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Abstract 

 

Carbon dioxide (CO2) capture by absorption with aqueous alkanolamines is considered as an important technology 

to reduce CO2 emissions and to help alleviate global climate change. To understand more the thermodynamics of 

some of the CO2-Amines, the NRTL electrolyte model has been used to simulate the behaviour of carbon dioxide 

absorption by some amines.  To determine NRTL interaction parameters of the model, VLE, heat capacity and 

excess enthalpy data have been used. In this study, carbon dioxide, water and Methyl DiEthanolAmine (MDEA) 

ternary system are used to calculate eNRTL (electrolyte Non-Ramdom Two Liquid) interaction parameters, and the 

system was modelled using VLE data available in the literature. Differential evolution algorithm (DE), an 

evolutionary computational technique, has been used to estimate NRTL parameters model to predict the VLE of 

CO2 with MDEA. Differential Evolution algorithm (DE) have been used to compare it with annealing (SA) and 

deterministic technique like Levenberg–Marquardt (LM) using one set of experimental data for MDEA-H2O system. 

Its standard deviation is lower than those of SA and LM algorithms when used to regress the eNRTL binary 

interactions parameters for MDEA-H2O 
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1. Introduction 

Differential Evolution (DE) algorithm is a new heuristic 

approach mainly having three advantages; finding the true 

global minimum regardless of the initial parameter values, 

fast convergence, and using few control parameters. DE 

algorithm is a population based algorithm like genetic 

algorithms using similar operators; crossover, mutation and 

selection. However, the success of DE in solving a specific 

problem crucially depends on appropriately choosing trial 

vector generation strategies and their associated control 

parameter values. Employing a trial-and-error scheme to 

search for the most suitable strategy and its associated 

parameter settings requires high computational costs. 

Moreover, at different stages of evolution, different 

strategies coupled with different parameter settings may be 

required in order to achieve the best performance. The 

NRTL-electrolyte model has been used for CO2 absorption 

by MDEA where DE has been applied to have a better 

optimisation of the model. 

Scalable simulation, design, and optimization of the 

CO2 capture processes start with modeling of the 

thermodynamic properties, specifically vapor-liquid 

equilibrium (VLE) and chemical reaction equilibrium, as 

well as calorimetric properties. Accurate modeling of 

thermodynamic properties requires availability of reliable 

experimental data. For the rational gas treating processes 

the knowledge of VLE of the acid gas over alkanolamine 

solution is required besides the knowledge of mass transfer 

and kinetics. The major problem concerning the VLE 

measurements of aqueous alkanolamine-acid gas systems, 

in general, is that lack of consistency and regularity in the 

numerous published values. 

Excess Gibbs energy-based activity coefficient models 

provide a practical and rigorous thermodynamic framework 

to model thermodynamic properties of aqueous electrolyte 

systems, including aqueous alkanolamine systems for CO2 

capture (Chen & Mathias, 2002, Chen, 2006). Austgen et 

al. (1991) and Posey (1996) applied the electrolyte NRTL 

model (Song & Chen, 2009; Chen & Evans, 1986; Chen et 

al, 1982) to correlate CO2 solubility in aqueous MDEA 

solution and other aqueous alkanolamines.  

Kuranov et al. (1996) and Kamps et al. (2001) used 

Pitzer’s equation correlate the VLE data of the MDEA-

H2O-CO2 system.
 
Faramarzi et al. (2010) used the extended 

UNIQUAC model (Thomsen, K.; Rasmussen,1999) to 

represent VLE for CO2 absorption in aqueous MDEA, 

MEA, and mixtures of the two alkanolamines. Arcis et al. 

(2009)
 
also fitted the VLE data with Pitzer’s equation and 

used the thermodynamic model to estimate the enthalpy of 

solution of CO2 in aqueous MDEA. 
 

In this work, we used the electrolyte NRTL model as 

the thermodynamic framework to correlate experimental 
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data for CO2 absorption in aqueous MDEA solution. The 

present work requires solving multivariable optimization 

problem to determine the interaction parameters of the 

developed VLE model. In the present paper, DE algorithms 

(Price & Storn, 1997) have been used for estimation of 

interaction parameters of the VLE model over a wide range 

of temperature, CO2 partial pressure, and amine 

concentration range. Differential evaluation (DE) is a 

generic name for a group of algorithms, which is based on 

the principles of GA (Genetic Algorithm) but have some 

inherent advantages over GA, like its simple structure, ease 

of use, speed, and robustness. 

We expand the scope of the work of Austgen et al. 

(1991) and Posey
4
 to cover all thermodynamic properties. 

Much new data for thermodynamic properties and 

calorimetric properties have become available in recent 

years, and they cover wider ranges of temperature, 

pressure, MDEA concentration, and CO2 loading. The 

binary NRTL parameters for MDEA-water binary are 

regressed from the binary VLE, excess enthalpy, and heat 

capacity data. The binary NRTL parameters for water-

electrolyte pairs and MDEA-electrolyte pairs and the 

standard-state properties of protonated MDEA ion are 

obtained by fitting to the ternary VLE, heat of absorption, 

heat capacity, and NMR spectroscopic data. 

