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Abstract  

 

The polytropic process is a widely used pressure model for predicting the nature of pressure and volume states in 

expansion and compression systems. The two variable nature of this model typically leads to an open ended 

approach with heavy reliance on mechanism evaluation and potential extended design iterations in the prototyping 

phase. Through a fundamental examination of the polytropic derivation from the energy transfer ratio assumption, in 

conjunction with repeated application of elementary thermodynamic principles, including First Law analysis, 

moving boundary work, and substance property evaluation, a solution to a refined nominal polytropic index can be 

found. The derivation can provide valuable insight to the polytropic process itself and address the issue of bounding 

a complex system with a reasonable choice of theoretical system input. With the aid of the method outlined in this 

paper, researchers will be enabled with a tool to better predict the polytropic expansion coefficient which finds 

widespread use in thermodynamic modeling and analysis. To this end, the method is used herein to predict a 

polytropic index of n = 1.306 and k = 1.615 for the specific heat ratio for a SCO2 expansion engine operating 

between 20 MPa and 9.2 MPa. 
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1. Introduction  

The motivation of this current paper stems from a desire 

to more accurately predict the value of the polytropic 

exponent used in the modeling of a Supercritical Carbon 

Dioxide (SCO2) Waste Heat Recovery Rankine Engine 

Cycle. The current paper is motivated by the study of 

Anderson et al. [1] whereby the polytropic model is used to 

predict the expansion process in a SCO2 Rankine Engine 

for use in regenerative waste heat to power recovery, and 

also the work of Anderson et al. [2] wherein the 

thermodynamic polytropic expansion process is utilized in 

the modeling and analysis of a lightweight, high specific 

power, two-stroke, polygon engine.  

Figure 1 shows the SCO2 Heat Recovery cycle being 

studied herein as presented by Anderson et al. [1]. As 

outlined in [1], in order to determine the most efficient 

operating point, a parametric analysis is performed using 

first order thermodynamics. For the prototype cycle, limits 

are chosen to be 35°C and pressure above 7.4 MPa to 

maintain the fluid above the critical point and avoid two-

phase flow. Temperature on the high side is dictated by 

input from a low quality heat source, which generally 

originates at 200 °C - 500 °C. These were the design factors 

which constrained our work to be between the low and high 

side pressures of 12.5 MPa and 20 MPa, respectively.  The 

expansion process between state 4 and 5 of the pressure-

enthalpy state diagram of Figure 1 is modeled using the 

polytropic assumption. The modeling of this process is the 

main focus of this current paper. The waste heat 

regenerative Rankine cycle of Figure 1 is composed of six 

main hardware components. As indicated in Figure 1, the 

SCO2 cycle starts at state point 1, corresponding to a low 

side pressure above 7.5 MPa and a low side temperature of 

35 °C, slightly above the critical point of CO2. After 

compression the cycle reaches state point 2, where the 

SCO2 is brought to the high-side pressure of 20 MPa and a 

temperature of 36 °C, approximately 1 °C higher than the 

pre-compressed state. An internal heat exchanger process 

between state points 2-3 then heats the pressurized SCO2 

by exchange with low-pressure, post-expansion SCO2. 

After exiting the internal heat exchanger at state points 3, 

the SCO2 is heated by a second heat exchanger where 

addition is done via waste heat, raising the temperature to 

its ultimate value of approximately 200 °C and leaving the 

SCO2 at state point 4. The heated and pressurized SCO2 is 

then expanded between state points 4 and 5 in an expansion 

device which is tied to generator to produce rotational 

energy and eventually electricity. The rotational energy is 

converted to electricity by coupling the expander’s output 

shaft to a permanent magnet alternator. The fluid exits at a 

low-side pressure of 12.4 MPa and a temperature of 163 °C 

to state point 5.  The expanded fluid is then run through the 

internal heat exchanger where it is cooled by high-pressure, 

pre-expansion SCO2 and then arrives at state point 6. The 

cooled supercritical CO2 is finally passed through a radiator 

where it exits at the pre-compressed pressure and 

temperature and then returns to state point 1 to repeat the 

cycle. 

