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Abstract:  

 

The link between properties of a system at equilibrium, in particular free energy difference, to the fluctuations in the 

work performed during non-equilibrium process is called Crooks relation. This relation, which is a measure of the 

grade of irreversibility of a process, was elegantly derived based on the equations of motion for a set of particles 

along with the formal solution of the evolution equation using a distribution function, both solved in a classical and 

a stochastic way. This technical note, reports on a simple derivation of Crooks formula based on the energy balance 

and entropy generation in a system undergoing a process in which fluctuations are not neglected 
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 Introduction  1.

A macroscopic system is driven away from equilibrium 

if it is in contact with a heat reservoir, with the second law 

of thermodynamics acting as a limiter on the amount of 

work that can be performed on or by the system. On 

average, this work can never be larger than the change in 

the system’s free energy. For a microscopic system the 

situation is different, as the thermal fluctuations give rise to 

a statistical distribution of work values with variation in 

time of any thermodynamic property being of the same 

order of magnitude as the physical dimensions of the 

system. There are several equations relating properties of a 

system at equilibrium to the fluctuations in the work 

performed during a non-equilibrium process. One of the 

most important fluctuation relations is known as the Crooks 

relation [1]; it allows for the measurement of the degree of 

irreversibility in a process.   

Fluctuations always exist in any kind of system, 

whether at equilibrium or far from equilibrium, and are due 

to the random motion of particles known as the Brownian 

motion. The impacts caused by the random motion of 

molecules generally result in two kinds of effects: (i) they 

act as a random driving force to the Brownian particles, and 

(ii) they give rise to a frictional force that affects the motion 

[1]. 

The fluctuations (the irregular molecular collisions) in a 

system at the macroscopic scale are responsible for the 

linear transport phenomena [2-5], while at the microscopic 

scale they are the cause of the rare events that violate the 

second law of thermodynamics (e.g. negative heat flux). In 

general, as the size of a system decreases the role of 

fluctuations increases; therefore, it is reasonable to assume 

that such rare events can be observed in systems that are 

small, e.g. thermal conduction in a nanotube whose 

extremities are connected to two heat reservoirs [6]. This 

indicates that the physics on a Nano scale could be different 

from that at a macroscopic scale. In particular, large 

fluctuations occur at the Nano scale, with mostly unknown 

consequences [7]. 

Therefore, the second law of thermodynamics can be 

verified only on average because entropy production can 

have negative instantaneous values. Systems that are not in 

equilibrium are characterized by an irreversible heat 

transfer between their boundaries and the environment (the 

thermal bath). For such systems, the direction of heat 

transfer and the probability of having either positive or 

negative entropy production have to be calculated using one 

of the fluctuation theorems (FTs) [8].  

For a system to be considered in thermodynamic 

equilibrium, the net heat flux between its boundaries and 

the surroundings has to be zero. In this case, equal amounts 

of heat are absorbed and released at all times causing the 

small fluctuations, due to the Brownian motion, to die out 

instantly through dissipation (the viscous drag). For a 

system to be considered not far from thermodynamic 

equilibrium the ratio between the heat absorbed and that 

which is released is equal to 1 at steady state; but the heat 

flux between the system and its surroundings cannot be 

zero. This situation is akin to the fluctuation-dissipation 

phenomenon where a system receives information from the 

outside to intensify fluctuations, and through the 

transportation of this information these fluctuations 

weaken, (i.e. are dissipated). 

On the other hand, if a system is far from equilibrium, 

this ratio between the absorbed and released heat is 

different than 1 and the information received by the system, 

from the outside, is not entirely absorbed. The difference 

between the heat rejected and absorbed gives rise to what is 

called rare events, which are responsible for the local 

violation of the second law of thermodynamics. For such 

systems, internal fluctuations are non-uniform creating 

complicated interconnected effects that lead to rare events. 

An example could be a heat flux flowing in a direction 

opposite to that established by the second law of 

thermodynamics.  