With the use of the electrolyte NRTL model for the 

liquid-phase activity coefficients, the PC-SAFT (Gross, J.; 

Sadowski, 2001, 2002) equation of state (EOS) is used for 

its ability to model vapor-phase fugacity coefficients at 

high pressures, which is an important consideration for 

modeling CO2 compression, where its  parameters used in 

Zhang and Chen (2010), Gross and Sadowki (2002) and 

AspendataBank (2010). The parameters for water and CO2 

are taken from the literature (Gross and Sadowki, 2002;  

AspenDatabank, 2010). The parameters for MDEA are 

obtained from the regression of experimental data on vapor 

pressure, liquid density, and liquid heat capacity.  

In this work, Differential Evolution algorithm (DE) 

have been used to compare it with annealing (SA) and 

deterministic technique like Levenberg–Marquardt (LM). 

 

2. Thermodynamic Framework 

2.1 Chemical and Phase Equilibrium 

Carbon dioxide solubility in aqueous amine solutions is 

determined by both its physical solubility and the chemical 

equilibrium for the aqueous phase reactions among CO2 , 

water, and amines. The equilibrium of CO2 in vapor and 

liquid phases is expressed in the following chemical 

equilibrium  

 

   ( )       ( )                                    (1)  

 

Where it an been expressed in Henry’s law by the following 

formula 

 

                       
  (2) 

 

where      the CO2 fugacity coefficient in the vapor phase, 

     the Henry’s law constant of CO2 in the mixed solvent 

of water and amine, 
2

*

CO  the unsymmetrical activity 

coefficient of CO2 in the mixed solvent of water and amine, 

  is the system pressure,      the mole fraction of CO2 in 

the vapor phase, and      the equilibrium CO2 mole 

fraction in the liquid phase. Henry’s constant in the mixed 

solvent can be calculated from those of the pure solvents 

(Van Ness & Abbott, 1979)
 

 

  (
  

  
 )  ∑      (
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(3) 

 

    The Henry’s constant of supercritical component i in 

pure solvent A, the infinite dilution activity coefficient of 

supercritical component i in the mixed solvent,
iA
    the 

infinite dilution activity coefficient of supercritical 

component i in pure solvent A, and    the mole fraction of 

solvent A, and    is the Henry’s constant of supercritical 

component in the mixed solvent.    is used instead of    in 

Eq 3 to weigh the contributions from different solvent 

(Aspen Data bank, 2010). The parameter    is calculated 

using Eq 4: 

 

   
  (   

 )   

∑    (   
 )   

 (4) 

 

   
  represents the partial molar volume of supercritical 

component i at infinite dilution in pure solvent A, 

calculated from the Brelvi-O’Connell model (1972) with 

the characteristic volume for the solute (
2

BO

COV ) and solvent (

BO

SV  ). 

The correlation of the characteristic volume for the 

Brelvi-O’Connell model (  
  ) is given as follows: 

 

  
               (5) 

 

Here, the critical volume,      , was used as the 

characteristic volume for MDEA Zhang & Chen (2011) , 

for CO2 from Yan and Chen (2010) and for H2O from 

Brelvi and O’Connell (1972). 

The correlation for Henry’s constant is given as follows: 

 

          
   

                  
 (6) 

 

These parameters can be found in Yan and Chen (2010) for 

CO2 (solute)-H2O(solvent) and in Zhang & Chen (2011) for 

CO2(solute)-MDEA(solvent) 

 

2.2 Aqueous-Phase Chemical Equilibrium 

The processes discussed involve both chemical 

equilibria and multi-component phase equilibria. The liquid 

phase comprises both molecular species and ionic species, 

which makes the modelling non-trivial. The chemical 

reactions taking place in the liquid phase for MDEA-CO2-

H2O can be expressed as: 

Water ionisation 
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       (7) 

Dissociation of carbon dioxide 

 

              
      

  (8) 

 

Dissociation of bicarbonate 

 

    
         

      
   (9) 

 

Dissociation of protonated amine 

 

               
       (10) 

 

The equilibrium constants of the chemical reactions (8-11) 

can be expressed as follows: 

 

  ∏(    )
        (11) 

Or another form of the equilibrium constant,    ,of reaction 

j, can take place using the reference-state Gibbs free 

energies,   
   of the participating components 

            
 ( ) (12) 

For the aqueous phase reactions, the reference states chosen 

are pure liquid for the solvents (water and MDEA), and 

aqueous phase infinite dilution for the solutes (ionic and 

molecular). 

The thermodynamic expression for equilibrium partial 

pressure of CO2 in aqueous MDEA solutions is as follows: 

 

     
(                                               )

                                
   (13) 

 

Where,      are the liquid phase mole fractions of the 

components, based on true molecular or ionic species at 

equilibrium.  

