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Abstract 

The purpose of the present paper was to summarize exploratory second and third-order factor analyses and 

explain interpretation strategies for the higher-order factors, specifically, Gorsuch’s product matrix, the 

Schmid and Leiman solution, and Thompson’s orthogonally rotated product matrix solution. Exploratory factor 

analysis is a multivariate technique to reveal information about latent constructs from the measured variables. 

When researchers choose an oblique rotation, they believe either their factors are correlated or the best solution 

will result from an oblique rotation. Whenever primary factors are correlated, extracting higher-order factors 

from an inter-factor correlation matrix is vitally important to understand data from a different perspective. The 

SAS syntax is provided along with heuristic datasets to assist interested researchers in exploring the 

techniques. Advantages of each method are discussed. 
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Öz  

Bu çalışmada, ikinci ve üçüncü dereceden faktör analizi özetlenip yorumlama teknikleri incelendi. Özellikle 

Gorsuch’un çarpım matrisi, Schmid ve Leiman çözümü ve Thompson’un dikey döndürülmüş çarpım matrisi 

incelendi. Keşif amaçlı faktör analizi çok degişkenli bir istatistiksel teknik olup, gizil durumdaki faktörleri 

ölçülen değişkenlerden ortaya çıkarmayı amaç edinir. Araştırmacılar eğik olarak döndürülmüş stratejiyi 

seçtiklerinde, faktörler arasında bir ilişki olduğuna veya en iyi çözümün eğik olarak döndürülmüş stratejiden 

elde edileceğini düşünürler. Birinci dereceden elde edilen faktörler birbirleriyle ilişkili olduğunda, bu 

foktörlerin oluşturduğu korrelasyon matrisi ikinci dereceden faktörleri elde etmede kullanılır ve bu elde edilen 

ikinci dereceden faktörler veriye farklı açılardan bakmakta oldukça önemli bir yer tutar. Çalısmanın anlaşılır 

olması için iki farklı örnek SAS kodları ile birlikte verildi. Her stratejinin avantajları tartışıldı. 

 

Anahtar Kelimeler:  Schmid Leiman çözümü, yüksek dereceden faktörler, çarpım matris, üçlü çarpım matris. 

 

INTRODUCTION  

The concept of factor analysis has been known for over a hundred years. After Spearman 

(1904) published his seminal study, factor analysis became one of the most widely used 

statistical techniques. Because of the wide usage of factor analysis, numerous favorable 

attempts to improve factor analysis techniques have occurred over the years (cf. Henson, 

Capraro, & Capraro, 2004). For example, there are several analytical (i.e., empirical) factor 

rotation techniques that provide objective factor analysis results for the same data across 
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different researchers. Before empirical rotation strategies were proposed, researchers had 

been rotating their extracted factors graphically, with results differing from researcher to 

researcher because of visual subjectivity (Thompson, 2004). Both graphical and analytical 

rotation strategies are applied to a factor pattern coefficient matrix to make the underlying 

constructs more obvious to researchers (Thompson, 2004). While some of these rotation 

strategies leave initially extracted orthogonal factors as orthogonal (i.e., orthogonal 

rotation), some of these rotation methods allow initially orthogonal factors to become 

correlated (i.e., oblique rotation). When one of the oblique rotation methods is performed, 

correlated factors generate a correlation matrix, called an inter-factor correlation matrix 

(IFCM); this IFCM is factorable. 

IFCM includes correlations among factors, not variables, which is usually the case 

when discussing a correlation matrix. Whether there is an inter-variable correlation matrix 

(IVCM) or IFCM, one can extract factors from these correlation matrices. As Gorsuch 

(1983) said, “If one has a correlation matrix, we can factor it” (p. 239). This quotation 

briefly explains the main approach for factor analysis and also for higher-order factor 

analysis. When we have an IVCM for measured variables, the extracted factors from this 

original IVCM give us the first-order factors (FOF). If and only if we have correlated FOF 

based on the oblique rotation, we then can extract second-order factors (SOF) from the 

IFCM. Based on second-order factoring, if we extract several SOFs and rotate them 

obliquely, we will have a factorable correlation matrix for these SOFs. Factoring of this 

second-order IFCM will give us third-order factors (TOF). If the third order results in a 

single factor or uncorrelated factors, we cannot continue factoring the IFCM (Gorsuch, 

1983; Thompson, 2004). A correlation matrix of a factor is a singular matrix that only 

includes 1 in it, and a correlation matrix of an orthogonally rotated factor is an identity 

matrix that includes 1s on the diagonal and 0s on the off diagonal. Thus, it is not possible to 

extract higher-order factors (HOF) when we have only one initial extracted factor or 

orthogonally rotated factors.  

All rotation strategies were applied to extracted factor pattern coefficients to capture 

simple structure (Thurstone, 1947). Simple structure provides researchers more obvious 

results for easier interpretations. If simple structure is achieved by one of the oblique 

rotation strategies, HOFs should be extracted from the IFCM (Gorsuch, 1983; Thompson, 

2004). As Gorsuch (1983) stressed: 

Rotating obliquely in factor analysis implies that the factors do overlap and 

that there are, therefore, broader areas of generalizability than just primary 

factor. Implicit in all oblique rotations are higher-order factors. It is 

recommended that these be extracted and examined so that the investigator 

may gain the fullest possible understanding of the data. (p. 255) 

The word “higher” in higher-order analysis does not convey importance or 

preference over other order factors. In fact, HOFs are not more important or more valuable 

than lower-order factors when interpreting the factor structure of data sets. Rather, HOFs 

provide a different perspective of the data (Thompson, 2004). Thompson (1990) emphasized 

the relation of FOFs and SOFs: 

The first order analysis is a close-up view that focuses on the details of the 

valleys and peaks in mountains. The second-order analysis is like looking at 

the mountains at a greater distance, yields a potentially different perspective 

on the mountains as constituents of a range. Both perspectives may be useful 

in facilitating understanding of data. (p. 579) 
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Moreover, looking at data from multiple perspectives can provide additional 

information. All different perspectives are components of each other and “... each is needed 

to see patterns at a given level of specificity versus generality” (Thompson, 2004, p. 73). 

While FOFs give the specific features of data, HOFs provide general features of data. FOFs 

are tightly focused areas of generalization with a great deal of accuracy whereas SOFs 

increase the breadth of generalization at the cost of some degree of accuracy, which can be 

larger or smaller depending on the data (Gorsuch, 1983). 

 

LOGIC FOR EXTRACTING HIGHER-ORDER FACTORS 
The process for extracting HOFs is almost the same as for extracting FOFs. For example, 

both principal component and principal axes methods can be used in the procedure for 

higher-order factor extraction. The methods used to decide the number of FOFs, which are 

the eigenvalues greater than one rule (Kaiser, 1960), Cattell’s scree plot (1966), and parallel 

analysis (Horn, 1965), can also be used to determine the number of HOFs (Gorsuch, 1983). 

Researchers new to exploratory factor analysis (EFA) may construct FOFs by using 

default settings in any of many statistical software packages, such as SPSS and SAS. 

However, no default settings to extract HOFs exist in SPSS or SAS. Indeed, one must use a 

syntax editor to conduct our analysis if HOFs are needed. Even though researchers new to 

EFA can extract HOFs by using a syntax editor, they need to know how to interpret results 

and how to obtain the solutions for easier interpretation, especially when HOFs are 

extracted. 

