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Abstract 

 

A phenomenological thermodynamic model is developed to investigate, in more detail than usual, the pressure-

temperature phase diagram of proteins. Indeed, in the whole of previous studies the specific heat difference CP is 

treated as pressure and temperature independent. This assumption is wrong, as confirmed by Yamaguchi et al [1] 

which reported pressure dependence of CP in the case of ribonuclease A. In this work, assuming that the chemical 

potential has a Taylor series expansion and having an additional thermodynamic piece of information, the analysis 

shows that it is possible to obtain a complete description of the unfolding-refolding transition of protein, to deduce 

the volumes, entropies, enthalpies versus transition temperatures and transition pressures and, for the first time, to 

deduce the specific heat changes versus transition temperatures and transition pressures. Special attention is given to 

the elliptical shape of the pressure-temperature phase diagram. A quantitative description of the phase transitions in 

the protein of Zn-Cytochrome c is given. 
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1- Introduction 

The structural organization of proteins is related to their 

functions in biological systems. Whereas the formation of 

the amino acid sequences from genetical information is 

reasonably well known, the process leading to the protein 

folding is largely unknown. The folding mechanism is 

related to building of the secondary and tertiary structures 

of a protein. A suitable protein space conformation is very 

important when it determines. Spontaneously, a polypeptide 

chain selects quite rapidly one conformation when a lot of 

alternative spatial organizations are possible. First of all, 

atom as well as molecular interaction inside a well-defined 

protein drives at least for a part the conformational process, 

in particular the rotation around the peptides bonds linked 

amino-acids, reaching to α-helix or β-sheet formation. 

Environmental conditions greatly influence the protein 

conformational organization. Solvent as well as temperature 

and pressure can induce conformational changes, leading, 

in extreme conditions, to the denaturation and/or complete 

inactivation of the protein. In a first analysis, proteins can 

exist under two well defined states: native and denatured. 

Temperature as well as pressure changes affect the 

molecular organisation of proteins by modifying secondary 

interactions between amino-acid residues. Increasing or 

decreasing temperature could lead to a phase change of 

proteins relating to folding/unfolding process. 

Environmental conditions influence greatly the 

thermodynamic properties of a protein rending the analysis 

the folding/unfolding process very complex. A step by step 

modelling approach appears as a way to study the protein 

behaviour during folding/unfolding process. Although this 

two-state approach is useful to discuss the folding-

unfolding process, the transition from native to denatured 

state must be complicated by including different 

thermodynamically metastable steps. The transition process 

from native to denatured state was first thought to be 

thermodynamically controlled [2, 3], but it is now more 

certain that the folding – unfolding process is not under the 

sole control of thermodynamic parameters. Indeed, 

Levinthal’s works [4]  indicated that the number of possible 

spatial configurations of a protein is very high, Wetlaufer 

[5] assessed at 10
85

 seconds the time needed for a one 

hundred amino-acid peptide to check all conformation 

possibilities. This is the reason why after thermodynamic 

considerations, kinetic parameters also have to be 

considered [5]. Both thermodynamics and kinetic controls 

drive the protein conformational process [6, 7]. 

In this study, we are interested in equilibrium states 

appearing clearly on a phase diagram which are impossible 

to determine using kinetic effects leading to these 

equilibrium states.  

Phase diagram is a common way of representing the 

various phases of a substance and the conditions under 

which each phase exists. It is simply a compact presentation 

of the known or postulated equation of state of a closed 

system. However, the protein is an open system that it can 

exchange matter as well as energy with its surroundings. 

The equation of state is a relationship between three 

important properties of pure substances: pressure P, specific 

volume V, and temperature T. Calculation of phase diagram 

from volumetric data requires a large computational effort. 

The equation-of-state- method to reach a complete 

determination of phase diagram is often unpromising 

because we usually do not have sufficiently accurate 

knowledge of the volumetric properties of condensed 

matter.  