The calculation of the concentration for each 
component at equilibrium is as follows: 
 
                   

         (14) 
 
           

 (   )  (15) 
 
Activity coefficients    (based on mole fraction scale) for 

different species present in the liquid phase are calculated 

from NRTL model. 

 

                           [
    
 (      

 )

  
] (16) 

 

Where the final reaction, only takes place for MDEA. In 

addition to the chemical equilibria the distribution of 

species between the vapour and the liquid phase must be 

modelled through the vapour-liquid equilibria (VLE). The 

standard VLE problem may be formulated through the 

thermodynamic equilibrium criteria at a given temperature 

and pressure.  

Henry’s law constants for CO2 with water and for CO2 

with MDEA are required. Because of the reaction between 

CO2 and amines, it is impossible to get its solubility in 

amines or MDEA. So for the prediction of the physical 

solubility in aqueous MDEA, the CO2 –N2O analogy is 

widely accepted in the literature (Chen & Mathias, 2002; 

Faramarzi et al. 2009). This theory is based on the fact that 

CO2 and N2O are rather similar molecules. The only 

difference between the molecules is, that N2O does not 

chemically (only physically) dissolve in aqueous MDEA. 

According to the CO2 –N2O analogy the Henry’s constant 

(physically dissolved. 

So a similar molecular structure of CO2 is chosen, N2O,  

to derive its physical solubility in amines, where their 

Henry constants are related according to Eq 5. 

 
         

         
 

          

          
       (17) 

 

The solubility of N2O in pure MDEA was reported by 

Wang et al. (1992). And based on the work of Versteef and 

van Swaiij (1988), we obtained the solubilities of CO2 and 

N2O in water. Then we can use Eq 7 to determine 

          and its parameters.  

 

3. Model and Data Used 

The Gibbs free energy of solvent s,    ,is calculated 

from the ideal gas Gibbs free energy of solvent s,   
  

, and 

the Gibbs free energy departure,   
    

, from ideal gas to 

liquid at temperature T. 

 

  ( )    
  ( )      

    ( )       (18) 

 

The ideal gas Gibbs free energy of solvent s,   
  

,  is 

calculated from the ideal gas Gibbs free energy of 

formation of solvent s at 298.15 K,            
  

   the ideal 

gas enthalpy of formation of solvent s at 298.15 K,  

           
  

   and the ideal gas heat capacity of solvent s, 

    
  

. 

 

  
  ( )  

           
  

 ∫      
   

      
     (

           
  

            
  

      
 

∫
    
  

 

 

      
  ) (19) 

 

The reference-state properties            
  

                 
  

 

are obtained from AspenDatabank (2010) and regressed 

from Wagman et al. (1982), and Zhang and Chen (2011). 

The correlation for the ideal gas heat capacity is given 

as follows: 

 

  
  
                 

         
  (20) 

                                              
 

The reference-state properties            
  

 and            
  

 

can be obtained from Aspen Data bank (2010) ,  Wagman 

et al (1982), and Zhang & Chen (2011). The ideal heat 

capacities are obtained from Aspen Data bank, and Zhang 

& Chen. For water, The Gibbs free energy departure 
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function is obtained from ASME steam tables. For MDEA, 

the departure function is calculated from the PC-SFT 

equation of state. 

For molecular solute CO2, the Gibbs free energy in 

aqueous phase infinite dilution is calculated from Henry’s 

law : 

  
    ( )      

  ( )       (
    

    
)  (21) 

where    
    ( )is the mole fraction scale aqueous-phase 

infinite dilution Gibbs free energy of solute i at temperature 

T,     
  
( ) the ideal gas Gibbs free energy of formation of 

solute i at temperature T,      the Henry’s constant of 

solute i in water, and P
ref

  the reference pressure. 

For ionic species, the Gibbs free energy in aqueous-

phase infinite dilution is calculated from the Gibbs free 

energy of formation in aqueous-phase infinite dilution at 

298.15 K, the enthalpy of formation in aqueous-phase 

infinite dilution at 298.15 K, and the heat capacity in 

aqueous-phase infinite dilution 

 

  
    ( )             

    
 ∫     

     

      
     

(
            

    
             

    

      
 ∫

    
    

 

 

      
  )      (

    

  
)(22) 

 

Here,   
    

( )  is the mole fraction scale aqueous-phase 

infinite dilution Gibbs free energy of solute i at temperature 

T,            
    

 the molality scale aqueous-phase infinite 

dilution Gibbs free energy of formation of solute i at 298.15 

K,            
    

 the aqueous phase infinite dilution enthalpy 

of formation of solute i at 298.15 K, and     
    

 the 

aqueous-phase infinite dilution heat capacity of solute i. 

The term     (       ) is added because             
    

, as 

reported in the literature, is based on molality concentration 

scale while   
    

 is based on mole fraction scale. The 

standard-state properties   
    

              
    

 and            
    

 

are available in the literature (Aspen Databank, 2010, Criss 

& Gobble, 1964) for most ionic species except this of 

MDEAH
+
 which is calculated from the equilibrium 

constant in Kamps and Maurer
24

. 