 

INTERPRETATION OF HIGHER-ORDER FACTORS 

Interpreting the EFA results when HOFs are extracted requires some special strategies to 

avoid misguided or deficient interpretations. The HOFs, by their nature, are not observed 

variables. FOFs are abstractions of observed variables, and HOFs are abstractions of 

abstractions. It is important not to interpret SOFs in terms of abstractions (i.e., FOFs); one 

should instead interpret SOFs in terms of measured variables (Thompson, 2004). When one 

only extracts FOFs, there should not be any concern about interpreting them in terms of 

measured variables because FOFs are extracted from IVCM. However, when one extracts 

SOFs or TOFs, one should use an IFCM rather than an IVCM, so the ability to interpret 

those SOFs or TOFs in terms of measured variables should be a concern. Gorsuch (1983) 

emphasized the purpose of interpreting HOFs: 

To avoid basing interpretations upon interpretations of interpretations, the 

relationships of the original variables to each level of the higher-order factors 

are determined....Interpreting from the variables should improve the 

theoretical understanding of the data and produce a better identification of 

each higher-order factors. (pp. 245-246) 

Because interpretation of HOFs is vitally important to remaining grounded in reality, 

the interpretation should be in terms of measured variables. However, this is not a trivial or 

self-evident process. Generally, there are three strategies to interpret HOFs in terms of 

measured variables: Gorsuch’s (1983) product matrix (PM), Thompson’s (1990) 

orthogonally rotated PM, and the Schmid and Leiman (1957) solution (SLS). 

 

 

Gorsuch’s (1983) Product Matrix 
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In Gorsuch’s PM, rows represent the measured variables and columns represent the SOFs. 

This PM is obtained by post multiplying the first-order factor pattern coefficient matrix with 

the second-order factor pattern coefficient matrix. The number of columns in the first-order 

factor pattern coefficient matrix is equal to the number of rows in the second-order factor 

pattern coefficient matrix, so multiplication of these matrixes is mathematically admissible 

and produces a PM. The number of rows in this PM is equal to the number of rows in the 

first-order factor pattern coefficient matrix, and the number of columns in the PM is equal to 

the number of columns in the second-order factor pattern coefficient matrix. One should 

interpret the SOF pattern coefficients in terms of measured variables because multiplication 

of the matrixes provides measured variables as rows in the PM. What is being done through 

this multiplication procedure is partitioning the explained variance of measured variables in 

terms of SOFs.  

Even though the mathematical procedure behind factor analysis is matrix algebra, we 

can provide an analogy to what the PM represents in terms of measured variables by using 

simple arithmetic for heuristic purposes. Let us consider a basic math problem: What is the 

result of 7/10 of 8/10 of 100? By starting with the latter portion, one can solve this problem. 

Eight-tenths of 100 is equal to 80, and then 7/10 of 80 is equal to 56, which is our final 

solution. In terms of EFA, one can think of 100 as being analogous to an IVCM or all of the 

variance; the result of the first step (8/10 of 100), 80, is analogous to explained variance by 

the extracted FOFs from IVCM in terms of measured variables; and the last step (7/10 of 

80), 56, is analogous to the explained variance by SOFs in terms of measured variables. 

Also, one can represent the explained variance by SOFs in terms of FOFs via the above 

analogy. The explained variance by FOFs is 80, and explained variance by SOFs is 56. If we 

think of 80 as representing the information in the IFCM, the result of 56/80 will give the 

explained part by SOFs in terms of FOFs, not measured variables. The result is .7, and we 

can indicate that 70% of the information of the IFCM can be represented by SOFs. 

 When TOFs are extracted from an obliquely rotated second-order IFCM, a triple 

product matrix (TPM) can be estimated in terms of measured variables. For example, let us 

say there are 30 variables, 12 FOFs extracted from the 30 by 30 IVCM, 3 SOFs extracted 

from the 12 by 12 IFCM, and 1 TOF extracted from the 3 by 3 second-order IFCM. The 

TPM would be: 

P30*1 = P30*12 * P12*3 * P3*1      (1) 

 P30*1 represents the TPM (vector) by 30 rows for the measured variables and 1 

column for the TOF. 

 P30*12 represents the first-order factor pattern coefficient matrix. 

 P12*3 represents the second-order factor pattern coefficient matrix. 

 P3*1 represents the third-order factor pattern coefficient matrix (vector). 

This resulting TPM can be interpreted in terms of measured variables for TOFs. Even 

though only one TOF is represented in the above heuristic situation, the number of TOFs 

might be more than one. 

 

Thompson’s (1990) Orthogonally Rotated Product Matrix 

Thompson (1990) suggested the PM can be orthogonally rotated for easier interpretation 

when there is more than one SOF extracted. In EFA, easier interpretation oftentimes 

indicates simple structure. Therefore, it is reasonable that rotation of the PM would also be 

useful. 



 

A Review of Higher-Order Factor Analysis Interpretation Strategies 

___________________________________________________________________________________ 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 

 

76 

Even though Thompson’s criterion was produced for SOFs, rotating a TPM 

orthogonally can be useful when TOFs are extracted. The procedure for a TPM was 

illustrated in the section concerning Gorsuch’s PM. However, in that section, the TPM has 

only one column because of one extracted TOF. To rotate a TPM, one must have at least 

two TOFs. If one has a TPM and at least two columns, then one of the orthogonal rotation 

procedures might be applied to provide simple structure. 

 

Schmid and Leiman (1957) Solution 

Schmid and Leiman (1957) produced an elegant solution for the interpretation of EFA 

results by revealing the hierarchical structures of variables when HOFs are extracted from 

an IFCM. In higher-order factor analysis, HOFs are extracted from IFCM or inter-factor 

covariance matrixes. This procedure indicates that explained variance in terms of measured 

variables by factors on any level cannot be more than the explained variance by one level 

below the factors. For example, if there are three levels in an EFA, TOFs cannot explain 

more than SOFs, and SOFs cannot explain more than FOFs. The SLS partitions the 

explained total variance as non-overlapping pieces according to the level of factors by 

starting from highest-order factors to lowest (first)-order factors. Thompson (2004) 

explained the procedure: 

...Schmid and Leiman (1957) proposed an elegant method for expressing 

both first-order and the second-order factors in terms of the measured 

variables, but also residualizing (removing) all variance in the first order 

factors that is also present in the second-order factors. (p. 74) 

 According to the different levels of factors, the non-overlapping partitioning 

variance procedure indicates that the factors on different levels are orthogonal (i.e., at right 

angles or uncorrelated) to each other. For example, TOFs are orthogonal to SOFs and FOFs, 

and SOFs are orthogonal to FOFs. However, the SLS does not imply that factors on a given 

level are orthogonal to each other. For instance, FOFs might not be orthogonal; they might 

be correlated, as is the possibility for SOFs and TOFs (Gorsuch, 1983). 

 Application of the SLS is possible when TOFs or factors higher than TOFs are 

extracted. There are many examples of applications of the SLS in higher-order EFA when 

SOFs are extracted (e.g., Borrello & Thompson, 1990; Cook, Heath, & Thompson, 2001; 

Cook & Thompson, 2000; Thompson, Wasserman, & Matula, 1996). Even though 

researchers can find studies to understand the procedure for SLS solution when SOFs are 

extracted, obtaining the procedure for SLS when TOFs are extracted may not be easy. Thus, 

we provided two heuristic examples to show how to obtain solutions to interpret results in 

the case of extracted SOFs (i.e., heuristic example 1), and TOF (i.e., heuristic example 2). 