Since accurate volumetric data for living matter are 

missing now, the phase diagram usually used is a graph of 
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pressure P versus temperature T. Lines on the diagram 

represent conditions (T, P) under which a phase change is at 

equilibrium. An understanding of such diagrams is essential 

to thermodynamics, because we will have to refer to a 

phase diagram in order to obtain the requisite property 

information. However, few works dealing with the P-T 

phase diagram of elliptical shape have been found in the 

case of liquid crystal systems and biological ones. All 

approaches use the same phenomenological model to 

describe theoretically the equilibrium curve. They were 

developed by Hawley [8] for proteins and at the same time 

by Clarck [9] and Klug and Whalley [10]  for liquid crystals 

and were based on the following assumptions:  

- the molar Gibbs free energy difference between the native 

and denatured states, G = GD-GN, is formally the second 

order Taylor series of G expanded with respect to P and T 

around a reference point (P0,T0), 

- since the choice of the reference point is arbitrary it is 

taken at the centre of the fitted ellipse and at this point the 

Gibbs free energy difference is maximum, 

- the specific heat difference CP is supposed not to depend 

on either P or T. 

From a pure mathematical point of view, when truncates 

the series after the second order term, the thermal 

expansions (αV) and the compressibility (V) 

differences must be constants, but, under no circumstances, 

must CP be so as mentioned by Smeller [11]. If CP is 

constant as supposed in all the previous studies [12, 13] and 

since the    (
  

  
)
 
, then the enthalpy must be a linear 

function of T, which is incompatible with the P-T phase 

diagram of elliptical shape.  

Moreover, the Gibbs free energy is given by dG = - S 

dT + V dP, then    (
  

  
)
 
, and since the    can be also 

defined by: 
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We can deduce the following expression: 
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From this expression, even if G is assumed to be a second 

order of P and T, the Cp is not a constant. So the 

possibility CP constant has to be excluded. 

The assumption CP is not constant is confirmed by 

Yamaguchi et al. [1] who reported pressure dependence of 

CP in the case of ribonuclease A. Furthermore, even 

though the reference point is completely arbitrary there is 

no physical reason to put it at the centre of the ellipse. 

Finally, considering that the Gibbs free energy difference is 

maximum at this point implicitly means that energy 

surfaces G (T, P) of both states have the same maximum. 

Even if this assumption is attractive it is more difficult to be 

justified by physical interpretations. That is why another 

choice, for the more adequate reference point, seems 

necessary. 

Furthermore, for proteins, the thermodynamic system is 

not a homogeneous one. This is a solution with three phases 

in equilibrium, both native and denatured phases of the 

protein and the liquid phase solvent. In other studies, if the 

effect of solvent is not included in the expression of Gibbs 

free energy difference, it is not clear why it is neglected and 

it is not clarified the physical meaning of this absence. In 

these previous models all thermodynamic properties are not 

obtained. 

Finally, it is well known that for pressure-induced 

protein unfolding, the volume change V=VD-VN, where 

VD and VN are the volumes of denatured and native states 

respectively, is an important variable which governs the 

folding-unfolding equilibrium when pressure is applied. 

Under some conditions the VN could be lower than VD and 

under the others it becomes higher. Then the most 

important question, which remains open, is how to explain 

the behaviour change of the volume for each state which is 

to be consistent with the obtained P-T phase diagram. 

The main goals of this work are firstly to clarify the 

modelling conditions, described in the next section, that are 

compatible with the experimental data; it is only under 

these conditions that the principles of thermodynamics can 

be applied without contradiction unpredictable in the 

calculations. Secondly, we show that specify the conditions 

of the modeling is not a disadvantage but rather a means to 

a better understand the mechanism of the unfolding-

refolding transition of proteins.  

The thermodynamic analysis that follows is based on 

two assumptions about the environment of the protein, a 

mathematical postulate concerning the chemical potential 

and a choice of the standard state on the equilibrium curve. 

We make no assumption about the CP. The model must 

therefore lead to a variation of CP depending on the 

temperature and pressure. 

For testing ours model, we have used the data obtained 

from unfolding process of modified Zn-Cytochrome c [12, 

13].  

 

2- The Modelling Conditions  

A heterogeneous closed system is made up of two or 

more phases where phases considered as an open system 

within the overall closed system. We now consider the 

conditions where the heterogeneous system is in a state of 

internal equilibrium with respect to the three processes of 

heat transfer, boundary displacement, and mass transfer. 

The general result for a closed heterogeneous system 

consisting of three phases and two components is that, at 

equilibrium, with respect to processes described above: 

 

T
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where the superscript in parentheses denotes the phase and 

the subscript denotes the component and µ the chemical 

potential of components. This set of equation provides the 

basic criteria for phase equilibrium for our purposes. 