 

3.1 Heat of Absorption and Heat Capacity 

The CO2 heat of absorption in aqueous MDEA solutions 

can be derived from an enthalpy balance of the absorption 

process: 

 

      
            

                 
          

 

    
 (23) 

 

Where       , Heat of absorption per mole of CO2 ,       
  

,Molar enthalpy of the final solution,         
  , Molar 

enthalpy of the initial solution,     

 
   , Molar enthalpy of 

gaseous CO2 absorbed,        , Number of moles of the 

final solution,          , Number of moles of the initial 

solution and      , Number of moles of CO2 absorbed. 

To calculate the heat of absorption, enthalpy 

calculations for the final and initial MDEA-CO2-H2O 

system and for gaseous CO2 are required. The heat capacity 

of MDEA-CO2-H2O system can be calculated from the 

temperature derivative of enthalpy.We use the following 

equation for liquid enthalpy 

 

       
      

  ∑     
    

    
  (24) 

 

Here,    is the molal enthalpy of the liquid mixture,   
  the 

molar enthalpy of liquid water,   
  the molar enthalpy of 

liquid nonaqueous solvent s,   
    

 the molar enthalpy of 

solute a (molecular or ionic) in aqueous-phase infinite 

dilution, and     the molar excess enthalpy. The terms   , 

   and    represent the mole fractions of water, nonaqueous 

solvent s, and solute i respectively. 

The liquid enthalpy for pure water is calculated from the 

ideal gas model and ASME Tables EOS for enthalpy 

departure: 

 

  
 ( )             

  
 ∫      

  
    

 

      
   

    (   )(25) 

 

Where   
  ( )  is the liquid enthalpy of water at 

temperature T,            
  

 the ideal gas enthalpy of 

formation of water at 298.15 K,     
  

 the ideal-gas heat 

capacity of water, and    
    

(   ) the enthalpy departure 

calculated from the ASME Steam Tables EOS. 

Liquid enthalpy of the nonaqueous solvent s is 

calculated from the ideal-gas enthalpy of formation at 

298.15 K, the ideal gas heat capacity, the vapor enthalpy 

departure, and the heat of vaporization: 

 

  
 ( )             

  
 ∫      

  
    

 

      
   

 (   )  

      ( ) (26) 

 

Here,   
 ( )  is the liquid enthalpy of solvent s at 

temperature T,            
  

 the ideal-gas enthalpy of 

formation of solvent s at 298.15 K,     
  

  the ideal-gas heat 

capacity of solvent s,    
 (   )  the vapor enthalpy 

departure of solvent s, and        ( )  the heat of 

vaporization of solvent s. 

The PC-SAFT EOS is used for the vapor enthalpy 

departure and the DIPPR heat of vaporization correlation is 

used for the heat of vaporization. The DIPPR equation is: 

 

            (     )
  (27) 

 

Where                    
        

  and           

(    is the critical temperature of component i in K). The     

of MDEA is obtained from Von Niederhausern et al. 

(2006). The correlation parameters are obtained from 

Zhang & Chen (2011). 

Heat of vaporization of MDEA,      
     calculated from 

the vapor Pressure (Antoine Equation,       
   

 ) using the 

Clausius-Clapeyron equation, 
     

  
 

     

   
. 
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 (28) 

 

The parameters above,    , are regressed using the vapor 

pressure data (Von Niederhausern et al., 2006; Daubert & 

Hutchison, 1990; Noll et al., 1998) 

The enthalpies of ionic solutes in aqueous phase infinite 

dilution are calculated from the enthalpy of formation at 

298.15 K in aqueous-phase infinite dilution and the heat 

capacity in aqueous-phase infinite dilution: 

 

  
    ( )             

    
 ∫     

    
  

 

      
 (29) 

Where   
    

( )  is the enthalpy of solute i in aqueous-

phase infinite dilution at temperature T,            
    

 the 

enthalpy of formation of solute i in aqueous-phase infinite 

dilution at 298.15 K, and     
    

the heat capacity of solute i 

in aqueous-phase infinite dilution. 

In this study,            
    

 and     
    

 for MDEAH
+
 are 

determined by fitting to the experimental phase equilibrium 

data, the heat of solution data, and the speciation data, 

together with molality scale Gibbs free energy of formation 

at 298.15 K,            
    

 , and NRTL interaction parameters. 

The enthalpies of molecular solutes in aqueous phase 

infinite dilution are calculated from Henry’s law: 

 

  
    ( )      

  ( )     (
       

  
) (30) 

 

Where     
  
( ) is the ideal gas enthalpy of formation of 

solute I t temperature T,     Henry’s constant of solute i in 

water. Excess enthalpy,     is calculated from the activity 

coefficient model, NRTL in this case. 