 

HEURISTIC EXAMPLES FOR HIGHER-ORDER FACTOR ANALYSIS 

Interpretation strategies were provided by two heuristic examples. When number of levels 

increase in EFA, obtaining solutions to interpret the results can be challenging, so we 

provided two different examples for researchers. In the first example, the highest extracted 

factors were SOFs; and in the second example, the highest extracted factor was TOF. In 

both examples, principal component analysis was used to extract factors. Researchers, not a 

specific method (e.g., eigenvalue greater than one rule, parallel analysis, or scree plot) 

defined the number of factors. In all Promax rotations, kappa (K) power was set to 4. 

Results were not interpreted in the subsequent examples; instead, examples showed how to 

obtain solutions for easier interpretations. SAS syntax was provided for interpretation 
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methods (see Appendix A). In the first example, the highest levels of factors extracted were 

SOFs; a TOF was extracted for the second heuristic example. 

 

Heuristic Example 1 

 

Extraction Procedure 

For this heuristic example, LibQUAL+
TM

 data (Thompson, 2004, pp. 163-167) was used. In 

Example 1, FOFs and SOFs were extracted. 
 

Table 1. Promax Rotated First-Order Factor Pattern Coefficients 

 Pattern Coefficients  Structure Coefficients 

 First 1 First 2 First 3 First4  First 1 First 2 First 3 First4 

Per 1 -0.010 0.969 -0.079 0.057  0.419 0.946 0.453 0.426 

Per 2 -0.038 0.898 0.005 0.045  0.396 0.902 0.481 0.413 

Per 3 0.046 0.795 0.125 -0.094  0.453 0.844 0.529 0.302 

Per 4 0.037 0.882 -0.022 0.014  0.442 0.894 0.469 0.383 

Per 5 0.924 -0.043 0.073 -0.040  0.929 0.411 0.482 0.214 

Per 6 0.950 -0.037 -0.080 0.007  0.896 0.367 0.364 0.206 

Per 7 0.898 0.022 0.019 0.030  0.925 0.463 0.479 0.282 

Per 8 0.814 0.103 0.003 0.001  0.863 0.484 0.452 0.257 

Per 9 0.038 -0.038 0.857 -0.053  0.422 0.411 0.833 0.299 

Per 10 0.027 -0.107 0.798 0.176  0.410 0.402 0.828 0.472 

Per 11 -0.069 0.186 0.790 -0.082  0.379 0.538 0.820 0.307 

Per 12 -0.002 0.039 0.021 0.962  0.277 0.451 0.443 0.987 

 

When one of the oblique rotation strategies (e.g., Promax) was used to rotate factors, 

correct interpretation required thinking about pattern and structure coefficients 

simultaneously (Thompson, 2004). Table 1 represents the first-order pattern and structure 

coefficients. 

 FOFs were extracted by using row data, but we could also extract FOFs by using an 

IVCM. Both methods would provide the same solution in terms of FOFs. The principal 

component method was applied for the extraction method. The first step of this method was 

calculating the correlation matrix for the variables (Thompson, 1984); thus, the results 

would have been exactly the same if enough decimals had been used for the correlations in 

the correlation matrix. 

 

Table 2. First Order Inter-Factor Correlations 

 First 1 First 2 First 3 First 4 

First 1 1.000    

First 2 0.466 1.000   

First 3 0.485 0.529 1.000  

First 4 0.261 0.418 0.418 1.000 

Table 2 represents the IFCM for the FOFs. This IFCM was used to estimate SOFs. Also, this 

IFCM could be used for another purpose: Post multiplication of the pattern coefficient 

matrix (Table 1) by the IFCM (Table 2) provides the structure coefficients (Table 1) of the 

factors in a given level. Thus, if computer programs do not provide a structure coefficients 

matrix, we would have to compute the structure coefficients for the FOFs. 
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Table 3. Varimax Rotated Second-Order Factors 

 Second I Second II h-square 

First 1 0.897 -0.002 0.805 

First 2 0.675 0.447 0.655 

First 3 0.702 0.422 0.671 

First 4 0.148 0.944 0.912 

Note. h
2
 for a variable equals the sum of the squared coefficients across SOFs (e.g., 0.805 = 

0.897
2 

+ -.002
2
). 

 

Table 3 gives SOFs and communality coefficients (h
2
) that are extracted from the 

IFCM (Table 2). The aim of this present paper was to illustrate interpretation strategies. As 

indicated before, researchers, and not the use of one of the usual methods (e.g., eigenvalues 

greater than 1 rule, scree plot, parallel analysis), determined the number of factors in any 

level in the present study. If usual methods for the number of factors had been used, the 

number of extracted factors likely would have been different. Therefore, like with traditional 

exploratory factor analysis one examines the observed variables that load onto a factor to 

determine the name for that factor. When moving one step up to second-order factors one 

MUST consider both the previous factor names and the variables contained within each first 

factor. Therefore, it is possible that the researcher may learn that discrete factors at level one 

are really subsumed within a higher order structure that was more difficult to detect without 

HOF analysis. In Example 1, first-order factors 1, 2, and 3 are now subsumed under the first 

second-order factor while the fourth first-order factor contributes to the second-order factor 

alone. While this example is not an ideal condition, it does provide a practically important 

nuance of what can happen during HOF analysis.  

 For heuristic example 1, FOFs and SOFs were extracted, and now interpretation 

strategies can be provided based upon these factors. 

 

Gorsuch’s Product Matrix 

A PM was obtained by post-multiplying the FOF pattern coefficients (Table 1) by SOF 

pattern coefficients (Table 3). In this way, SOFs can be interpreted in terms of measured 

variables. 

 

Thompson’s Orthogonally Rotated Product Matrix 

Quartimax was chosen to rotate the PM orthogonally. When interpretation of a PM is 

challenging, rotating the PM orthogonally may provide simple structure (Thompson, 1990). 

Table 4 shows both Gorsuch’s PM and Thompson’s orthogonally rotated PM. 

 

 

 

Table 4. Gorsuch’s Product Matrix and Thompson’s Orthogonally Rotated Product Matrix 
 Gorsuch’s Product Matrix  Thompson’s Orthogonally Rotated 

Product Matrix 

 Second I Second II  Second I Second II 

Per 1 0.598 0.454  0.797 -0.263 

Per 2 0.583 0.446  0.778 -0.334 

Per 3 0.652 0.319  0.763 -0.249 

Per 4 0.616 0.399  0.723 0.060 
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Per 5 0.846 -0.028  0.722 0.205 

Per 6 0.773 -0.045  0.718 0.147 

Per 7 0.838 0.045  0.705 0.204 

Per 8 0.801 0.046  0.703 -0.323 

Per 9 0.602 0.295  0.687 0.096 

Per 10 0.538 0.456  0.668 0.056 

Per 11 0.605 0.340  0.667 0.229 

Per 12 0.181 0.934  0.509 0.804 

Note. Product matrix (first two columns) orthogonally rotated by using Quartimax (last two 

columns). 

Schmid and Leiman Solution  

To be able to find the SLS, we need to create a new matrix, called the augmented matrix 

(A). The augmented matrix (Table 5) includes SOFs on the first columns and square roots of 

(SQRT) uniqueness of SOFs in the later columns. Uniqueness is calculated as the remaining 

variance after the communality coefficient is subtracted (i.e., Uniqueness= 1-h
2
). The SQRT 

of uniquenesses (u
2
) is placed on the diagonal of the uniqueness matrix. 