The phases considered in this study are the state of 

water and the two protein’s states: native and denatured. In 

our model, we make two assumptions: 

1) the water is under the same thermodynamic conditions of 

temperature and pressure either inside or outside of the 

protein, 

2) any water molecules alters in any way the state of the 

protein. 

Both assumptions are extremely important because it 

means that the physicochemical properties are intrinsic to 

the protein; and that water allowing simply the protein to 
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properties revealed when environmental conditions are 

favorable. With such assumptions, one focus only on 

studies of protein equilibrium states, i.e. its phase diagram.  

To extract all information from the phase diagram we 

postulate an analytical equation for the chemical potential. 

In this work on phase-equilibrium thermodynamics one 

propose to relate the abstract chemical potential of a 

substance to physical quantities: temperature and pressure. 

The general regularity observed in the thermodynamic 

phases’ functions allows expanding the chemical potential 

in Taylor series in T and P. However, when trying to 

establish the appropriate relation we need arbitrary 

reference states, commonly called standard states. 

Successful application of thermodynamics to real systems is 

frequently based on a judicious choice of standard states. 

When we are interested in the thermodynamics of phase 

equilibrium between two phases, the fundamental equation 

is the equality of chemical potential; in such a case it is 

useful to take the standard states on the equilibrium curve, 

i.e. the standard states for the two phases being the same. 

As we will see later, this procedure is a powerful way of 

deducing all thermodynamics properties of a substance as 

the volumes, entropies, enthalpies and specific heat change 

along the equilibrium curve.  

 

3- Thermodynamic Analysis of P-T Phase Diagram 
For any phase equilibria between two phases 1 and 2: 

 

µ1 = µ2  (1) 

 

where µ is the chemical potential of phase, with pressure 

and temperature dependence. 

For a one-component two-phase system at equilibrium, 

relation (1) gives the P and T dependence for the two-phase 

system P(T) represented by a curve in a Pressure-

Temperature (P-T) phase diagram. 

However, we must point out that the analytic relation 

that links the chemical potential of a pure condensed phase 

in terms of independent variables P and T is unknown. 

More or less empirical analytical expressions, in the 

form of polynomials [14, 15] of exponential [16, 17] or 

rather often a linear function [18, 19], were used to describe 

the coexistence curves of a pure substance in the P-T phase 

diagram.  

However, no additional information on changes in the 

volume V (T,P), entropies S (T,P), specific heat 

capacities CP (T,P) or enthalpies H (T,P) associated to 

the transition is obtained in terms of transition temperatures 

or pressures.  

As the chemical potential is a function µ (T,P) of the 

intensive variables T and P, we consider that it may be 

expanded in Taylor series in T and P around a reference 

point (T0, P0): 
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where the coefficients Aij are the derivatives of µ with 

respect to P,T. 

In order to relate the abstract chemical potential to 

physically measurable quantities it is sufficient to truncate 

the expansions after the quadratic terms. The few data 

reported in the literature justify no more correction terms 

(cubic, quartic and so on). Thus, to second order in T and P, 

Eq. (2) becomes: 

 

   (   )     (     )               
  

  

    

  
     

 

 
       

                 (3)   

 

where i =1, 2, T= T – T0, P=P – P0. Here Si0, CPi0, Vi0, 

i0 and αi0 denote entropy, specific heat, volume, isothermal 

compressibility, and thermal expansivity respectively. It is 

worth noting that P and T can have all possible values. 

The volume and entropy for any P and T are obtained 

by use of Eq. (3): 
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Since the choice of the reference point is arbitrary we have 

chosen that the standard states   µ10 (T0, P0) and µ20 (T0, P0) 

for the two phases were the same. As indicated above, the 

choice of a reference point in the equilibrium curve seems 

adequate.  

In this case, the equilibrium relation, Eq.(1),  leads to 
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Here, unlike the above expression (Eq.(3)) P and T have 

only the equilibrium values between the two phases. The 

entropy, enthalpy, volume and specific heat differences 

between the two phases for any P, T are as follows: 
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These equations, Eq.(6a) to Eq.(6e) are the basic ones to 

describe quantitatively and rigorously coexistence curves of 

P-T phase diagrams [20].    