Understanding these rare events led to the development 

of the so called fluctuation theorems (FTs) by Evans and 

Searle’s for systems evolving from equilibrium toward a 

non-equilibrium steady state [9], and by Gallavoti and 
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Cohen for steady-state systems [10-23]. Predictions with 

these models show that systems can reject/absorb more heat 

than they can absorb/reject thereby revealing the rare events 

that locally violate the second law of thermodynamics. 

The amount of heat exchanged or dissipated  Q  at 

steady state between a non-equilibrium system and a heat 

reservoir is equal to the entropy production  genS  

multiplied by the temperature (T) and is computed as  

 

genTS Q    (1) 

  

For systems that are not in thermodynamic equilibrium, 

the probability for entropy production to be either positive 

 P    or negative  P    is quantitatively governed by 

the Fluctuation Theorem (FT). An explicit mathematical 

expression for the ratio of probabilities,    /P P  , 

validated for non-equilibrium systems at steady state, is 

given by 

 

 

 
exp

B

P

P k T

 



 
  

  
 (2)

  

The above expression indicates that at steady-state, the 

probability for heat to be lost by the system (positive ) is 

higher than the probability for heat to be gained by the 

system (negative ) under the same conditions. Therefore, 

it can be concluded that on average at steady state, systems 

far from thermodynamic equilibrium always dissipate (lose) 

heat. Moreover, heat being an extensive property, the ratio 

of probabilities    /P P     increases exponentially 

with the system size indicating that the probability for heat 

to be absorbed by macroscopic systems is insignificant. 

C. Jarzynski [24] reported on a work relationship for 

systems experiencing non-equilibrium processes called the 

Jarzynski equality (hereafter referred to as JE). The JE 

states that for any system going through a non-equilibrium 

process from the initial state of equilibrium of A, to a final 

equilibrium state of B, the following relation holds: 

 

exp exp
B B

G W

k T k T

   
     
   

 (3) 

 

In Eqn (3), ∆G is the free-energy difference between the 

equilibrium states, A and B, kB is the Boltzmann constant, T 

is the temperature of the heat reservoir, and the average 

 is taken over an infinite number of repeated non-

equilibrium experiments carried out with the protocol x(t). 

Denoting the dissipated work along a given trajectory by 

disW , with its value computed as   

 

disW W G    (4) 

 

and combining Jensen’s inequality [17] given by 

 

   exp expx x   (5) 

 

with the JE equality [equation (3)], the following version of 

the second law of thermodynamics can be derived as 
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 (6) 

 

For the equality to hold, it is necessary for the energy 

dissipated to have negative values, which is a violation of 

the second law of thermodynamics. Using the reversible 

equations of motion to demonstrate the above relation, it 

was found that the second law of thermodynamics holds on 

average; and there must always exist non-equilibrium 

trajectories with Wdis = 0 for the equality to hold. These 

trajectories, sometimes referred to as transient violations of 

the second law, represent large fluctuations in the work 

which serve to ensure that the equations of motion at the 

microscopic level are time-reversal invariant. 

G. E. Crooks [2-4] derived a generalized fluctuation-

dissipation equation for stochastic microscopically 

reversible dynamics given by 

 

 

 
exp

F

R B

P W W G

P W k T
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where  FP W   and  RP W  stand for the work 

probability distributions along the forward and reversed 

processes, respectively. This relation relates the probability 

PF, of the dissipation function for a trajectory under the 

influence of an external field in the forward direction, to the 

probability P
R
, of the dissipation function for a trajectory in 

the reverse direction. Crooks relation indicates that the 

probability to dissipate a given amount of work along the 

forward direction is greater than the probability to absorb 

the same amount of work along the reverse direction [2-5].  

 

 Meaning of work fluctuation 2.

Figures 1(a) and 1(b) depict, respectively, the schematic 

and state diagrams of a system exchanging energy and work 

with the surroundings, first through a process from an 

initial state A to a final state B, and then through a reverse 

process moving the system back from state B to its initial 

state A. In the forward direction from A to B the system 

receives work from, and rejects heat to, the surroundings; in 

contrast, in the reverse process from B to A, the system 

does work on, and receives heat from, the surroundings. 