 

Table 5. Augmented Matrix 

  Square root of uniquenesses 

Second I Second II U1 U2 U3 U4 

0.897 -0.002 0.441 0.000 0.000 0.000 

0.675 0.447 0.000 0.587 0.000 0.000 

0.702 0.422 0.000 0.000 0.574 0.000 

0.148 0.944 0.000 0.000 0.000 0.296 

Note. Number of uniquenesses columns equal number of first order factors. For example, 

0.441 =SQRT (1-0.805). The value, 0.805, represent the communality coefficient from 

Table 4, and the remaining unexplained variance by factors as a set is the uniqueness of first 

variable. 

After calculating the augmented matrix, the SLS matrix can be estimated by post-

multiplying the second-order pattern coefficient matrix by the calculated augmented matrix. 

This solution provides non-overlapping quantities at different levels. 

 

Table 6. Schmid and Leiman Solution 

 Second Orders  First Orders 

Variable Second I Second II  First 1 First 2 First 3 First 4 

Per1 0.598 0.454  -0.004 0.569 -0.045 0.017 

Per2 0.583 0.446  -0.017 0.527 0.003 0.013 

Per3 0.652 0.319  0.020 0.467 0.072 -0.028 

Per4 0.616 0.399  0.016 0.518 -0.012 0.004 

Per5 0.846 -0.028  0.408 -0.025 0.042 -0.012 

Per6 0.773 -0.045  0.419 -0.022 -0.046 0.002 

Per7 0.838 0.045  0.396 0.013 0.011 0.009 

Per8 0.801 0.046  0.359 0.060 0.001 0.000 

Per9 0.602 0.295  0.017 -0.022 0.492 -0.016 

Per10 0.538 0.456  0.012 -0.063 0.458 0.052 

Per11 0.605 0.340  -0.031 0.109 0.453 -0.024 

Per12 0.181 0.934  -0.001 0.023 0.012 0.285 
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The first two columns of the SLS (Table 6) are exactly equal to those of the PM 

(Table 4). If the first two columns of the SLS are exactly equal to the first two columns of 

the PM, the SLS provides more information than the PM. However, if the primary interest is 

to interpret SOFs in terms of measured variables, not the remaining explained variance by 

FOFs after SOFs are extracted, interpreting the PM or the SLS matrix would result in no 

difference because the first two columns of the SLS matrix do not differ from those of the 

PM. If someone would like to interpret SOFs and remaining information on FOFs, it is 

suggested that one would interpret the more complete SLS and not the PM. 

 

 
Figure 1. Visual representation of SOFs and FOFs. 

 

Heuristic example 1 can be visually represented in terms of one variable in Figure 1. 

The largest rectangle represents the variation for only one variable. The remaining six 

rectangles show the explained part of the variation of the variable by FOFs and SOFs. It is 

important to notice that SOFs I and II explain the variation also accounted for by FOFs. This 

situation indicates that SOFs are extracted from the first-order IFCM. The second point is 

that FOFs are overlapping each other, which means that they are correlated. Thus, we can 

know that they were rotated obliquely. In terms of SOFs, they are not overlapping, so they 

were uncorrelated. Additionally, one can visually see what the SLS does. As explained 

previously, the solution makes SOFs and FOFs orthogonal to each other because SOFs 

capture the variation of variables, which is also explained by FOFs. The remaining variance 

in the first-order IFCM, after SOFs are extracted, accounted for by FOFs in the SLS. 

 

Heuristic Example 2 

 

Extraction Procedure 

For this heuristic example, 15 variables (t1 to t15) from Holzinger and Swineford (1939) 

data set (pp. 81-91) were used. In this example, FOFs, SOFs, and a TOF were extracted. The 

variable labels that have been used in this present example are contained in Appendix A. 

FOFs were extracted from row data and rotated by Promax. Based on the Promax 

rotation, one needs to interpret both pattern and structure coefficients (Table 7) because 

factors were rotated obliquely (Thompson, 2004). 
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Table 7. First Order Factors Pattern and Structure Coefficients 
 Pattern Coefficients  Structure Coefficients 

 First 1 First 2 First 3 First 4 First 5 First 6  First 

1 

First 

2 

First 

3 

First 

4 

First 5 First 

6 

t1 0.189 -0.025 0.793 -0.022 -0.098 0.087  0.402 0.276 0.822 0.154 0.261 0.339 

t2 0.001 -0.039 0.014 0.019 0.969 -0.003  0.186 0.085 0.380 0.074 0.971 0.214 

t3 0.011 0.027 0.079 0.030 -0.003 0.948  0.243 0.170 0.378 0.048 0.247 0.976 

t4 -0.112 -0.017 0.817 0.045 0.086 0.008  0.140 0.225 0.824 0.194 0.382 0.246 

t5 0.877 0.037 -0.062 -0.042 -0.009 0.036  0.870 0.274 0.197 0.083 0.149 0.203 

t6 0.851 -0.027 0.073 0.064 -0.063 -0.014  0.858 0.249 0.290 0.199 0.130 0.168 

t7 0.929 -0.014 -0.052 -0.053 0.013 -0.039  0.897 0.233 0.190 0.075 0.162 0.141 

t8 0.769 0.031 0.004 0.015 0.066 0.008  0.796 0.272 0.263 0.141 0.225 0.188 

t9 0.858 -0.051 0.075 -0.003 -0.005 0.025  0.868 0.229 0.308 0.133 0.192 0.219 

t10 -0.019 0.855 -0.166 0.062 -0.182 0.006  0.162 0.785 0.042 0.149 -0.142 0.011 

t11 0.187 0.663 0.053 0.114 0.049 -0.152  0.394 0.742 0.312 0.260 0.159 -0.01 

t12 -0.103 0.822 -0.029 -0.086 0.034 0.149  0.157 0.790 0.241 0.023 0.129 0.222 

t13 -0.023 0.612 0.329 -0.088 0.127 -0.046  0.253 0.704 0.533 0.078 0.308 0.147 

t14 0.091 0.037 -0.213 0.866 0.120 0.098  0.216 0.158 0.073 0.849 0.134 0.082 

t15 -0.125 -0.038 0.275 0.786 -0.107 -0.070  0.024 0.113 0.322 0.810 0.001 -0.05 

 

Oblique rotation (i.e., Promax) allowed the initially uncorrelated FOFs correlated, so 

SOFs should be extracted from the IFCM among FOFs (Gorsuch, 1983). Table 8 provides 

the IFCM. 

 

Table 8. First-Order Inter Factor Correlation Matrix 

 First 1 First 2 First 3 First 4 First 5 First 6 

First 1 1      

First 2 0.296 1     

First 3 0.284 0.315 1    

First 4 0.150 0.157 0.200 1   

First 5 0.196 0.120 0.387 0.060 1  

First 6 0.209 0.116 0.298 -0.003 0.224 1 

SOFs were extracted from the first-order IFCM and Promax rotation. Table 9 

displays the pattern and structure coefficients of these SOFs. 

 

Table 9. Promax Rotated Second-Order Pattern, Structure, and Communality Coefficients 

 Pattern Coefficients  Structure Coefficients  h
2
 

 Second 

I 

Second 

II 

Second 

III 

 Second 

I 

Second 

II 

Second 

III 

 

First 1 0.074 0.728 -0.031  0.348 0.751 0.077  0.570 

First 2 -0.143 0.860 0.075  0.186 0.817 0.190  0.690 

First 3 0.644 0.209 0.206  0.734 0.481 0.270  0.629 

First 4 0.061 0.049 0.912  0.129 0.203 0.922  0.859 

First 5 0.882 -0.232 0.101  0.800 0.115 0.115  0.690 

First 6 0.603 0.156 -0.377  0.641 0.330 -0.323  0.560 

Note. h
2 

represents the communality coefficients. h
2
= 0.570 = (0.074*0.348) + 

(0.728*0.751) + (-0.031*0.077). 