Figures 2-4 show the polytropic expansion process 

under the context of the current study in pressure/volume, 

temperature/entropy, and pressure/enthalpy state diagrams, 

respectively As shown in Figure 2 the present application 



276 / Vol. 17 (No. 4)  Int. Centre for Applied Thermodynamics (ICAT) 

deals with SCO2 in the region of high-side pressures on the 

order of 20 MPa, and low-side pressures on the order of 9 

MPa, while the specific volume ranges from 0.004 kg/m
3 

to 

0.007 kg/m
3
. 

 

 
Figure 1. Supercritical carbon dioxide (SCO2) cycle on 

Mollier diagram. 

 

Figure 3 shows that the temperature range associated 

with the expansion of the SCO2 ranges from a high of 470 

K to a low of 390 K while the entropy increases form 2.05 

kJ/kg-K to 2.07 kg/kJ-K. Figure 4 shows that the enthalpy 

at the high-side pressure is on the order of 599 kJ/kg and 

for the low-side pressure, the enthalpy is roughly 555 kJ/kg. 

 

 
 

Specific Volume (kg/m3) 

 

Figure 2. p-v diagram of SCO2 expansion process. 

 

It can be seen from Figures 2-4, the expansion process 

is non-isentropic, i.e. the entropy does not remain constant, 

and heat is transferred since the enthalpy value changes. 

The focus of this current paper is to develop a method to 

determine the optimum polytropic exponent for use in the 

expansion process indicated in the cycle of Figure 1. The 

use of the polytropic coefficient in thermodynamics 

research is widespread in current day research. Many 

current investigations rely on the venerable polytropic 

model as the cornerstone of research and development 

endeavors. 

 

 
Figure 3. T-s diagram of SCO2 expansion process. 

 

 
 

Figure 4. p-h diagram of SCO2 expansion process. 

 

The work of Heiser et al. [3] presents the results of a 

fundamental, exhaustive analytical and computational 

examination of the performance of the Brayton propulsion 

and power cycle employing real air as the working fluid. 

The analysis of [3] employs a correlation to represent the 

specific heat at constant pressure of air as a function of 

temperature and the polytropic efficiency in order to 

evaluate the overall efficiency of the adiabatic compression 

and expansion processes. The analytical results of [3] 

present a useful guidance for thermodynamic engineers. In 

the study of Lapuerta et al. [4], the polytropic coefficient 

during the compression cycle of a reciprocating internal 

combustion engine depends on the instantaneous values for 

pressure and volume, as well as on their variations. In the 

work of [4], knowledge of the polytropic coefficient is used 

to determine whether or not heat flux transferred to the 

walls, which is a parameter that continues to evade 

modeling and/or empirical investigations. The research of 

Zhao et al. [5] proposes a measurement technique based on 

the dynamic regularity of instantaneous polytropic 

exponents during discharge of flow in pneumatic 

components. In the work of [5], a piecewise polynomial 

fitting curves of instantaneous polytropic exponents is the 

cornerstone to a new algorithm for the identification of flow 
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rate characteristics is proposed. The identification errors of 

sonic conductance of the new method developed in [5] are 

stated to by less than 3%, and the identification errors of 

critical pressure ratio of the new algorithm given by [5] are 

less than 15%. In the research of Chang et al. [6], a 

thermodynamic method of top dead center (TDC) 

correction in the indicator diagram of diesel engines is 

presented. The method outlined in [6] is based on the 

corresponding relationship between the curve for the heat 

released and the computed polytropic exponent. The 

experiments of [6] demonstrate that this method can make 

the real-time correction of TDC for the Diesel engines.  