 

3.2 The eNRTL Model 

The electrolyte NRTL model consists of three 

contributions. The first contribution is the long-range 

contribution represented by the Pitzer-Debye-Hückel 

expression, which accounts for the contribution due to the 

electrostatic forces among all ions. The second contribution 

is an ion-reference-state-transfer contribution represented 

by the Born expression. In the electrolyte NRTL model, the 

reference state for ionic species is always infinitely dilute 

state in water even when there are mixed solvents. The 

Born expression accounts for the change of the Gibbs 

energy associated with moving ionic species from a mixed-

solvent infinitely dilute state to an aqueous infinitely dilute 

state. The Born expression drops out if water is the sole 

solvent in the electrolyte system. The third contribution is a 

short-range contribution represented by the local 

composition electrolyte NRTL expression, which accounts 

for the contribution due to short-range interaction forces 

among all species. The electrolyte NRTL expression was 

developed based on the NRTL local composition concept, 

the like ion
 

repulsion assumption, and the local 

electroneutrality
 

assumption. The like-ion repulsion 

assumption stipulates
 
that in the first coordination shell of a 

cation (anion) the local composition of all other cations 

(anions) is zero. The local electroneutrality assumption 

imposes a condition that in the first coordination shell of a 

molecular species the composition of cations and anions is 

such that the local electric charge is zero. 

The Pitzer-Debye-Hückel expression for excess Gibbs 

energy, normalized to a mole fraction of unity for the 

solvent and zero mole fraction for ions, is given as follows: 

 

   
     

  
  (∑    ) (

    

  
)
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)   (     
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Where 
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The Born expression for excess Gibbs energy is given as 

follows: 

 

   
      

  
 

  

   
(
 

 
 

 

  
)
   

(∑
    

 

  
 )        (32) 

 

where   stands for the dielectric constant of the solvent 

mixture with the same solvent ratio as that in the electrolyte 

solution.   is a function of the temperature,    ( )     

  [(
 

 
)  (

 

  
)]  and its parameters are found in Aspen 

Databank (2010). 

The local-composition electrolyte NRTL expression for 

excess Gibbs energy is given as follows: 
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∑       
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Where 
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The variables     and     are computed accordingly from 

    and     . It is worth mentioning that the first term on 

the right-hand side of Eq 33 represents the short-range 

interaction contribution where the molecular species are the 

local center and the second and third terms account for the 

short-range interaction contributions where cations and 

anions are the local center, respectively. 

In NRTL model, the binary interaction parameters for 

molecule-molecule binary, molecule-electrolyte binary, and 

electrolyte-electrolyte binary systems are required for liquid 

phase activity coefficients calculations. Here, electrolytes 

are defined as cation and anion pairs. 

We set all molecule-molecule and electrolyte-electrolyte 

binary parameters to zero, unless specified otherwise, and 

molecule-electrolyte binary parameters to 8 and -4 as 

reported in NRTL model
12

. The non-randomness factor ( ) 

is fixed at 0.2, but it can be variable from 0.1 to 0.9. The 

calculated thermodynamic properties of the electrolyte 

solution are dominated by the binary NRTL parameters 

associated with the major species in the system. The 

calculated thermodynamic properties of the electrolyte 

solution are dominated by the binary NRTL parameters 

associated with the major species in the system. In other 

words, the binary parameters for the water-MDEA binary, 

the water-(MDEAH
+
, HCO3

-
) 

 
binary, the water-(MDEAH

+
, 

CO3
2-

)
 
binary, and the MDEA-(MDEAH

+
, HCO3

-
) binary 

systems
 

determine the calculated thermodynamic 

properties. These binary
 
parameters, in turn, are identified 

from fitting to available experimental
 
data. 

After proper consideration of unsymmetrical convention 

for the solutes and ionic species, the complete excess Gibbs 

energy expression of the electrolyte NRTL model is given 

as follows: 

 

                               (34) 

 

The activity coefficient for any species i, ionic or 

molecular, solute or solvent, is derived from the partial 

derivative of the excess Gibbs energy with respect to the 

mole number of species i: 

 

 

     
 

  
[
 (   

   )

   
]
        

 (35) 

 

Where    is the total mole number for all species in the 

system. 

 

4. Data Regression 

At first all available experimental data from different 

authors were used for regression analysis to obtain the 

interaction parameters, which resulted in a large average 

correlation deviation. Then a lot of equilibrium curves were 

made at the same temperatures and the same initial amine 

concentrations but from the different authors and some sets 

of data, which were far away from most of the data, were 

discarded. Finally, the combination of data useful for 

generating a correlation to obtain a set of interaction 

parameters has been identified. Since the adjustable 

interaction parameters are characteristic of pair interactions 

of components of the solution and are independent of 

solution composition, the fitted parameters are valid outside 

the range of concentrations over which they were fitted.  

 

4.1 Differential Evolution Algorithm 

DE is a stochastic, population-based method (Storn, 

1997). These methods heuristically ‘‘mimic’’ biological 

evolution, namely, the process of natural selection and the 

‘‘survival of the fittest’’ principle.  