 

SOFs were correlated to each other because they were rotated by Promax. Thus, the 

IFCM of SOFs can be used to extract TOFs. Table 10 illustrates the IFCM of SOFs. 
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Table 10. Second-Order Inter-Factor Correlations 

 Second I Second II Second III 

Second I 1   

Second II 0.378 1  

Second III 0.054 0.143 1 

 

To extract the TOF, the correlation matrix of SOFs was used. Only one TOF was 

extracted, so there is no possibility of rotating the TOF. Also, there was only one matrix for 

factor coefficients, called factor pattern/structure coefficients. Table 11 shows the TOF 

pattern/structure coefficients. 

 

Table 11. Third-Order Factor Pattern/Structure Coefficients and Communalities 

 Third h-square 

Second I 0.780 0.608 

Second II 0.822 0.675 

Second III 0.375 0.141 

Note. Communality coefficients (h
2
) are equal to square of TOF patterns. 

 

There are three hierarchical levels in heuristic example 2, so interpretation of factors 

might be more challenging than EFA studies that have two hierarchical levels. The logic of 

interpretation strategies of HOFs in this heuristic example was the same as in the previous 

heuristic example, which has SOFs at the highest level. However, heuristic example 2 

requires more work to obtain interpretable solutions. In the subsequent sections, we explain 

how to obtain interpretable solutions when there are TOFs in the analysis. The TOF analysis 

indicates that a single higher factor exists for the data and there is a possibility of altering 

the theoretical framework of the study. The potential here is that by understanding that a 

single TOF subsumes all prior factors that the theoretical framework could be revisited to 

accommodate the findings and could provide transformative insights into the nexus of the 

applied research and the theoretical data analytic strategy.  

 

Gorsuch’s Product Matrix  

When TOFs are extracted, two separate PMs can be calculated. One of them is for 

representing TOFs in terms of observed variables and the other is for interpreting SOFs in 

terms of observed variables. The matrix, which represented TOFs in terms of measured 

variables, can be called a TPM because all pattern coefficients from three levels were 

multiplied by keeping the principles of matrix multiplication. For instance, in this heuristic 

example, the number of FOFs was 6 (P15*6); the number of SOFs was 3 (P6*3); and the 

number of TOFs was one (P3*1). The TPM was as follows: 

P15*6 * P6*3 * P3*1      (2) 

This matrix multiplication produces the P15*1 matrix (vector). This matrix indicates that 

measured variables were rows in the matrix and the TOF was a column.  

Another PM is similar to the previous example’s PM. To interpret SOFs in terms of 

measured variables, a SOF’s pattern matrix can be multiplied by a FOF’s pattern matrix. 

P15*6 * P6*3      (3) 

However, this second-order PM did not provide a complete picture of the dynamics of the 

SOFs in terms of measured variables because the TOF was extracted from the second-order 

IFCM. Interpretation of this matrix may provide some indication about SOFs in terms of 
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measured variables, but the interpretation does not take into account TOF extraction from 

these SOFs. To account for the TOF in the interpretation of SOFs, the SLS is more 

appropriate than the PM. 

 

Thompson’s Orthogonally Rotated Product Matrix 

In this heuristic example, only one TOF was extracted, so rotation was not possible for the 

TPM (P15*1). However, if there were more than one TOF, orthogonal rotation might provide 

easier interpretation for TOFs in terms of measured variables. 

 A second-order PM can be rotated orthogonally for easier interpretation. Table 12 

provides a TPM, a second-order PM, and Thompson’s orthogonal solution to the second-

order PM. 

 

Table 12. Triple Product Matrix, Second-Order Product Matrix, and Orthogonally Rotated 

Second-Order Product Matrix 

 TPM  Second-Order PM  Orthogonally Rotated Second-

Order PM 

 Third  Second I Second II Second III  Second I Second II Second III 

t1 0.679  0.493 0.316 0.093  -0.368 0.740 0.067 

t2 0.512  0.869 -0.255 0.116  -0.075 0.689 0.223 

t3 0.528  0.618 0.198 -0.313  0.046 0.662 -0.088 

t4 0.599  0.603 0.058 0.217  0.014 0.641 0.002 

t5 0.535  0.031 0.663 -0.090  -0.015 0.638 -0.070 

t6 0.574  0.054 0.627 0.044  0.067 0.626 0.046 

t7 0.517  0.022 0.642 -0.073  0.143 0.598 -0.025 

t8 0.564  0.120 0.574 -0.003  0.132 0.571 -0.001 

t9 0.585  0.130 0.601 -0.028  0.213 0.531 0.068 

t10 0.328  -0.383 0.733 0.066  0.863 -0.274 0.119 

t11 0.579  -0.088 0.688 0.221  0.624 0.186 -0.309 

t12 0.473  -0.029 0.637 -0.072  0.603 0.044 0.220 

t13 0.622  0.202 0.536 0.064  0.499 0.306 0.096 

t14 0.404  0.082 0.084 0.721  0.080 -0.019 0.791 

t15 0.351  0.084 -0.014 0.790  0.081  0.080 0.721 

Note. Table includes three different matrixes. The first column includes triple product 

matrix, the other two matrixes are respectively second-order product matrix, and 

orthogonally (i.e., varimax) rotated second-order product matrix. 

 

Schmid and Leiman Solution  

When a TOF is extracted, estimation of the SLS requires a few more steps. The first step 

requires creating an augmented matrix (Table 13) for the TOF. 

 

Table 13. Augmented Matrix I 

Third U1 U2 U3 

0.800 0.626 0 0 

0.822 0 0.570 0 

0.375 0 0 0.927 
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Note. Number of uniquenesses is equal to number of SOFs. Uniquenesses are estimated by 

SQRT of 1-h
2
. h

2 
are given in Table 11. 

 

In the second step, this Augmented Matrix I is post multiplied by second-order factor 

pattern coefficients to make the TOF and SOFs orthogonal to each other. This multiplication 

procedure removes all variance in the SOFs that is also present in the TOF. Specifically, the 

variance, which is common in both TOF and SOFs, is used by the higher-level factor (i.e., 

TOF). Table 14 provides the results of this multiplication. 

 

Table 14. Orthogonalized Third- and Second-Order Factors 

 Third Second I Second II Second III 

First 1 0.644 0.047 0.415 -0.029 

First 2 0.623 -0.089 0.490 0.069 

First 3 0.751 0.403 0.119 0.191 

First 4 0.431 0.038 0.028 0.845 

First 5 0.535 0.552 -0.132 0.093 

First 6 0.457 0.377 0.089 -0.350 

 

In the third step, creating another augmented matrix for SOFs is required. In the 

present example, SOFs were rotated obliquely to extract a TOF. Thus, to estimate 

communality coefficients, which were necessary to estimate uniquenesses in the augmented 

matrix, we used both pattern and structure coefficients of SOFs. Table 9 contains pattern, 

structure, and communality coefficients of SOFs. A communality coefficient for any 

variable is estimated by summing the multiplication of pattern coefficients and structure 

coefficients across each factor (e.g., 0.570 = (0.074*0.348) + (0.728*0.751) + (-

0.031*0.077)).  

The Augmented Matrix II can now be created by using estimated communalities. The 

matrix in Table 14 (Orthogonalized Third- and Second-Order Factors) will be augmented by 

adding the square root of uniqueness of SOFs as diagonals to the right side of the matrix. 

Table 15 shows the Augmented Matrix II. 