There is one equilibrium path but several non-equilibrium 

trajectories that the system can take when changing state. 

Therefore, fluctuations within and/or outside the system 

promote the displacement from an equilibrium path to a 

non-equilibrium one. 

It is important to note that the work produced by the 

system  sysW   is different from the work received by the 

surroundings  surrW   with the difference being equal to 

the variation in the kinetic energy of the moving boundary. 

This difference is also equal to the minimum work required 

to keep the system out of equilibrium. If the difference is 

equal to zero, then the system is in equilibrium with the 

surroundings. 
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Figure 1. (a) Schematic diagram and (b) state diagram of a 

system exchanging work and heat with the surroundings in 

the forward (from A to B: solid line) and reverse (from B to 

A: dashed line) directions. 

 

In the forward direction, work should be done on the 

system to move it from equilibrium state A. As the system 

starts moving away from equilibrium, a spectrum of 

fluctuations of different magnitudes are developed; this can 

mathematically be described by a probability distribution 

function. In this sense, the variation in the total amount of 

entropy generation causes variation in the work transferred; 

consequently, the work needed to keep the system out of 

equilibrium is also a fluctuating quantity with its amplitude 

increasing as the system is driven farther away from 

equilibrium. 

Using the first law of thermodynamics, the energy 

changes inside the system and in the surroundings are 

respectively written as 

 

sys sys sys surrE W Q P V        (8) 

 

surr surr surr surrE W Q P V         (9) 

 

Denoting the fluctuations in work  W
  as the difference 

between work received by the system minus the work done 

by the surroundings  sys surrW W W     , calling 

fluctuations in heat flow  Q
  the difference between the 

heat absorbed by the surroundings and the heat released by 

the system  sys surrQ Q Q     , and adding Eqns (8) 

and (9), the total change in energy for the system and its 

surroundings is found as  

totalE W Q 
      (10) 

 

It is important to note that whereas sysW  and surrQ   

are always positive and sysQ   and surrW   are always 

negative during the forward path, W
  and Q

  can be 

positive or negative quantities. Applying the second law of 

thermodynamics on the system and the surroundings, the 

changes in entropy are obtained as 

 

sys sys
sys gen

surr

Q
S S

T



      (11) 

 

surrsurr
surr gen

surr

Q
S S

T


     (12) 

 

By adding Eqns (11) and (12), the total dissipation   

in the forward process is found to be  

 
total

surr total surr genT S T S Q  
       (13) 

 

It can be demonstrated that this work is equal to the 

deviation of the total entropy from its equilibrium state, 

 totalS , required to keep the system out of equilibrium 

[18].  This  totalS is different than the sysS term, which 

corresponds to the change in entropy of the system between 

the equilibrium states A and B.  

If the system and surrounding temperatures are equal 

 surr sysT T  then fluctuation in heat is nonexistent 

 i.e. 0Q
   and if extreme conditions are assumed then 

fluctuations in work  W
  are completely dissipated 

 i.e. total

surr genW T S 
  .  Setting 0Q

   in Eqns (10) and 

(13), then the total entropy change, which includes 

the entropy of the system  sysS  in addition to the entropy 

change of the surroundings, is found to be  

 

total

total

surr surr surr

E W
S

T T T


 

      (14) 

 

This indicates that the fluctuation in work is proportional to 

entropy generation. At steady state we have minimum 

entropy generation; therefore 

   .total

sys surr surr genW W T S     On the other hand, to 

maintain the system out of equilibrium (see Fig. 2) the work 

required in general is  sys surr totalW W E     [Eqn 

(10)]. This means that work is needed to move the system 

from its equilibrium state and that this work is related to the 

total entropy generation [Eqn (14)].  