From this literature review, we see that the use of the 

polytropic exponent in fundamental thermodynamic 

research is still warranted and justified, and its 

determination is usually typified using a combination of 

complex numerical modeling in conjunction with the 

conduction of experiments. 

The polytropic pressure model is typically used to 

model the pressure history in combustion processes due to 

the fact that the process tends to behave close to that of an 

adiabatic isentropic process for most conventional fuels [7]-

[10]. In general the polytropic model tends to be attractive 

as starting point for the analysis of piston cylinder devices 

due to its ability to include, rather than neglect the effects of 

heat transfer. This is desirable as it allows the designer to 

first approach a problem involving complex heat transfer 

phenomenon and work production without explicitly 

modeling and quantifying the heat transfer. Moreover, due 

to the nature of the pressure model, it lends itself to easy 

iteration and manipulation as well as exclusion of 

physically improbable results giving the designer a range of 

expected behaviors. Polytropic index values and the types 

of processes they correspond to are well known per the 

work of Christians [11]. This current paper seeks to narrow 

the range of expected behaviors to that of a single behavior 

model that shortens the initial modeling process and gives 

consistent results. Thus eliminating valuable time spent in 

the laboratory. This is done by evaluating the polytropic 

process on a fundamental thermodynamic level and 

applying its assumptions throughout the modeling process. 

While it is recognized that empirical data will dictate the 

actual polytropic expansion coefficient, with the aid of the 

method outlined in this paper, researchers will be enabled 

with a tool to model and predict the polytropic expansion 

coefficient prior to engaging in sometimes cost prohibitive 

testing.  

The development of the polytropic model from its 

fundamental thermodynamics basis is outlined in the work 

of Christians [11]. What commonly is presented as simply a 

pressure model is derived and must be consistent with a 

more basic assumption, i.e. that of a constant energy 

transfer ratio. The work of [11] gives a polytropic process 

as 
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Here Eq. (1) represents the familiar polytropic process 

pressure model, where Eqs. (2) and (3) define the energy 

transfer ratio, τ and the subsequent relation of the 

polytropic index, n and isentropic index, k (or heat capacity 

ratio) to it. These relations will prove important to the 

development of a method for determining the proper value 

of the polytropic index, n. It should be noted that for the 

polytropic pressure model, this energy transfer ratio must 

be constant throughout the process [11].  

 

2. Methodology 

2.1  Derivation  

Working with the derivations proposed by [7], it is 

applied using a First Law analysis to a piston cylinder 

device. If a polytropic process model is to be used, the 

pressure model can be shown to be Eq. (4) 

 

        
  

 
 
 

                                                                (4) 

 

which is done by using the initial cylinder conditions. 

Using the terminology of internal combustion engines, the 

two initial values are typically known where the initial 

volume, V0 is the top dead center volume and P0 is the 

intake pressure. Additionally the volume of a piston 

cylinder device as a function of stroke can be shown as 

given in Eq. (5) 
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where A is the piston cross-sectional area and x is the 

distance traveled along the stroke. Substituting this formula 

in to Eq. (4) affords 
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whereby 
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and 

 

  
 

  
 (8) 

 

Here ζ is the bore to top dead center volume ratio Eq. 

(7) gives us a convenient explicit formula for pressure in 

the cylinder as a function of stroke. This can be evaluated 

as moving boundary work to find an explicit formula for 

work done by the fluid over the process 
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where s is the stroke length and the trivial case of 1n

has been omitted from discussion. The explicit formula for 

work allows application to the First Law of both Eqs. (3) 

and (9). Two cases must be considered for the case of the 

First Law for piston-cylinder devices, for net heat transfer 

to or away from the system. For the case of heat transferred 

to the system this is given by Eqs. (10)-(18) as shown 

below 
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Eqs. (15) and (18) provide a closed form solution for the 

polytropic index for a piston cylinder device with a net heat 

transfer to the working fluid. This solution would represent 

the polytropic index for a typical combustion process. For 

the case of net heat transfer from the fluid, returning to the 

First Law and changing the direction of the heat transfer 

given by Eqs. (19)-(27)  below 
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Equations (24) through (27) represent the relation 

between the polytropic index and the final internal energy 

state for a piston cylinder with a net heat loss in the same 

manner that Eq. (18) does for a device with a net heat gain. 