 

Table 15. Augmented Matrix II 

Third Second I 

Second 

II Second III Un1 Un2 Un3 Un4 Un5 Un6 

0.644 0.047 0.415 -0.029 0.655 0.000 0.000 0.000 0.000 0.000 

0.623 -0.089 0.490 0.069 0.000 0.557 0.000 0.000 0.000 0.000 

0.751 0.403 0.119 0.191 0.000 0.000 0.609 0.000 0.000 0.000 

0.431 0.038 0.028 0.845 0.000 0.000 0.000 0.375 0.000 0.000 

0.535 0.552 -0.132 0.093 0.000 0.000 0.000 0.000 0.556 0.000 

0.457 0.377 0.089 -0.350 0.000 0.000 0.000 0.000 0.000 0.663 

Note. The square root of the uniquenesses are shown in the last 6 columns as diagonals. For 

example, 0.665 is the square root of 1-0.570 (from Table 9). 

 

The final step in the solution is post-multiplying the first-order pattern matrix by the 

Augmented Matrix II. This resulted in the SLS (Table 16). 
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Table 16. Schmid and Leiman Solution for Heuristic Example II 
 

Third 

Second 

I 

Second 

II 

Second 

III 

First 

1 

First 

2 

First 

3 

First 

4 

First 

5 

First 

6 

t1 0.679 0.309 0.180 0.086 0.124 -0.014 0.483 -0.008 -0.054 0.058 

t2 0.512 0.544 -0.145 0.107 0.001 -0.022 0.009 0.007 0.539 -0.002 

t3 0.528 0.387 0.113 -0.290 0.007 0.015 0.048 0.011 -0.002 0.629 

t4 0.599 0.378 0.033 0.201 -0.073 -0.010 0.498 0.017 0.048 0.005 

t5 0.535 0.019 0.378 -0.083 0.575 0.020 -0.038 -0.016 -0.005 0.024 

t6 0.574 0.034 0.358 0.041 0.558 -0.015 0.044 0.024 -0.035 -0.009 

t7 0.517 0.014 0.366 -0.068 0.609 -0.008 -0.032 -0.020 0.007 -0.026 

t8 0.564 0.075 0.327 -0.003 0.504 0.018 0.003 0.006 0.037 0.005 

t9 0.585 0.081 0.343 -0.025 0.562 -0.028 0.046 -0.001 -0.003 0.017 

t10 0.328 -0.240 0.418 0.062 -0.013 0.476 -0.101 0.023 -0.101 0.004 

t11 0.579 -0.055 0.392 0.205 0.123 0.369 0.032 0.043 0.027 -0.101 

t12 0.473 -0.018 0.363 -0.067 -0.067 0.458 -0.018 -0.032 0.019 0.099 

t13 0.622 0.126 0.306 0.059 -0.015 0.340 0.200 -0.033 0.071 -0.031 

t14 0.404 0.052 0.048 0.668 0.060 0.020 -0.130 0.325 0.067 0.065 

t15 0.351 0.053 -0.008 0.733 -0.082 -0.021 0.167 0.295 -0.060 -0.047 

 

The first column is the same as the TPM, so when we are interpreting the TOF in 

terms of measured variables, one should only interpret the SLS or the TPM, not both 

(Thompson, 2004). The second and third columns of the SLS matrix are not the same as the 

second-order PM because the SLS explained variance by the TOF, which is also shown in 

SOFs, is removed from SOFs. However, in the SOF product matrix, all explained variance 

by SOFs are represented by factors as a set. There is no subtraction from variables due to the 

TOF. 

 

DISCUSSION 

The single most important caveat when extracting HOF is that if one is extracting the next 

higher level of factor results in the same structure then simple structure has been achieved 

and no additional aggregation is possible. That is, the FOFs provide the most plausible 

condition for the data in hand. In example 1 where 3 of the 4 FOFs were contained on the 

first SOF and only the fourth FOF was on the second SOF. This implies that the FOF 

analysis contained three factors that were contained in a SOF and one FOF. The 

interpretation can indicate that the three FOFs represent a single higher level of abstraction 

while the single FOF is not abstractable, given the data, to a higher level. So attempting a 

yet higher level of abstraction would be unwarranted from the results contained in the 

second level factor analysis.  

Whenever HOFs are extracted, the interpretation of these factors is important in 

factor analysis studies to gain additional insight to factor structure (Thompson, 2004). 

Gorsuch’s PM, Thompson’s orthogonally rotated PM, and the SLS are useful tools for 

interpreting HOFs in terms of measured variables. Each method has its own advantages. If 

the primary interest is interpreting HOFs in terms of measured variables, the SLS and the 

PM give the same solutions because columns of highest orders in the SLS are exactly equal 

to the highest order PM. In another situation, if either the SLS or the PM cannot achieve 
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simple structure of higher orders, Thompson’s orthogonal rotated PM would be the more 

easily interpreted solution (Thompson, 1990).  

 The SLS provides more information than the other two methods if the interest is not 

solely interpreting HOFs in terms of measured variables. While SLS provides the solution 

for interpretation in terms of measured variables, it also gives independent contributions of 

lower-order factors after taking into account HOFs. Thus, the SLS provides additional 

perspectives on the data that cannot be obtained by the PM or Thompson’s orthogonally 

rotated PM. 

 Results obtained by EFA can be used in confirmatory factor analysis (CFA) for the 

theoretical construct. If existence of HOFs is shown in EFA, researchers most likely will 

need to construct these HOFs in their CFA models. Thus, analyzing and interpreting HOFs 

are important for researchers’ studies and for other researchers who employ CFA based on 

the primary results from the EFA. As oppose to CFA, EFA does not require researchers to 

have prior assumptions about the nature of constructs, CFA require researchers to have some 

background knowledge or prior-assumptions about the nature of construct. Through 

conducting CFA, researchers have pre-assumptions about the nature of construct they are 

interested in. The prior assumptions such as the number of factors, which variable reflect 

given factors, and whether the factors are correlated (Thompson, 2004). The necessary 

information obtained by EFA enables researchers to test hierarchical relations between 

constructs (Kline, 1998), so that they can build realistic models. 

In example 1, applied researchers can be “data blind” to their own work. The term 

“data blind” refers to the myopathy associated with being so close to one’s own data that he 

or she fails to recognize the possibility of that unobserved variation can play important roles. 

For example, higher order factors are one such possibility that can be overlooked by 

researchers who become so deeply committed to their observed variables that they do not 

consider the potential of HOFs to provide new and possibly transformative insights into the 

phenomena under investigation. Unfortunately, once the study is published HOFs are lost to 

the community and there is no current strategy for estimating HOFs if they were not 

considered in the original manuscript. There is one exception, if authors report the 

correlation matrix. This has two considerations. First authors should report the correlation 

matrix for all the observed variables because with this information all HOFs can be 

extracted in ex post facto analyses. Second, if authors do not report the correlation matrix 

for all their observed variables then they should report the correlation matrix for the first 

order (obliquely rotated) factors and one additional higher order level can be extracted in ex 

post factor analyses.  
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Appendixes 

SAS Syntax for Heuristic Example 1 and 2 

/*Heuristic example 1 (Highest Level is Second-Orders)*/ 

proc factor data=work.LIBQUAL 

nfactors=4 method=principal rotate=promax(4); 

Run; 

/*Second-order factors are extracted from inter-factor correlation matrix*/ 

data firstorders (type=corr); 

infile cards missover; 

input _TYPE_ $ _Name_ $ First1 First2 First3 First4; 