Differential evolution (DE) technique is used to 

estimate the interaction parameters for the VLE model. An 

adaptive search procedure based on a ‘‘population’’ of 

candidate solution points is used. ‘‘NP’’ denotes the 

population size. In a population of potential solutions 

within an n-dimensional search space, a fixed number of 

vectors are randomly initialized, then evolved over time to 

explore the search space and to locate the minima of the 

objective function. ‘‘D’’ denotes the dimension of each 

vector, which is actually the number of optimum 

parameters to be estimated of the proposed objective 

function   (Eq 36) 

 

  ∑ ∑ |
    
        

   

    
   |

 
 
   

 
    (36) 

 

n is the number of experimental data, and c is the number of 

components in the mixture, respectively. 

The main operation in DE is the NP number of 

competitions, which are to be carried out to decide the next 

generation population. Generations or iterations involve a 

competitive selection that drops the poorer solutions. From 

the current generation population of the vectors, one target 

vector is selected. Among the remaining population vectors, 

DE adds the weighted weight factor is denoted by F, and is 

specified at the starting) difference between two randomly 

chosen population vectors to third vector, called trial vector 

(randomly chosen), which results in a ‘‘noisy’’ random 

vector. This operation is called recombination (mutation). 

Subsequently, crossover is performed between the trial 

vector and the noisy random vector (perturbed trial vector) 

to decide upon the final trial vector or offspring of this 

generation. For mutation and crossover to be carried out 

together, a random number is generated which is less than 

the CR crossover constant). If the random number 

generated is greater than CR, then the vector taken for 

mutation (trial vector) is kept copied as it is; as an offspring 

of this generation (mutation is not compulsory). This way 

no separate probability distribution has be used which 

makes the scheme completely self-organizing. Finally, the 

trial vector replaces the target vector for the next generation 
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population, if, and only if it yields a reduced value the 

objective function than in comparison to the objective 

function based on target vector. In this way, all the NP 

number of vectors of the current generation is selected one 

by one as target vectors and checked whether the trial 

vector (offspring) to create the population of the next 

generation should replace them or not. The control 

parameters of the algorithm are: number of parents (NP), 

weighing factor or mutation constant (F), crossover 

constant (CR). There is always a convergence speed (lower 

F value) and robustness (higher NP value) trade-off. CR is 

more like a fine tuning element. High values of CR like CR 

= 1 give faster convergence if convergence occurs.  

For each individual      in the current generation G, DE 

generates a new trial individual     
   by adding the 

weighted difference between two randomly selected 

individuals        and       to a third randomly selected 

individual      . The resulting individual     
  is crossed-

over with the original individual      . The fitness of the 

resulting individual, referred to as perturbated vector       , 

is then compared with the fitness of      . If the fitness of 

       is greater than the fitness of     ,      is replaced with 

      , otherwise     , remains in the population as       . 

Deferential Evolution is robust, fast, and effective with 

global optimization ability. It does not require that the 

objective function is differentiable, and it works with noisy, 

epistatic and time-dependent objective functions. 

Pseudocode of DE shows: 
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There are some versions for optimization by mean 

differential evolution and two standard versions of DE ,  

one of them, DERand1Bin ,   is chosen for optimization of 

eNRTL parameters.  

It is recommended to set the number of parents NP to 10 

times the number of parameters (e.g. For a binary mixtures 

such as MDEA-H2O, we need two interaction parameters 

                        , then NP should be equal to 20 

in this special case), to select weighting factor F=0.8, and 

crossover constant CR=0.9. It has been found recently that 

selecting F from the interval [0.5, 1.0] randomly for each 

generation or for each difference vector, a technique called 

dither, improves convergence behaviour significantly, 

especially for noisy objective functions. It has also been 

found that setting CR to a low value, e.g. CR=0.2 helps 

optimizing separable functions since it fosters the search 

along the coordinate axes. On the contrary this choice is not 

effective if parameter dependence is encountered, 

something which is frequently occuring in real-world 

optimization problems rather than artificial test functions. 

So for parameter dependence the choice of CR=0.9 is more 

appropriate. Another interesting empirical finding is that 

raising NP above, say, 40 does not substantially improve 

the convergence, independent of the number of parameters. 

Different problems often require different settings for NP, F 

and CR. 

 

4.2 The strategy adopted 

Different strategies can be adopted in DE algorithm 

depending upon the type of problem for which DE is 

applied. The strategies can vary; based on the vector to be 

perturbed, number of difference vectors considered for 

perturbation, and finally the type of crossover used (Babu, 

2004)
28

.  

The DE algorithm is a population based algorithm like 

genetic algorithms using the similar operators; crossover, 

mutation and selection. The main difference in constructing 

better solutions is that genetic algorithms rely on crossover 

while DE relies on mutation operation. This main operation 

is based on the differences of randomly sampled pairs of 

solutions in the population.  

The algorithm uses mutation operation as a search 

mechanism and selection operation to direct the search 

toward the prospective regions in the search space. The DE 

algorithm also uses a non-uniform crossover that can take 

child vector parameters from one parent more often than it 

does from others. By using the components of the existing 

population members to construct trial vectors, the 

recombination (crossover) operator efficiently shuffles 

information about successful combinations, enabling the 

search for a better solution space. 