Although Eq. (18) is a closed form solution and its 

counterpart Eq. (27) is not, further discussion will show that 

this mathematical convenience does not serve such a 

valuable role as one would assume for determining the 

value of  n. 

An examination of the relations obtained reveals that an 

apparent guess must still be made to determine the 

polytropic index due to the reliance on the final state of 

internal energy. This however can be circumvented in the 

application of the polytropic model to piston cylinder 

devices. Noting that all initial state properties are known, 

bounding the problem from the process beginning, the final 

state may be obtained via state property relations. For any 

piston cylinder device, the volume model presented in Eq. 

(5) applies with disregard of the piston head shape as this 

will contribute to the top dead center volume. Likewise the 

amount of mass present in the chamber is known from the 

initial variables 
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which is a constant throughout the process. Therefore, the 

density at any point of the process is known by applying the 

definition of density and using Eq. (5) and Eq. (28) gives 
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Therefore the final density at the end of the stroke is 

then defined as 
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and the final volume is simply 
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From basic thermodynamic theory, the state of a 

substance is known when two independent, intensive state 

properties are known [12]. Therefore mathematically to 

determine any substance property it is required that a 

property, θ be defined as  
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where X, Y, and Z are any valid combination of state 

properties. For the operation of a typical piston cylinder 

device, two-phase flow is undesirable for operation and 

virtually any working fluid will be operating far into the 

gaseous region of a substance’s thermodynamic profile. 

Therefore the analysis is restricted to the primary definition 

of Eq. (33). It is noted that for determining the polytropic 

index, the required function is that for internal energy, u, 

which may be defined in terms of any other two 

independent state variables. Noting that the pressure model 

being used must reflect the same behavior of the working 

fluid from its known properties, the following constraints of 

“Eqs. (33)-(34)” must apply 
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which is obtained by equating the pressure model to a 

surface fit of known pressure data for the working fluid. An 

analogous process is done for the internal energy. Since the 

only variable to be solved for is the final value of the 

property X (which may be any property excluding pressure 

and internal energy), this final value may be solved for and 

then substituted back in the developed relations to 

determine the final internal energy state and therefore the 

polytropic index. 

The multivariable functions for pressure and internal 

energy may are readily prepared using the computational 

software MathCAD [13] to create two dimensional splines 

from available property data made available by sources 
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such as the National Institute for Standards and Technology 

(NIST) [14]. These functions may then be used to easily 

solve the complex relations quickly. In the following 

discussion, computer computation should be a prevalent 

method for determining the most accurate solution when 

dealing with fluids operating over a wide range of operating 

conditions. 

  

2.2 Model Limitations and Accuracy Considerations 

The primary dimensions for the paper are summarized 

in Table 1. A fundamental shortcoming of the polytropic 

model lies in the assumptions that are used in its 

development. The following assumptions are made during 

the development 

1) Energy transfer ratio is constant throughout 

process. 

2) Calorically perfect gas (constant specific heats and 

therefore isentropic index). 

3) Compressibility factor constant throughout 

process. 

4) System is internally reversible. 

The first assumption is necessary to begin the discussion 

of the polytropic process in general. The second assumption 

is a common one to make in many thermodynamic 

simplified analyses but is known to generally be untrue 

unless the process occurs over small ranges of operating 

parameters. This likewise is the case for the third 

assumption. Finally the fourth assumption is never a real 

world possibility. The scope however is to develop an 

approximate model. The sources of largest error will be 

those associated with the second and third assumptions. 