DATALINES; 

corr First1 1 

corr First2 0.46647  1 

corr First3 0.48504  0.52947  1 

corr First4 0.26096  0.41760  0.41750  1 

N . 200 200 200 200 

STD . 1 1 1 1 

MEAN . 0 0 0 0 

; 

Run; 

proc factor data=firstorders 

nfactors=2 method=principal rotate=varimax corr; 

Run; 

/*Interpretation Methods*/ 

proc iml; 

/*First-order pattern matrix*/ 

P1 = {-0.00992 0.96871 -0.07881 0.0572, 

-0.03761 0.89795 0.0053  0.04521, 

0.04616 0.79507 0.12542 -0.09446, 

0.03721 0.88198 -0.02157 0.01431, 

0.92438 -0.04264 0.07289 -0.03966, 

0.9503  -0.0368 -0.0803 0.00736, 

0.89752 0.022  0.01893 0.03035, 

0.81369 0.10266 0.00253 0.00065, 

0.03794 -0.03804 0.85688 -0.05279, 

0.0265  -0.10652 0.79773 0.17643, 

-0.06945 0.18627 0.78978 -0.08206, 

-0.00226 0.0388  0.02146 0.96199}; 

/* Variable names*/ 

varname={"Per1" "Per2" "Per3" "Per4" "Per5" "Per6" "Per7" "Per8" "Per9" "Per10" "Per11" 

"Per12"}; 

/*First-order factor names*/ 

fname={"First1" "First2" "First3" "First4"}; 
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/* Second-Order Factor Coefficients */ 

P2 = { 0.89732  -0.00203, 

0.67484    0.44714, 

       0.70162    0.42229, 

       0.14787    0.9437}; 

/*Second-order factor names*/ 

sname={"Second1" "Second2"}; 

/*Gorsuch Product Matrix*/ 

P3 = P1*P2; 

print 'First-order pattern matrix',,P1 [rowname=varname colname=fname]; 

print "Second-order factor pattern matrix",, P2 [rowname=fname colname=sname]; 

print "Gorsuch Product Matrix", , P3 [rowname=varname colname=sname]; 

/*Thompson's Orthogonally Rotated Product Matrix*/ 

data product(type = factor); 

_type_ = 'pattern'; 

 input _NAME_ $ per1 per2 per3 per4 per5 per6 per7 per8 per9 per10 per11 per12; 

 datalines; 

second1 0.5979863 0.5826282 0.6519947 0.6155667 0.845966 0.7726373 0.8379786 

0.8012906 0.6017715 0.537687 0.6053748 0.1814621 

second2 0.4538681 0.4464885 0.3192356 0.3986886 -0.027589 -0.045348 0.0446504 

0.0459334 0.2949477 0.4556872 0.3395059 0.9342459 

; 

proc factor data =product nobs = 200 reorder 

rotate = quartimax; 

Run; 

/*Schmid and Leiman Solution*/ 

/*Augmented Matrix*/ 

proc iml; 

A = {0.89732 -0.00203 0.44138 0.00000 0.00000 0.00000, 

         0.67484  0.44714 0.00000 0.58707 0.00000 0.00000, 

         0.70162  0.42229 0.00000 0.00000 0.57393 0.00000, 

         0.14787  0.94370 0.00000 0.00000 0.00000 0.29591}; 

  /*First-order pattern matrix*/ 

P1 = { -0.00992 0.96871 -0.07881 0.0572, 

-0.03761 0.89795 0.0053  0.04521, 

0.04616 0.79507 0.12542 -0.09446, 

0.03721 0.88198 -0.02157 0.01431, 

0.92438 -0.04264 0.07289 -0.03966, 

0.9503  -0.0368 -0.0803 0.00736, 

0.89752 0.022  0.01893 0.03035, 

0.81369 0.10266 0.00253 0.00065, 

0.03794 -0.03800 0.85688 -0.05279, 

0.0265  -0.10652 0.79773 0.17643, 

-0.06945 0.18627 0.78978 -0.08206, 

-0.00226 0.0388  0.02146 0.96199}; 

/* Variable names*/ 
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varname={"Per1" "Per2" "Per3" "Per4" "Per5" "Per6" "Per7" "Per8" "Per9" "Per10" "Per11" 

"Per12"}; 

/*First-order factor names*/ 

fname={"First1" "First2" "First3" "First4"}; 

sname={"Second1" "Second2"}; 

/*Multiplying First-Order Pattern Matrix by Augmented Matrix*/ 

SL = P1*A; 

SLname=sname || fname; 

print "Schmid and Leiman Solution", , SL [rowname=varname colname=SLname]; 

 

/*SAS Syntax for Heuristic Example 2 

Variables 

t1 visual perception test from spearman vpt, part iii 

t2 cubes, simplification of Brigham's spatial relations test 

t3 paper form board--shapes that can be combined to form a target 

t4 lozenges from Thorndike--shapes flipped over then identify target 

t5 general information verbal test 

t6 paragraph comprehension test 

t7 sentence completion test 

t8 word classification--which word does not belong in a set 

t9 word meaning test 

t10 speeded addition test 

t11 speeded code test--transform shapes into alpha with code 

t12 speeded counting of dots in shape 

t13 speeded discrim straight and curved caps 

t14 memory of target words 

t15 memory of target numbers 

Heuristic example 2 (Highest Level is Third-Orders)*/ 

 

proc factor data=work.holzinger_t1_t15  

nfactors=6 method=principal rotate=promax(4); 

Run; 

/*Second-order factors are extracted from interfactor correlation matrix*/ 

data firstorder (type=corr); 

infile cards missover; 

input _TYPE_ $ _Name_ $ First1 First2 First3 First4 First5 First6; 

DATALINES; 

corr First1 1  

corr First2 0.29644  1 

corr First3 0.2836  0.31542  1 

corr First4 0.15029  0.1568  0.19977  1 

corr First5 0.19627  0.12025  0.38691  0.06043  1 

corr First6 0.20851  0.11637  0.29836  -0.00325  0.22434  1 

N . 301 301 301 301 301 301 

STD . 1 1 1 1 1 1 

MEAN . 0 0 0 0 0 0 

; 
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Run; 

proc factor data=firstorder 

nfactors=3 method=principal rotate=promax(4) corr; 

Run; 

/*Third-order factor is extracted from second-order interfactor correlation matrix*/ 

data secondorder (type=corr); 

infile cards missover; 

input _TYPE_ $ _Name_ $ Second1 Second2 Second3; 

DATALINES; 

corr Second1 1 

corr Second2 0.37792   1 

corr Second3 0.0537   0.14269  1 

N . 301 301 301 

STD . 1 1 1 

MEAN . 0 0 0 

; 

Run; 

proc factor data=secondorder 

nfactors=1 method=principal corr; 

Run; 

/*Interpretation Methods*/ 

proc iml; 

/*First-order pattern matrix*/ 

P1 = { 0.18886 -0.02531 0.79281 -0.02218 -0.0977 0.08743, 

0.00082 -0.03928 0.01414 0.01878 0.96936 -0.0029, 

0.01066 0.02732 0.07891 0.02993 -0.00303 0.94811, 

-0.11156 -0.01733 0.8165 0.0451 0.08566 0.0082, 

0.87709 0.03666 -0.06154 -0.04185 -0.0094 0.0357, 

0.85121 -0.02683 0.07293 0.06399 -0.06275 -0.01419, 

0.92947 -0.01447 -0.0519 -0.05269 0.01286 -0.03882, 

0.76858 0.03149 0.00443 0.0153 0.06631 0.00792, 

0.85758 -0.05071 0.07514 -0.0027 -0.00455 0.02493, 

-0.01946 0.85468 -0.16586 0.062 -0.18187 0.0062, 

0.18728 0.66326 0.05327 0.11362 0.04877 -0.15246, 

-0.1029 0.82199 -0.02921 -0.08581 0.03388 0.14901, 

-0.02333 0.6115 0.32887 -0.08825 0.12726 -0.04606, 

0.09149 0.0367 -0.2126 0.86552 0.11965 0.0981, 

-0.12514 -0.03844 0.27466 0.78603 -0.10742 -0.07031}; 