An optimization task consisting of D parameters can be 

represented by a D-dimensional vector. In DE, a population 

of NP solution vectors is randomly created at the start. This 
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population is successfully improved by applying mutation, 

crossover and selection operators. The main steps of the DE 

algorithm are given below: 

 

 Initialization 

 Evaluation 

 Repeat 

Mutation 

Recombination 

Evaluation 

Selection 

 Until (termination criteria are met) 

 

5. RESULTS AND DISCUSSION 

Only, the eNRTL parameters (Tables 1-2) have been 

regressed using differential evolution algorithm, the rest of 

the data have been taken from the literature. Table 3 

summarizes the model parameters and sources of the 

parameters used in the thermodynamic model. Most of the 

parameters can be obtained from the literature.  A lot of 

results can be plotted but we confined ourselves a few of 

them to show the modeling compared to the experimental 

and sometimes compared to eNRTL without DE algorithm. 

Figure 1 shows the comparison for the experimental total 

pressure data and the calculated results from the model. 

Figure 1 shows the model also provides excellent 

representation of the heat capacity data. 

Figure 1 shows the comparison of the experimental data 

from Kim et al. (2008) with the model eNRTL-DE for 

MDEA-H2O system. For both temperatures, as the mole 

fraction of MDEA increases the total pressure of the system 

decreases. 

Figure 2 shows an increase in heat capacity as the 

temperature increases at different MDEA mole fraction. It 

shows a very good fit of the model with the experimental 

data. 

The excess enthalpy fit is given in Figure 3. Both the 

experimental excess enthalpy data from Posey9 and those 

of Maham et al. (1997, 2000) are represented very well. It 

shows also a better fit for eNRTL-DE model. Figure 4 

shows the model predictions for water and MDEA activity 

coefficients at 313, 353, and 393
o
K. While the water 

activity coefficient remains relatively constant, the model 

suggests that the MDEA activity coefficient varies strongly 

with MDEA concentration and temperature, especially in 

dilute aqueous MDEA solutions, and figure 4 shows the 

predicted activity coefficients of water and MDEA. 

Figure 5 shows the species distribution as a function of 

CO2 loading for a 23wt% MDEA solution at 293
o
K. The 

calculated concentrations of the species are consistent with 

the experimental NMR measurements from Jakobsen et al. 

(2005). 

Figures 6 show comparisons of the model correlations 

and the experimental data of Mathonat (1995) for the 

integral heat of CO2 absorption in aqueous MDEA solution 

at 313K. The calculated values are in good agreement with 

the experimental data. Also shown in Figure 6 are the 

predicted differential heats of CO2 absorption. 

 

 
Figure 1 : Comparison of the experimental data from Kim 

et al. with the model eNRTL-DE for MDEA-H2O system. 

 

 

Figure 2 : Comparison of the experimental (MDEA-H2O) 

data from Chen et al. with the model eNRTL-DE for 

MDEA-H2O system. 

 

 

Figure 3 : Comparison of the experimental data from Posey 

with the model eNRTL-DE for MDEA-H2O. 
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Figure 4 : Model predictions of MDEA and H2O activity 

coefficients : (______ ) H2O activity  coefficients and (-.-.-.-

) MDEA activity coefficients. 

 

 Figure 5 : Comparison of the experimental data for some 

species concentration in MDEA-CO2-H2O  system at 

T=293K and MDEA concentration 23 wt%. 

 

Figure 6 : Heat of reaction of the different components in 

30 wt% MDEA solution at T=313K. 

5.1 eNRTL parameters : Results 

LM is a non-linear least-squares method, which uses a 

steepest descent method and cannot guarantee a global 

optimum solution; limited by the degree of non-linearity 

and initial guess. SA is a generic probabilistic meta-

algorithm locating a good approximation to the global 

optima of a given objective function in a search space. The 

main driving force behind SA is to occasionally allow for 

wrong-way movement (uphill moves for minimization) 

saving the method from becoming stuck at local optima. 

DE maintains a pool of solutions rather than just one. New 

 candidate solutions are generated not only by ‘‘mutation’’ 

(as in SA), but also by ‘‘combination’’ of two solutions 

from the pool. It ensures to have a better global perspective 

of the solution than the other two techniques discussed. 

Table 3 summarizes the model parameters, sources of 

the parameters and the type of data used in the 

thermodynamic model. Most of the parameters can be 

obtained from the literature. The remaining parameters are 

determined by fitting to the experimental data. For MDEA-

H2O binary only, the standard deviations are compared 

using DE algorithm and Levenberg–Marquardt (LM) 

algorithms (Table 1). It is clear that DE presents lower   

than LM and SA. 