Turning the attention first to the compressibility factor, 

it is noted that 

 

1) At very low pressures, gases behave ideally 

regardless of temperature. 

2) At high temperatures, gases behave ideally 

regardless of pressure. 

3) Deviation from ideal gas behavior is greatest near 

the critical point. 

For typical operating ranges of working fluids such as 

air and other generally ideally-behaving gases, this is a 

highly valid assumption. For other fluids the specific region 

of operation should be examined to determine the expected 

variability of the compressibility factor.  

Examining the calorically perfect gas assumption, the 

largest problem is when the operating range is extended 

over a large array of conditions. This causes large variations 

in the isentropic index which is expected to remain 

constant. In these types of operating conditions, this will be 

the dominant source of error. A method to reduce this error 

is to introduce an average of the isentropic index over the 

expected operating ranges. This can be done by applying 

the well-known definition of two-dimensional average from 

calculus given in Eq. (35) as 
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Since the end state of the process depends on this 

average, the designer should compare the end result 

temperatures and pressures to the limits of integration 

chosen at the beginning of the process and then re-run the 

process as many times as necessary to reach the designer’s 

level of accepted solution convergence. 

 

3. Results 

The following parameters were used to illustrate the 

method of determining a nominal polytropic process index 

value for the expansion process of outlined in this paper: 

stroke length = 0.0508 m (2 in), piston diameter = 0.0508 m 

(2.0 in), top-dead-center  (TDC)  chamber volume = 

0.000253 m
3
 (15.44 in

3
), bottom-dead-center (BDC) 

chamber volume = 0.000459 m
3
 (28.006 in

3
), critical 

properties of SCO2: Tc=304.1282 K, Pc= 7.3773 MPa, 

c=467.6 kg/m
3
, expansion entry state: Tentry = 473 K, 

Pentry=20 MPa, entry=285.82 kg/m
3
, expansion exit state: 

Texit = 436 K, Pexit = 12.4 MPa, exit = 176.78 kg/m
3
.  

Analyzing Carbon Dioxide (CO2) without a specific 

Equation of State (EOS) for approximation will be difficult 

for looking up values, especially for automation. To 

automate, read in tables for desired property interpolation 

functions. Note that two independent, intensive properties 

are required to fix state. Since the only time three variables 

are needed is in the saturated region because P and T are 

fixed, and the design will not function outside the 

supercritical region, only data above the critical point will 

be input. All data files here were created using NIST 

REFPROP 9.1.0.0 [14] and building an EXCEL 

spreadsheet SCO2 database. These EXCEL NIST 

REFPROP SCO2 databases are then read into MathCAD 

[13], which is used to perform the necessary iterations in 

finding the nominal polytropic process index value. 

 In the supercritical state, the isentropic index can vary 

largely. The supercritical state influences the isentropic 

index not only via temperature but also via pressure. The 

polytropic model is derived under assumptions of a 

calorically perfect gas following the work of Christians 

[11]. This requires the isentropic index to be constant. This 

can be approximated by averaging the index over the 

expected states. Since functions from NIST are available 

for the heat capacities, k can be defined in the usual manner 

via Eq. (36), from whence the averaging function defined in 

Eq. (35) may then be evaluated via numerical quadrature. 

For Pa=9.2 MPa, Pb = 20 MPa, Ta = 405 K, Tb = 472 K 

(these limits represent the expected range of temperature 

and pressure to be witnessed by the SCO2 expansion 

engine), this procedure affords kavg = 1.615 (as discussed in 

detail below)..  It should be mentioned here the limits of 

integration used in Eq. (35) are the by-product of manual 

integration of the entire modeling process of the SCO2 

cycle as a whole. Starting with the overall specifications per 

Anderson et al. [1] the thermodynamic expansion process 

model was run, the entire SCO2 was re-run several times 

with the newly obtained cycle limits from the prior run used 

to establish new limits on the integral of Eq. (35). This 

process is continued until convergence is reached.  

