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Abstract: In this paper, the thermal buckling loads of elliptical thin plates made of functionally graded 

material (FGM) with thicknesses that vary parabolically are examined. The aim is to study the effect of 

parabolic thickness variations in the directions of both axes on the thermal buckling of FGM plates. In the 

analyses, the boundaries are assumed to be simply supported and clamped. Rayleigh-Ritz method is 

applied to solve the partial differential equations. The Poisson’s ratios of the plates are kept constant, but 

their moduli of elasticity and thermal expansion coefficients are assumed to vary functionally in the 

thickness direction due to the material characteristics of FGMs. The study is carried out for several plate 

aspect ratios. Thermal buckling results of elliptical FGM plates with parabolically varying thicknesses are 

determined and the critical temperatures of those plates are obtained.  

 

Keywords: Elliptical plate, Thermal buckling, Variable thickness, Temperature, FGM, Rayleigh-Ritz 

method. 

 
Değişken Kalınlıklı Eliptik FGM Plakların Burkulma Sıcaklıklarının Belirlenmesi  

 

Öz: Bu çalışmada, bir fonksiyona bağlı olarak değişen malzemeden (FGM) yapılmış, kalınlıkları 

parabolik olarak değişen, eliptik ince plakların termal burkulma yükleri incelenmiştir. Amaç, her iki 

eksendeki parabolik kalınlık değişimlerinin FGM plakların termal burkulması üzerindeki etkisini 

incelemektir. Analizlerde, sınır koşulları basit mesnetli ve ankastre olarak varsayılmaktadır. Kısmi 

diferansiyel denklemleri çözmek için Rayleigh-Ritz yöntemi kullanılmıştır. Plakların Poisson oranlarının 

sabit olduğu, ancak elastisite modülü ve ısı genleşme katsayılarının, FGM'lerin malzeme özellikleri 

nedeniyle kalınlık yönünde fonksiyonel olarak değiştiği varsayılır. Çalışma çeşitli plak en/boy oranları 

için gerçekleştirilmiştir. Parabolik olarak değişen kalınlıklara sahip eliptik FGM plaklarının termal 

burkulma sonuçları belirlenip, bu plakların kritik sıcaklıkları elde edilmiştir. 

 

Anahtar Kelimeler: Eliptik plak, Termal burkulma, Değişken kalınlık, Sıcaklık, FGM, Rayleigh-Ritz 

yöntemi. 

 

1. INTRODUCTION 

 

Because of their extensive application areas, plates and plate-type structures have gained 

special importance and the problems related to their mechanical behavior have become more 

complex. Therefore, the demand for the solutions of these problems has increased. Thermal 

buckling of plates is one of these problems which has received widespread attention by many 

researchers. Since the investigations on the thermal effect on plates show that the traditional 

composite materials do not have high-temperature resistance property, the need for the use of 

composite materials which provide high-temperature resistance has arised.  

                                                           
*  Maltepe Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, İnşaat Mühendisliği Bölümü, 34857, Maltepe, 

İstanbul  

    Correspondence Author: Işıl Sanrı Karapınar (isilkarapinar@maltepe.edu.tr) 



Sanrı Karapınar I.: Determination of B. Temperatures for Elliptical FGM Plates with Variable Thicknesses 

76 

Functionally graded materials (FGMs) are one of these composite materials that perform 

well in many engineering applications in high-temperature environments. FGMs have a smooth 

and continuous variation of material properties from one surface to another. Generally, they are 

composed of ceramic and metal or a combination of different materials. Since they are mainly 

designed to resist high-temperatures, their thermal behavior has been a big concern for 

researchers. 

When FGMs are under high-temperatures, thermal loads induce instability. At this point, the 

temperature at which the structure becomes unstable is called buckling temperature. Exceeding 

this temperature causes big increments in deflections and stresses which result in  the failure of 

the structure. As a consequence, in recent years most researchers have been studying on the 

buckling and post-buckling of FGM plates subjected to thermal loading. Among those studies, 

thermal buckling of simply supported FGM rectangular plates was investigated by using the 

classical and higher order shear deformation plate theories (Javaheri and Eslami, 2002). 

Buckling temperature of FGM plates with fully clamped edges was calculated by using solid 

finite elements (Na and Kim, 2004, 2006). The authors investigated the thermal buckling and 

post-buckling behaviors due to uniform and non-uniform temperature rise. Axisymmetric 

buckling of simply supported and clamped circular FGM plates was studied under a uniform 

temperature rise or a radial compression using the higher order shear deformation theory 

(Najafizadeh and Heydari, 2004, 2008). As a result, the buckling loads of a circular FGM plate 

obtained by the first-order shear deformation and classical plate theories were compared. 

