4), the two  equations can be written as 

Equations (3) and (4). 

 

 