Since there is no reason to have  (  )   , it is useful 

to note that we will only discuss the case of  (  )   . 

Then, the Eq. (6a) is the general equation for a conic 

section and it is interesting to solve it for T in order to 

calculate P-T phase diagram i.e. the function P(T) and all 

thermodynamics proprieties deduced by Eqs.(6b) to (6e).   

To determine the explicit forms of the coexistence 

curves P(T), the entropy, enthalpy, volume and specific 
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heat differences for any transition temperature T, we will 

introduce, in order to simplify the writing of the analytical 

expressions, new constants Cj which are functions of the 

initial constants i.e. T0, P0, S0, V0, CPo, (αV)0 and 

(V)0 . 

It is clear from these considerations that the basic 

equations may be written in the simple forms as follows:  
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where X = +1 , -1 or 1. It is obvious that if X = +1 or X = -

1, these equations only describe half a conic section. On the 

other hand X = 1  allows the description of the whole 

conic section. Algebraic rearrangements of the Eq. (6a) 

reaches to obtain the new constants noted Co, C1, C3, C4 and 

C5, C2 is deduced from Eq.(6e). 

From a mathematical point of view, the function P(T) 

given by Eq.(7a) can either have an elliptic, a parabolic or a 

hyperbolic shape depending on the sign of  
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 coefficient, in fact, the curve is:  

1. an ellipse if C3 < 0; 

2. a parabola or two parallel straight lines if C3 = 0 ; 

3. a hyperbola or two intersecting straight lines if C3 > 0. 

The equations established above contain all thermodynamic 

information about equilibrium state along the coexistence 

curve if we can know the values of the six coefficients Ci. If 

the ones appearing on Eq. (7a) can be deduced from the 

fitted experimental data, C2 must be determined through 

any equation from Eqs. (7b) to Eq. (7e) but it requires the 

knowledge of given thermodynamics data. Indeed, in the 

case of atmospheric pressure the knowledge of V(T) or 

H(T) (or S(T)) or CP(T) is enough for a complete 

thermodynamic treatment along the coexistence curve. 

 

4- Application to the P-T Elliptic Phase Diagram of 

Protein  
The picture which emerged from several experimental 

data shows a stable native state of the protein in a closed 

range of the P-T plane. Crossing the boundary of that 

region, the native conformation loses its stability, and the 

protein unfolds. Different thermodynamic descriptions of 

the phase boundary of protein unfolding were developed [8, 

11, 12, 13]. All these studies show that the shape of the 

phase diagram of protein unfolding is elliptical. In this case 

and from Eq. (8), the mathematical constraint ensuring the 

elliptical shape is 
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So that the product (CP)0(V)0 has to be positive. This 

implies that both quantities have to have the same sign. 

Lesch et al. [13] show that   
  is associated to the degree 

of correlation around a reference point (T0, P0) in the 

fluctuations of the changes of enthalpy and volume at the 

denaturing-refolding transition. The expression of Eq. (9) 

may be used, in general manner, to define a degree of 

correlations for each transition temperature T as follows: 
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According to the approach of the second order Taylor 

series of chemical potential expanded with respect to P and 

T, we deduce  
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Then:            
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It seems obvious that this coefficient is positive and 

inferior to unity since C3 is negative. Furthermore, it does 

not depend on transition temperature. Of course, there is no 

correlation if   
2
 = 0 and there is full correlations if 

2
 = 1. 

The last case corresponds to C3 = 0 and it characterizes a 

parabola curve.  

In Figure 1 we show the fit of Eq. (7a) to data reported 

by Lesch and co-workers for a protein of Zn-Cytochrome c  

[12, 13]. 

 

 
 

Figure 1. Typical elliptic shape phase diagram. The dots 

are the experimentally determined points for Zn-

Cytochrome c [12, 13]. The solid line results from Eq. (7a) 

and parameters as specified in the text. 

 

In order to obtain directly the minimum temperature T1 

and the maximum temperature T2, it is preferable to write 

the Eq. (7a) as follows 
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   and            .  

The parameters for this fit are given in Table 1. The 

units of measurements used here are the SI units. 
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Table 1. Thermodynamic parameters obtained from the fit 

of ellipse to measure the denaturing-refolding P-T phase 

boundary in the protein of Zn-Cytochrome c.  