By repeating the above process (of changing the system 

state from A to B several times), different values of W
  are 

obtained, because the various experiments are not 

guaranteed to follow the same path. Therefore, there are 

several trajectories (Fig. 1b) along which the system is 

moved from state A to B. Each path is associated with a 

value for entropy generation and the collection of these 
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values can be represented by a distribution function P, 

which according to the Boltzmann postulate is given by  

 

  B surrk T
FP Ae







  .  (15) 

 

Therefore, for processes without heat fluctuation, the 

following applies: 

 

  B surr

W

k T
FP W Ae




    (16) 

 

where A is a constant related to probability distribution at 

equilibrium or reference state. Eqn (16) indicates that the 

likelihood of fluctuations in the dissipation of work 

depends on the magnitude of the fluctuations. 

In order to understand the variation of total entropy, 

reference is made to Figure 2a, which shows the change in 

entropy as a system is moved away from equilibrium due to 

the work done on it. When work is applied to the system at 

equilibrium, the total entropy (system plus surroundings) 

increases as schematically depicted in Figure 2b, where the 

increase in entropy is modeled as an increase in the height 

of the ball while departure from equilibrium is represented 

by how far the ball is from its equilibrium location at A. 

The increase in the total entropy of the system is understood 

as an entropy generation because there is not a net heat 

transfer; therefore, the work applied is considered to be lost. 

Therefore, equation (16) can be written as 

 

 
sys surr

B surr

W W

k T
sys surrP W W Ae

 

     (17) 

 

 New derivation of Crooks relation 3.

In the reverse direction, the system has to undergo a 

process in which it is taken from the equilibrium state, B, 

back to its original state, A. For this to be realized, work 

has to be done by the system. Again, the work needed to 

keep the system out of equilibrium is a fluctuating quantity 

with its amplitude increasing as the system is driven farther 

away from equilibrium. 

Similar to the forward direction, the generated 

maximum work  sys surrW W 
  
   that is necessary to 

move the system from the new equilibrium state B to the 

initial state A following a trajectory with minimum entropy 

generation, is obtained as 

 

 W Q   
        (18) 

 

It is obvious that the total entropy generation/energy 

dissipation in the forward process is not guaranteed to be 

equal to total entropy generation in the backward process

 andtotal total

gen genS S Q Q   
   . This is due to the fact that 

the irreversibility of the process is not necessarily the same 

in both directions.  The process under consideration moves 

the system from state A to state B in the forward direction 

and then back to state A in the reverse direction. Therefore 

the irreversibility is a consequence of small fluctuations that 

are revealed as the process is repeatedly performed. This 

means that the repeated processes follow different 

trajectories because the system is out of equilibrium. 

By repeating the above process, different values of W
  

and Q
  are obtained. The collection of these values can be 

represented by a distribution function, which according to 

the Boltzmann postulate can be written as 

 

  B surrk T
P Ae






    (19) 

 

Therefore, for processes without heat fluctuation, the 

following should hold: 

 

  B surr

W

k T

RP W Ae




    (20) 

 

 

 

 (a) (b) 

Figure 2. Schematics of a system showing variation in the total entropy while undergoing a non-equilibrium process.   
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The Crooks relation is the ratio of the distribution 

functions in the forward and backward directions [Eqns 

(16) and (20)] and can be written as 

 

 

 

total
gen

B surr B

SW W

F k T k

R

P W
e e

P W

  






 


  (21) 

 

where 
total total total

gen gen genS S S   . It is easily seen that the 

reversibility depends on the total energy dissipation. In the 

absence of any dissipation, the probability for the process to 

go in either direction is the same. As dissipation of energy 

increases, irreversibility increases and the probability to go 

in the forward or reverse directions becomes different. This 

is the Crooks relation [19], which is a measurement of 

irreversibility 

 

 Closing remarks 4.

Fluctuations cause a system at equilibrium to 

simultaneously absorb and reject heat with the net effect 

being a zero flux. On the other hand, the rates at which a 

system far from equilibrium absorbs and rejects heat are 

different. An equation to model these fluctuations was 

developed by Crooks. In this paper, a simple approach 

based on a direct application of the first and second laws of 

thermodynamics along with Boltzmann postulate was 

followed to derive Crooks relation.  
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