 This being said, it is clear that proper determination of 

the parametric value n is complex and must be solved via 
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iteration methods provided the problem bounds are set 

correctly. Assuming that the process is indeed polytropic, 

the energy transfer ratio must remain constant by definition. 

As such, the pressure model end state must match the 

values chosen in the SCO2 NIST database. To locate a 

result in the SCO2 NIST database other state properties are 

needed. However, note the final density in the expander is 

fixed by the stroke length and the required mass. Therefore 

Vfinal = 0.000459 m
3
 (28.006 in

3
), m = oVo=65.486 grams, 

final = m/Vfinal = 142.688 kg/m3. The following constraint 

for the polytropic process condition (taken from the 

development outline previously in the methodology section 

of this paper) was programmed into MathCAD 
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Where an initial guess is used to seed the NIST SCO2 

database lookup function,  Tu , . Equation (37) was used 

in conjunction with the following statement of continuity 

for the polytropic pressure model (also taken from the 

development outline previously in the methodology section 

of this paper) 
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Where  TP ,  is a NIST SCO2 database lookup function. 

MathCAD solves Eq. (37) and Eq. (38) iteratively until 

convergence is reached. Typical computational 

convergence for determining n and Tfinal is illustrated in 

Table 1. 

 

Table 1. Convergence of Nominal Polytropic Index  

 

Iteration T 

(K) 

P 
 (MPa) 

Terror 

(%) 

Perror 

 (%) 

kavg/n 

 

1 436 12.4 8 35 1.580/1.302 

2 420 11.0 4 20 1.600/1.304 

3 405 9.2 0.02 0.02 1.615/1.306 

 

Affording kavg = 1.615, n = 1.306. The convergence error 

between each iteration is listed in Table 1 as Terror (%) and 

Perror (%). These error criteria are monitored during the 

analysis in order to ensure that the kavg and n values are 

indeed correct for the stated assumptions. The numerical 

error by using this procedure is limited by the accuracy of 

the NIST REFPROPS SCO2 database, which is taken to be 

20% for worst case conservatism. For the proceeding 

parameters, the energy transfer ratio from Eq. (3) is 

=0.503. The cycle specific internal energy state points are 

uentry = 521 kJ/kg and uexit = 489 kJ/kg, respectively. The 

mass of the SCO2 cycle is m = 65.6 grams. The energy per 

cycle is Wcycle = 1.277 kJ (1.210 BTU) given by Eq. (39) 
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While the heat transfer per cycle is given as Qcycle = 0.693 

kJ  (0.657 BTU) per Eq. (40) given by 

 

cyclecycle WQ   (40) 

 

The final value of kavg = 1.615 is in comparison to the ideal 

gas based reference value taken at 300 K of k =1.289 [12]. 

Thus, if one were to employ the ideal gas value to model 

the elevated SCO2 expansion process of interest here, one 

would incur 25% error. Clearly, there is a difference in the 

k value at the elevated pressures and temperatures being 

studied in our SCO2 expansion process.  Monitoring the 

development of the primitive thermodynamic variables T, p, 

 versus stroke during the expansion process affords 

Figures 5-7.  Figure 5 shows the evolution of the pressure 

field as the piston moves the range of its stroke 0 < x < 

0.0508 m (0 < x < 2 inches).  Figure 6 shows the 

temperature variation during the expansion process as the 

piston moves the range of its stroke 0 < x < 0.0508 m (0 < x 

< 2 inches).  Figure 7 shows the evolution of the density 

field as the piston moves the range of its stroke 0 < x < 

0.0508 m (0 < x < 2 inches).   

 

 
Figure 5. Pressure as a function of stroke during expansion 

process. 

 
Figure 6. Pressure as a function of stroke during expansion 

process. 