Ellipse           √  (    )(    ) 

 C0 C1 C3 T1 T2 
-2 10-4 1.33 10-3 -1.24 10-4 258.8 358.6 

 

Since the constants C3 and C1 are known we can 

immediately deduce the value of the degree of correlations 


2
 = 0.014. As 

2
 is very small, there is almost no 

correlation between volume and enthalpy changes. This 

value is very similar to the one computed by Lesch et al. 

[13]. Then the parameters’ values we find are reasonably 

correct and we can consider the fit of an ellipse to data of 

Zn-Cytochrome c agrees quite well with the experience, in 

spite of some errors due to experimental measurements. 

As mentioned above, it is necessary to know one value 

of reference to be able to make a complete thermodynamic 

study of the coexistence curve. We have taken the value of 

the specific heat capacities difference CP = 5.87 kJ mol
-1

 

K
-1

 for    T = 333 K and P = 0.1 MPa [12] which leads to C2 

= 7.47 10
-3

 in S.I. units. 

The volumes, entropies, enthalpies and specific heat 

changes along the transition line were then calculated using 

the Eqs. (7b) to (7c). The results are plotted out in the form 

of curves in Figures 2 to 9. The first four figures show the 

variations of these discontinuities according to the 

transition temperature. The last ones give their evolution 

according to the transition pressure. 

 

 

 
Figure 2. Calculated ΔV as a function of the transition 

temperature noted T: V = f(T). 

 
Figure 3. Calculated ΔS as a function of the transition 

temperature noted T: S = f(T). 

 

 
Figure 4. Calculated ΔH as a function of the transition 

temperature noted T: H = f(T). 

 
Figure 5. Calculated ΔCp as a function of the transition 

temperature noted T: Cp = f(T). 

 
Figure 6. Calculated ΔV as a function of the transition 

pressure noted P : V= f(P). 

 
Figure 7. Calculated ΔS as a function of the transition 

pressure noted P: S= f(P). 
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Figure 8. Calculated ΔH as a function of the transition 

pressure noted P: H= f(P). 

 

 

Figure 9. Calculated ΔCp as a function of the transition 

pressure noted P: Cp= f(P). 

In Table 2 are listed the values deduced from the fit of 

P-T phase diagram by Lesch et al. [12] and by our model. 

Our values are very close to those found by the authors 

mentioned above.  

 

Table 2: Thermodynamics parameters obtained by Lesch et 

al. [12, 13] and by our model for the denatured protein of 

Zn-cytochrome c  

Parameters 

 

From the fit by 

Lechs et al. 

[12, 13] 

From the fit of 

our model 

 

 (cm3 mol-1GPa-1) -148,1 -139,94 

 (cm3mol-1    K-1) 0,139 0,186 

0,91 GPa  298 K 

V(cm3mol-1) 

S (kJ mol-1K-1) 

 

-74,6 

-0,263 

 

-75,95 

-0,287 

0,1 MPa   333 K 

V (cm3 mol-1) 

S (kJ mol-1K-1) 

 

65,0 

0,530 

 

67,9 

0,512 

 

5- Discussion 

5.1- Phase Diagram’s Interpretation 

Firstly, since the transition between the native state, N, 

and the denatured one, D, is characterized by a latent heat, 

then it is first order and consequently is governed by the 

Clausius – Clapeyron equation:  
  

  
 

  

  
 

Secondly, the behaviour of each thermodynamics 

system is governed by Le Chatelier's principle, i.e. when a 

given system in an equilibrium state is disturbed by the 

application of an action, a direct reaction occurs in such a 

way as to diminish the action.  

The application of Le Chatelier's principle and the 

Clausius – Clapeyron equation to the P-T phase diagram 

leads to its division in four regions as it is shown in Figure 

10. The differences between these regions are due to the 

sign’s changes of V and S (or H = T S) at transitions. 

In fact, at constant pressure, if T increases (respectively 

decreases) then H is positive (respectively negative) as a 

consequence of Le Chatelier's principle. When the slope of 

equilibrium curve is positive (respectively negative), so 

using the Clausius – Clapeyron equation we deduce that H 

and V have the same (respectively opposite) signs. In a 

similar way, the same results could be deduced when 

varying pressure at constant temperature (Figure 10).  