/* Variable names*/ 

varname={"t1" "t2" "t3" "t4" "t5" "t6" "t7" "t8" "t9" "t10" "t11" "t12" "t13" "t14" "t15"}; 

/*First-order factor names*/ 

fname={"First1" "First2" "First3" "First4" "First5" "First6"}; 

/* Second-Order Factor Pattern Matrix*/ 

P2 = { 0.07429 0.72782 -0.03133, 

-0.14275 0.86005 0.07487, 

0.64379 0.20876 0.20609, 

0.06128 0.04942 0.91211, 
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0.88227 -0.2323 0.10051, 

0.60252 0.15649 -0.37721}; 

/*Second-order factor names*/ 

sname={"Second1" "Second2" "Second3"}; 

/*Third-Order Factor Pattern Matrix*/ 

P3 = { 0.77987, 

0.82152, 

0.37529}; 

/*Third-Order Factor Name*/ 

tname={"Third"}; 

print 'First-order pattern matrix',,P1 [rowname=varname colname=fname]; 

print "Second-order factor pattern matrix",, P2 [rowname=fname colname=sname]; 

print 'Third-order pattern matrix',,P3 [rowname=sname colname=tname]; 

/*Gorsuch Product Matrixes*/ 

G1 = P1*P2; 

G2 = P1*P2*P3; 

print 'Product Matrix for Second-Order Factors',, G1 [rowname=varname colname=sname]; 

print 'Product Matrix for Third-Order Factors',, G2 [rowname=varname colname=tname]; 

/*Thompson Orthogonal Solution for Product Matrixes 

Becasue only one third order factor is extracted, rotation is not possible for triple 

product matrix (G2). However, orthogonal rotation can be done for second-order 

product matrix (G1), and same procedure for the heuristic example 1 can be used.*/ 

data product(type = factor); 

_type_ = 'pattern'; 

 input _NAME_ $ t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15; 

 datalines; 

second1 0.4931679 0.8694121 0.6181095 0.6031202 0.030959 0.0540271 0.0224305 

0.1196675 0.1301639 -0.383154 -0.088342 -0.029374 0.2018161 0.082398 0.0840453 

second2 0.3164767 -0.254942 0.1982811 0.0579655 0.6627481 0.627196 0.641541 

0.5739874 0.6010618 0.7325619 0.6882909 0.6371695 0.5364637 0.0841007 -0.014005 

second3 0.0925484 0.1156012 -0.312668 0.2171229 -0.09 0.0437645 -0.073023 -0.003176 

-0.027503 0.0663499 0.2208145 -0.072325 0.0639622 0.7205378 0.790318 

; 

proc factor data =product nobs = 301 reorder 

rotate = varimax; 

Run; 

/*Schmid and Leiman Solution*/ 

proc iml; 

/*Step 1: Augmented Matrix for third-order factor*/ 

A1 = { 0.77987 0.625941517 0 0, 

0.82152 0 0.570179699 0, 

0.37529 0 0 0.926907447}; 

/* Second-Order Factor Pattern Matrix*/ 

P2 = { 0.07429 0.72782 -0.03133, 

-0.14275 0.86005 0.07487, 

0.64379 0.20876 0.20609, 

0.06128 0.04942 0.91211, 
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0.88227 -0.2323 0.10051, 

0.60252 0.15649 -0.37721}; 

/*First-order factor names*/ 

fname={"First1" "First2" "First3" "First4" "First5" "First6"}; 

/*Second-order factor names*/ 

sname={"Second1" "Second2" "Second3"}; 

/*Third-Order Factor Name*/ 

tname={"Third"}; 

/*Step 2: Postmultiplying P2(Second-order pattern matrix) by A1 (Augmented1)*/ 

SL1 = P2*A1; 

SL1name=tname || sname; 

Print 'Augmented Matrix 1',,A1; 

print 'Orthogonalized third and second order factors',, SL1 [rowname=fname 

colname=SL1name]; 

/*Step 3: Augmented Matrix for second order matrix*/ 

A2 = { 0.64410 0.04650 0.41499 -0.02904 0.65549 0.00000 0.00000 0.00000 0.00000 

0.00000, 

0.62332 -0.08935 0.49038 0.06940 0.00000 0.55669 0.00000 0.00000 0.00000 0.00000, 

0.75092 0.40297 0.11903 0.19103 0.00000 0.00000 0.60940 0.00000 0.00000 0.00000, 

0.43070 0.03836 0.02818 0.84544 0.00000 0.00000 0.00000 0.37511 0.00000 0.00000, 

0.53494 0.55225 -0.13245 0.09316 0.00000 0.00000 0.00000 0.00000 0.55640 0.00000, 

0.45688 0.37714 0.08923 -0.34964 0.00000 0.00000 0.00000 0.00000 0.00000 0.66346}; 

/*First-order pattern matrix*/ 

P1 = { 0.18886 -0.02531 0.79281 -0.02218 -0.0977 0.08743, 

0.00082 -0.03928 0.01414 0.01878 0.96936 -0.0029, 

0.01066 0.02732 0.07891 0.02993 -0.00303 0.94811, 

-0.11156 -0.01733 0.8165 0.0451 0.08566 0.0082, 

0.87709 0.03666 -0.06154 -0.04185 -0.0094 0.0357, 

0.85121 -0.02683 0.07293 0.06399 -0.06275 -0.01419, 

0.92947 -0.01447 -0.0519 -0.05269 0.01286 -0.03882, 

0.76858 0.03149 0.00443 0.0153 0.06631 0.00792, 

0.85758 -0.05071 0.07514 -0.0027 -0.00455 0.02493, 

-0.01946 0.85468 -0.16586 0.062 -0.18187 0.0062, 

0.18728 0.66326 0.05327 0.11362 0.04877 -0.15246, 

-0.1029 0.82199 -0.02921 -0.08581 0.03388 0.14901, 

-0.02333 0.6115 0.32887 -0.08825 0.12726 -0.04606, 

0.09149 0.0367 -0.2126 0.86552 0.11965 0.0981, 

-0.12514 -0.03844 0.27466 0.78603 -0.10742 -0.07031}; 

/* Variable names*/ 

varname={"t1" "t2" "t3" "t4" "t5" "t6" "t7" "t8" "t9" "t10" "t11" "t12" "t13" "t14" "t15"}; 

/*First-order factor names*/ 

fname={"First1" "First2" "First3" "First4" "First5" "First6"}; 

/*Second-order factor names*/ 

sname={"Second1" "Second2" "Second3"}; 

/*Third-Order Factor Name*/ 

tname={"Third"}; 

/*Step Final: Postmultiplying P1(First-order pattern matrix) by A2 (Augmented2) 
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= Schmid Leiman Solution*/ 

SLS = P1*A2; 

SLSname=tname || sname || fname; 

Print 'Augmented Matrix 2', , A2; 

print 'Orthogonalized third second and first order factors (SLS Solution)',, SLS 

[rowname=varname colname=SLSname]; 
 


