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Abstract

The present work deals with the determination of unknown temperature and thermal stresses in a solid sphere. A
solid sphere is subjected to arbitrary known interior temperature under steady state. The Legendre's transform are
used for heat transfer analysis to determine temperature change within solid sphere. The solution of Navier's
equation in terms of Goodier's thermoelastic displacement potential and the Boussinesq's harmonic function for
spherical co-ordinate system have been used for thermal stress analysis. The results for temperature change,
displacement and stresses have been computed numerically and illustrated graphically.
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1. Introduction

The inverse heat conduction problem is one of the most
frequently encountered problems by scientists. The wide
varieties of problems that are covered under conduction
also make it one of the most researched and thought about
problems in the field of engineering and technology. This
kind of problems can be solved by various methods. These
inverse problems consist of determination of unknown
temperature, heat flux, displacement and thermal stress
functions of solids when the conditions of temperature and
displacement and stress are known at the some points of the
solid under consideration.

Cialkowski et.al. [1] investigated method of solution of
an inverse problem of one dimensional temperature and
stresses field for a sphere. Haghighi et al. [2] studied the
two dimensional inverse transient heat conduction problem
of functionally graded materials. Huang et al. [3] solved a
three dimensional transient inverse heat conduction
problem by using the conjugate gradient method. Choulli et
al. [4] developed a Laplace transform method to solve an
inverse problem associated with a boundary value problem
in a domain with a simple geometry. Taler et al. [5] present
a method where the interior temperature measurements
were converted into local instantaneous heat transfer
coefficient by solving he inverse heat conduction problem.
Noda et al. [6] discussed an analytical method for inverse
problem of three dimensional transient thermoelasticity in a
transversely isotropic solid by integral transform technique
with newly designed potential function and illustrated
practical applicability of the method in engineering
problem. Mohammadiun et al. [7] has investigated the
problem of estimation of time dependent heat flux on a
spherical cap using the temperature measurement at one
point inside the medium. Kulkarni et al. [8] solved the
inverse problem of thermal stresses in a thick circular plate.
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This paper deals with the realistic problem of inverse
quasi-static steady state thermal stresses in a solid sphere,
which is subjected to arbitrary interior temperature. The
unknown temperature and thermal stresses on a solid sphere
is required to be determined.

2. Formulation of the Problem
Following Noda et al. [1], Navier’s equation of
thermoelasticity for axisymmetric problems are expressed
as
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The solution of the Navier’s equation without the body
force for axisymmetric problems in the spherical coordinate
system are expressed, in terms of Goodier’s thermoelastic
displacement potential @ and the Boussinesq harmonic
functions ¢ and y as
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where the three functions must satisfy the equations
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The stress components in the spherical coordinate system
are represented in terms of three functions ®, ¢ and

are
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The mechanical boundary conditions on the traction free

surface r = b are

oy =0, 0,,=0 on r=b (14)
Egs, (1)-(14) constitute the general thermoelastic
formulation of two dimensional spherical problem.

3. Governing Equation of Heat Conduction

Consider a two-dimensional solid sphere of radius b
defined by 0<r <b, -1< £ <1. The radius r =& is kept at
temperature f () . Assume the boundary surface of a solid
sphere is free from traction. Under these prescribed
conditions, the thermal stresses are required to be
determined.

A steady state temperature of a sphere satisfies the

heat conduction equation,
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0<r<b, -1<u<lfort>0 (15)
with T = g(x) (unknown) at r=b (16)
T=1(w) (known)at r=¢£,0<&E<b  (17)

where T =T(r, u) (18)
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4.1 The Solution for Temperature Change

The partial derivative with respect to x variable can
be removed by means of Legendre transform. Define the
Legendre transform and the corresponding inversion
formula of the temperature function T(r, x) with respect to

the variable x as )
T(r,n)= T Ko ()T (r, w)d pt! (19)
and o
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By applying Legendre s transform defined in the Eq. (19)
to governing heat conduction equation (15) along with the
boundary condition as defined in Eq. (17), one obtain
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with  T=f(n) at r=¢& (23)
On solving above equation (22), one obtain
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The solution ™™ is excluded because the temperature
should remain finite at r = 0.
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Using boundary condition prescribed in Eq. (23), one
obtain

f
C, - ? (26)
Hence Eq (25) gives
— —_ r n
T=f1 — 27
ol ) .