 

Table 1 : eNRTL parameters (  ) for the MDEA-H2O using 

Differential Evolution Algorithm (     ) 

    
 

 
   

where T is the temperature in K and  is the standard 

deviation. 
Par. i- j Value  (eNRTL-DE)  (eNRTL-LM)   (eNRTL-SA) 

 

aij MDEA-H2O -1.3781 0.0129 0.0566 0.1472 

aji H2O-MDEA 12.153 0.0469 0.1641 0.1078 

bij MDEA-H2O -316.46 5.3898 22.97 10.378 

bji H2O-MDEA -1237.9 8.7256 45.70 9.6247 

 

 
aij CO2 -H2O 10.064* - - - 

aji H2O-CO2 10.064* - - - 

bij CO2 -H2O -3268.135* - - - 

bji H2O-CO2 -3268.135 - - - 

 

 

Table 2 : eNRTL parameters molecule-electrolyte binaries ( 

 ) for the MDEA-H2O-CO2 system with DE (     )  

Parameter i j Value   

       H2O (MDEAH+, HC  
 ) 6.2699 0.0981 

       (MDEAH+, HC  
 ) H2O -7.8856 0.0194 

       H2O (MDEAH+, C  
  ) 17.2754 0.0367 

      (MDEAH+, C  
  ) H2O -0.1982 0.0653 

      MDEA (MDEAH+, HC  
 ) 11.3765 0.0762 

      (MDEAH+, HC  
 ) MDEA -3.1299 0.0492 

 

6. CONCLUSIONS 

The electrolyte eNRTL model has been successfully 

applied with Differential Evolution algorithm to calculate 

the interaction parameters and to correlate the experimental 

data on thermodynamic properties of MDEA-H2O-CO2 

system. The model has validated a lot of experimental data, 

but more research needs to be carry out to compare 

eNRTL-DE with eNRTL-LM and eNRTL-LM for all the 

interactions parameters. The model can be used to support 

process modeling and simulation of the CO2 capture 

process with MDEA. 
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Table 3 : Parameters estimated in modeling with their sources and the type of data regressed. 

Parameters
 

Component
 

Source
 

Type of Data required in regression and their sources
 

Δf       
  

 H2O, MDEA, CO2 
 

Aspen Databank
 

 

 

Δf       
   H2O, MDEA, CO2

 
Aspen Databank

  

  
   H2O, CO2 MDEA

 
Aspen Databank

 

Regression 
 

Data (Liquid heat capacity of MDEA) 
Regression (Maham et al, Chen et al, Zhang et al) 

Δf       
     H3O

+
, OH

-
, 

HCO3
-
, CO3

2- 

MDEAH
+ 

 

Aspen Databank
 

Regression 
Data (VLE, excess enthalpy, heat capacity, and species 
concentration from 
NMR spectra for the MDEA-H2O-CO2 system) 
Regression (Kuranov et al, Kamps et al, Ermatchkov et al, 
Mathonat, Weiland et al, Jackobsen et al)

 

Δf       
     H3O

+
, OH

-
, 

HCO3
-
, CO3

2- 

MDEAH
+ 

 

Aspen Databank
 

Regression 
Data (VLE, excess enthalpy, heat capacity, and species 
concentration from 
NMR spectra for the MDEA-H2O-CO2 system) 
Regression (Kuranov et al, Kamps et al, Ermatchkov et al, 
Mathonat, Weiland et al, Jackobsen et al) 

  
     H3O

+
, OH

- 
Aspen Databank

 

Criss and Cobble
 

Regression 

Data (VLE, excess enthalpy, heat capacity, and species 
concentration from 
NMR spectra for the MDEA-H2O-CO2 system) 
Regression (Kuranov et al, Kamps et al, Ermatchkov et al, 
Mathonat, Weiland et al, Jackobsen et al) 

ΔvapH MDEA 
 

Regression Heat of vaporization of MDEA, calculated from the vapor 
Pressure (Antoine Equation) using the Clausius-Clapeyron 
equation

 

Antoine 
Equation 

MDEA Regression Data (Vapor pressure of MDEA, heat of vaporization of 
MDEA, calculated from the vapor pressure using the 
Clausius-Clapeyron equation) 
Regression (Daubert et al, Noll et al, VonNiederhausern et 
al) 

Dielectric 
Constant 

MDEA Criss and Cobble
 

 

 

Henry’s 
Constant 

CO2 in H2O 
CO2 in MDEA

 
Yan and Chen

 

Zhang & Chen
 

 

NRTL-
Electrolyte 
Binary 
Parameters 
 

CO2-H2O binary 
MDEA-H2O 
binary 
MDEA-H2O-CO2 
Molecule-
Electrolyte 
Binaries  
 

Regression
1-DE 

Regression
2-DE 

Regression
3-DE 

 

Data 
1. Solubility of CO2 in pure water 
2. VLE, excess enthalpy, and heat capacity for the 

MDEA-H2O and CO2-H2O binaries 
3. VLE, excess enthalpy, heat capacity, and species 

concentration from NMR spectra for the MDEA-
H2O-CO2  system 

Regression  
1. Yan & Chen

 

2.  (Xu et al, Voutsas et al, Kim et al, Posey, Maham et al, 
Chiu and Li, Chen e al, Zhang et al)  
3. (Kuranov et al, Kamps et al, Ermatchkov et a, Mathonat, 
Weiland et al, Jackobsen et al) 
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