This interpretation of phase diagram shows that in 

protein systems, changes in pressure and temperature 

produce large changes in the phase behaviour. However no 

information can be deduced from the P-T phase diagram 

and the Le Chatelier's principle relative to the change of 

volume of each phase.  

 

 

Figure 10. Relative position of the S = 0 and    V = 0 

lines compared to the ellipse. This schematic P-T phase 

diagram shows the four domains which correspond to 

different signs of entropies and volumes transitions.  

 

 

5.2- Volume Behaviours of Each State versus T and P 

The variation in V influences the folding-unfolding 

equilibrium according to Le Chatelier's principle, which 

predicts that a pressure increase (respectively a temperature 

decrease) favours processes accompanied by negative 

volume changes and a pressure decrease (respectively a 

temperature increase) favours processes accompanied by 

positive volume changes.   

Let us consider the effect of heating from the native 

state, N, to the denatured one, D, at different constant 

pressures. When the temperature increases, the volume 

difference V = VD-VN at the transition is positive, then VN 

< VD. But, when the temperature decreases, the volume 

difference is negative, then VN > VD. Let us see now what 

happens with the pressure. We assume that the pressure 

varies from the N state to the D one at different constant 

temperatures. Thus, when pressure increases one obtains VN 

> VD, while when it decreases, one gets VN < VD. In order 

to build-up a physical interpretation of this behaviour we 

have based our analysis upon the following assumptions: 

- according to the above equation of the chemical potential, 

the volume of each phase is considered a linear function of 
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P and T, which is, in first approximation, reasonable in the 

condensed matter systems, 

- at constant temperature if the pressure increases, the 

volume of the denatured state VD must decrease more 

quickly than that of the native state VN; it is obvious that it 

is easier to compress a disordered state than an ordered 

state, 

- with constant pressure if the temperature increases, the 

volume of the denatured state VD must increase more 

quickly than that of the native state VN; in fact, it is usually 

easier to observe the expansion of a disordered state than 

that of an ordered state. 

The schematic representation of the volume change in 

each state with pressure at fixed temperature and with 

temperature at fixed pressure is given Figure 11.The results 

are in qualitative agreement with the experimental P-T 

phase diagram. 

 

 
Figure 11: Schematic representation of the volume 

variation for both states, denatured and native, of protein 

which is to be consistent with the obtained P-T phase 

diagram: (a) the volume of each phase is considered as a 

decrease linear function of P at T constant (example of T = 

T0); (b) the volume of each phase i considered as an 

increase linear function of T at P constant (example of P = 

P1).   

 

5.3- Entropy Behaviours of Each State versus T and P 

It is well-known that the entropy of a phase is an 

increasing function of the temperature. However, the two 

unfolded states are separated by the native state. Then, with 

fixed pressure, is the entropy of protein in the unfolded 

state at low temperature lower or higher than that of the 

unfolded state at high temperature, and similarly by varying 

pressure at constant temperature. To answer these 

questions, it is necessary to use the diagram of phase 

pressure-temperature of protein and the calculated curves 

(Figures 3 and 5) giving the entropies of transition along 

this diagram. 

The curves describing the behaviour of the entropy of 

the two states native and denatured protein according to the 

temperature with constant pressure and according to the 

pressure at constant temperature are presented in Figure 12. 

With constant pressure the entropies of transitions 

(Figure 12a) to the points A and B are respectively positive 

and negative, i.e. SD(A) > SN(A) and SD(B) < SN(B); and as 

SN(A) > SN(B) then SD(B) < SD(A) what is fortunately in 

agreement with the fact that the entropy increases with the 

temperature. 

In order to analyze the variation of the entropy 

according to the pressure (Figure 12b), it is necessary to 

specify the value of the temperature. For temperatures T1 

and T2, the entropy of transition is zero; both temperatures 

divide the domain of temperature into three intervals: 

  

 
Figure 12. Schematic representation of the entropy 

variation for both states, denatured and native, of protein 

which is to be consistent with the obtained P-T phase 

diagram:  (a) the entropy of each phase is considered as an 

increase linear function of T at P constant (example of P = 

P1); (b) the entropy of each phase is considered as a 

decrease linear function of P at T constant. 