By applying inverse Legendre’s transform as defined in Eq.
(20), one obtain
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The unknown
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temperature g(x) can be obtained by
substituting r =b in Eq. (29) as
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Using Eq. (28), under steady state temperature condition
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4.2 The Goodier’s thermoelastic displacement potential
(O}
The Goodier’s thermoelastic displacement potential ©
satisfies the equation

VZ(D =Kr (33)
Using value of temperature difference from Eg. (31), one
obtain
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On solving, one obtains the Goodier’s thermoelastic
displacement potential function @ as
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4.3 The First Component of Displacement and Thermal
Stresses
The first component of displacement and thermal stress
with respect to Goodier’s thermoelastic displacement
potential function @ can be obtained as
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4.4 The Solution of Laplace Equation
The solution of Laplace equation satisfying conditions
given in Egs. (6) and (7) are
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4.5 The Second Component of Displacement and
Thermal Stresses
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4.6 The Displaceent and thermal Stresses

The displacements and thermal stresses defined in Eqgs.
(3), (4) and (10) to (14) can be obtain by adding Egs.
(37),(39), (41),(43), (45),(47) and (51),(53),(55),(57),(59),
(61), respectively as
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The unknowns used in Egs. (48) and (49), can be
determined by solving equilibrium Eq. (14) as
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5. Special Case and Numerical Calculations

The mathematical model is constructed by setting
1

f () =1oo(1—u2 )5
where g =cosé,
f (1) =100sin 4.

The known interior temperature is an application of
sinusoidal heat flux at r=£&,0< & <b. For which arbitrary
coefficient of temperature is given by using Eq. (31) as
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The numerical calculations have been carried out for an
iron (pure) solid sphere with the following material
properties and dimensions:

Thermal diffusivity & = 20.34x107° (m?s™?)

Poisson ratiov =0.35

Radius of Sphere b =1m

1.35 y
K :@(20'39)(10 °)

A =(2n+1) 2

G=05 (61)

#=05

In two dimensional axisymmetric problem of a
spherical body, it is assumed that the body is deformed
symmetrically with respect to the coordinate axis z. The
numerical calculations have been carried out with the help
of computational mathematical software Mathcad-2000 and
the graphs are plotted with the help of excel (MS office -
2000).
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Fig.1. The temperature T along radial direction.
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Fig.2.The unknown g along radial direction.
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Fig.3.The displacement @ along radial direction.
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Fig.4.The radial displacement x, along radial direction.
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Angular Thermal
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Fig.8.The angular thermal stresses o, along radial
direction.
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Fig.9.The resultant o, along radial direction.

6. Results and Discussion

From Figures 1 and 2, it is observed that the
temperature T increases from center to the outer spherical
surface. The unknown temperature g(z) shows variation

on the outer spherical boundary. From Figures 3, 4 and 5,
the displacement @ the radial displacement g, and angular

displacement y, increases as r increases. Displacement of

solid sphere can be observed on outer spherical boundary.
From Figure 6, it is observed that the radial thermal stresses

develop tensile stresses. The stress function o, is zero at

the outer spherical boundary(r = 1) and at the center of
sphere. From Figures 7 and 8, the angular thermal stresses
show compressive stress on outer spherical surface. From
Figure 9, it is seen that that the resultant function o, is

tending to zero at the outer spherical boundary (r = 1). It
develops compressive stresses in radial direction.

7. Conclusions

Equations are derived for temperature, displacement,
and thermal stresses for a solid sphere which is subjected to
arbitrary known interior temperature. As a special case
mathematical model is constructed for pure iron solid
sphere.

In order to study the characteristic of temperature
variation, displacement and thermal stresses within solid
sphere, the uncoupled thermoelasticity with infinite wave
propagation in the form of heat are discussed. The
Legendre's transform are used for heat transfer analysis to
determine temperature change within solid sphere. The
solution of Navier's equation in terms of Goodier's
Vol. 18 (No. 3)/ 211

thermoelastic displacement potential and the Boussinesq's
harmonic function for spherical co-ordinate system have
been used for thermal stress analysis. As a special case,
sinusoidal heat flux is considered and performed numerical
calculation for special case and illustrated these variations
graphically along radial direction. The displacement and
thermal stresses developed on the outer spherical boundary
can create expansion of solid sphere. Any particular case
can be analyzed by these general solutions obtained.

Nomenclature
Radius of sphere

Temperature at any point

—~

=
N
~—

Temperature change

Thermal diffusivity of material
Restraint coefficient

Forces in radial and angular direction
Goodier’s thermoelastic potential
Boussinesq harmonic function

Shear modulus

Poisson’s ratio

Radial displacement

Hy Angular displacement
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