 



Int. J. of Thermodynamics (IJoT) Vol. 17 (No. 4) / 281 

 
 

Figure 7. Density as a function of stroke during expansion 

process. 

 

The dashed lines in Figures 5-7 represent the critical value 

of the property plotted. The significance of these dashed 

lines shows that the SCO2 does not fall below the 

supercritical point during the expansion process, i.e. our 

design of the waste heat recovery cycle assumed that the 

cycle remained supercritical, this is reaffirmed by 

inspection of Figure 7, where we see that the flow remains 

single phase above the supercritical point. It is important to 

note that from Figures 5-7 it is clear that the expansion 

process does not follow a simple ideal gas model, and that 

the polytropic expansion index is critical in determining the 

correct engineering physics of such complicated devices as 

SCO2 expanders. 

The current findings of our research are in qualitative 

and quantitative agreement with previous studies of [15-

19]. When comparing our current findings of 11% 

efficiency it should be kept in mind that herein we have 

assumed a nominal pinch-point in our heat exchanger on 

the order of 10 C in comparison to a pinch-point of 5 C 

assumed in [15,18]. Our efficiency of 11% for the cycle 

analyzed herein agrees with the findings of [18] where 

high-side and low-side pressures of 200 bar, and 60 bar 

afford an efficiency of 13%. Furthermore, our current 

findings agree with the high pressure limiting behavior of 

efficiency for SCO2 regenerative waste heat recovery 

cycles reported by [12, 13], where efficiencies on the order 

of 9% are reported for high side pressures of 150 bar. 

Finally, the asymptotic trends of cycle efficiency versus 

SCO2 mass flow rates reported in [19] asymptotically limit 

the cycle efficiency to 10% which is in qualitative 

agreement with the current findings of this paper. With the 

above comparison of our results to available data in the 

literature, the accuracy and validity of the proposed method 

has been evaluated. 

 

4. Conclusions 

Despite the model limitations due to the assumptions 

made, the polytropic process remains an accurate 

representation of real world piston cylinder device 

behavior. If one chooses to adopt the pressure model, one 

implicitly accepts the assumptions made about the system 

that entail a polytropic process. It therefore would follow 

that one should adopt the other implications the model has 

about the system, throughout its design. The method 

developed has been used to predict an optimal value of the 

polytropic expansion coefficient for a SCO2 Heat Recovery 

Waste Engine employing an expansion engine modeled as a 

polytropic process. The iterative process yields a value of n 

= 1.306 for the optimal polytropic expansion coefficient. 

The procedure also afforded a value of k = 1.616 for the 

specific heat ratio of the SCO2 expansion process under 

consideration. Future work would necessarily involve 

testing the SCO2 expansion process, beginning with a value 

of n = 1.306 to guide the experimental set-up. The actual 

value of n could then be determined empirically from the 

experimental data. 
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Nomenclature 

P  pressure (MPa) 

v specific volume (m
3
/kg) 

V volume (m
3
) 

n polytropic index 

k heat capacity ratio 

 energy transfer ratio 

x troke distance (m) 

A piston cross-sectional area (m
2
) 

 bore to top dead center volume ratio 

W work (kJ) 

s stroke length (m) 

F force (N) 

Q heat (kJ) 

U internal energy (kJ) 

u specific internal energy (kJ/kg) 

m mass (kg) 

 density (kg/m
3
) 

 thermodynamic function (%) 

 modified stroke (m) 

 modified stroke (m) 

 internal energy function  (%) 

 generic thermodynamic property 

X generic thermodynamic state 

Y generic thermodynamic state 

Z generic thermodynamic state 

 

Subscripts 

 

c   critical 

f   fluid 

o   reference state 

avg  average 

entry  entry state 

exit   exit state 

 

Acronyms 

BDC - Bottom Dead Center 

EOS - Equation of State 

NIST - National Institute of Standards and Technology 

SCO2 Supercritical Carbon Dioxide 

TDC Top Dead Center 
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