 

For a constant temperature T between T1 and T2 (T1 < T 

< T2) the transition entropies at points C and D are such as 

SD(C)-SN(C) > 0 and SD(D)-SN(D) < 0. As usual, one can 

suppose that the thermal expansion coefficient N, of 

protein is positive in the native state; one can deduce, by 

using the thermodynamic equations from Maxwell, that 

(
  

  
)
 
   (

  

  
)
 
  . In other words the entropy is a 

decreasing function of the pressure. Consequently in the 

native state we have SN(D) < SN(C). By combining this 

result with the signs of the entropies of transition, we 

finally deduce that SD(D) < SD(C) and reach the conclusion 

that the thermal expansion coefficient, D, of the denatured 

state is positive. 

If the temperature T is between T2 and T2,, transition 

entropies at points E and F are both positive. According to 

Figure 12 they are such as SD(F) < SD(E), which enables to 

deduce that SD(F) - SD(E) < SN(F) - SN(E). As SN(F) < SN(E) 

and since N  > 0, then SD(F) < SD(E) and thus D > 0. 

- In the last case which corresponds to a temperature 

range between T1, and T1, the transition entropies, for 

example at points G and H, are negative. According to 

Figure 12-b they are such as SD(H) < SD(G), which allows 

to deduce that SD(H) - SD(G) < SN(H) - SN(G). As SN(H) < 

SN(G), then SD(H) < SD(G) i.e. once again D > 0.  

The reasoning carried out above is based on the 

completely usual assumption that the thermal expansion 

coefficient of the native state is positive. It is necessary to 

confirm this sign with an experimental measurement which, 
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in the case of proteins, is certainly not easy because the 

protein is in solution and consequently measurement will 

contain an additional contribution due to solvent. Finally, 

the entropy of the denatured phase, which is compared to 

the diagram of phase Pressure-Temperature on the left of 

the ellipse, has according to what precedes a smaller value 

than that which corresponds to the native phase. Thus 

overall, the low temperature denatured phase is more 

ordered than the native phase, this last phase being more 

ordered than the high temperature denatured phase. This 

result is by no means in contradiction with the principles of 

thermodynamics since it is necessary to call upon the 

concept of symmetry which describes the order with long 

distance.  On the other hand, the bond with the structure of 

the native and denatured states, whether at high or 

especially at low temperature, has remained an open 

question so far. 

 

6- Concluding Remarks 

Thermodynamic models have been proposed to analyse 

the dynamic of cell interaction [21, 22]. This kind of model 

involves a sophisticated mathematic based on entropy 

generation reaching to the description of the stationary 

states in an open system [23]. 

In our case, we consider the equilibrium sates inside a 

close system. In this way, a thermodynamic model based on 

the Taylor series expansion of the chemical potential as a 

function of temperature and pressure has been extended to 

investigate the elliptical shape of the pressure-temperature 

phase diagram of protein in more detail than usual. The 

analysis carried out above shows that it is possible to 

determine all thermal properties that characterize the 

transition between the denatured state and the native one 

i.e. the volumes, entropies, enthalpies and specific heat 

changes versus transition temperatures and transition 

pressures. Reasonable agreement between the experimental 

data for the Zn-Cytochrome c protein and the calculated 

values of this model has been found. 

In vivo, especially inside cellular membrane, proteins 

play a fundamental role, either functional or structural. As 

their environment is changing, proteins have to move their 

conformational structure. Signal transduction phenomenon 

is often related to a conformational change reaching to 

specific cellular activity. In other cases, it is possible that 

protein activities (i.e enzyme activity) inside biological 

membranes change local conditions of temperature or 

pressure inducing so a partial unfolding of protein. Maybe, 

the unfolding – folding protein process is part of complex 

regulation pathways driving the control of cell activities. 

Under these conditions, proteins generate irreversible 

thermodynamic processes due to various gradients of 

temperature, pressure and chemical potential. Therefore, a 

rigorous thermodynamic analysis requires more 

sophisticated models involving the study of open systems. 

The method developed by Lucia and Maino [24] based on 

entropy generation is powerful to study these complex 

systems by determining their stationary states [22]. The 

theoretical results of this method can be applied in various 

fields including the medical one: a mathematical analysis of 

the dynamics of tumor interaction with the host immune 

system [21], the human brain [23] or cancer [25].               
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