Buckling analysis of simply supported FGM skew plates was carried out based on the first-order 

shear deformation theory in conjunction with the finite element approach (Ganapathi and 

Prakash, 2006). This study was extended and nonlinear post-buckling response of the same 

plates were investigated under different boundary conditions by using Mori-Tanaka scheme 

(Prakash et al., 2008). In another study,  in order to understand the effects of geometric 

deficiencies on the buckling response of FGM plates, Galerkin method was employed (Tung 

and Duc, 2010). This work was continued with the postbuckling analysis of shear deformable 

FGM  plates on elastic foundations and the consequences of geometric parameters and boundary 

conditions were also revealed (Duc and Tung, 2011). There are also few studies about thermal 

buckling analysis of FGM shells. In one of these studies, thermal buckling loads of functionally 

graded truncated conical shells were investigated by using Love’s shell theory (Sofiyev, 2007). 

In this study, three types of thermal loading were applied on the simply supported truncated 

conical shells and the critical temperatures were determined. 

Furthermore, uniform temperature increment and gradient through the thickness effects on 

the thermal buckling of simply supported FGM rectangular plates were studied by using the first 

order shear deformation plate theory (Wu, 2004). Thermal buckling of imperfect FGM 

rectangular plates was examined under uniform temperature rise, the non-linear temperature rise 

through the thickness and axial temperature rise (Shariyat and Eslami, 2005, 2006). The 

analyses were carried out based on the first order shear deformation and the classical thin plate 

theories. The results were compared with the results of perfect FGM and imperfect isotropic 

plates. Also,  buckling analysis of rectangular thick FGM plates under mechanical and thermal 

loads was investigated (Shariyat and Eslami, 2007). The equilibrium and stability equations 

were determined using the third order shear deformation plate theory. Mechanical and thermal 

loads were applied on sandwich plates with FGM face sheets and post-buckling analysis was 

performed (Shen and Li, 2008). Moreover, for simply supported, midplane symmetric FGM 

plates under in-plane non-uniform parabolic temperature distribution, thermal post-buckling 

analysis, and heat conduction were examined (Shen, 2007). Moderately thick simply supported 

FGM plates were studied under a uniform temperature rise and a steady state temperature across 

the plate thickness by using the first order shear deformation theory (Lanhe, 2004).  

It is observed that there is a very limited work about the thermal buckling of plates with 

variable thicknesses. However, there are quite a number of researches about the vibration 
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analysis of tapered plates. Recently, free vibration analysis was performed for some composite 

doubly-curved shells, singly-curved shells, and plates having a continuous thickness change 

(Bacchiochi et al., 2016). Also, natural frequencies of several doubly-curved shells with variable 

thickness were evaluated by using Generalized Differential Quadrature method (Tornabene et 

al., 2016). 

Moreover, an elastic buckling analysis of linearly and parabolically tapered circular plates 

was presented (Wang et al., 1995). In another study, the power series method was developed in 

order to solve the buckling problem of uniaxially compressed rectangular plates with a linearly 

tapered thickness (Kobayashi and Sonoda, 1990). An analog equation solution to plates with 

variable thicknesses for the buckling analysis was applied and numerical results were given to 

illustrate the effectiveness of the proposed method (Nerantzaki and Katsikadelis, 1996).  

In the present study, the buckling load which is highly dependent on the thickness variations 

and the thermal buckling behavior of elliptical FGM plates with variable thicknesses are 

analyzed. In the analysis, the boundaries are considered as simply supported and clamped. 

Rayleigh-Ritz method is used to solve the partial differential equations. The study examines the 

effects of the parabolic thickness variations, volume fraction indices, aspect ratios, and 

boundary conditions on the thermal buckling behavior of FGM plates and presents the obtained 

buckling temperatures which can lead to a failure in the plates.  

 

2. METHODOLOGY 

2.1. Material Properties of FGMs 

 

FGMs are composed of two or more constituent phases of materials in which not only 

volume fraction distribution of constituent materials from one to another changes gradually, but 

also the thermal and mechanical properties change consequently. Most of the FGM plates are 

generally made of a controlled mixture of ceramics and metals. Since the ceramic constituent of 

the material has a low thermal conductivity, it provides high-temperature resistance.  In addition 

to that, the ductile metal constituent prevents failure caused by stresses due to the high-

temperature gradient in a very short period of time. In the present study, the material in the 

upper half of the plate (0≤z≤ t/2) is ceramic rich, whereas that in the lower half (-t/2≤z≤ 0) is 

metal-rich as shown in Fig. 1. For the validity of the classical thin plate theory, the transverse 

deflections are assumed to be small compared to plate dimensions.  

 

 
Figure 1: 

Representative grading of an FGM plate in the thickness direction z 

 

Since FGM plates are composed of more than one material, the plate behavior is governed 

by the effective material properties of the mixture. Through-the-thickness composition of the 

material is assumed to be governed by a volume fraction rule. The volume fractions of ceramic, 

Vc, and metal, Vm, are expressed as follows: 
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where z is the thickness coordinate variable and –t/2≤z≤t/2, t is the plate thickness and n is the 

power law index (0n). When n=1, the change in the composition of ceramic and metal is 

linear and as it is seen from Eqs. (1), the value of n=0 represents a fully ceramic plate. Also, for 

high values of n, the dominant constituent material first exhibits changes in small increments 

and then changes rapidly on the opposite side. On the other hand, for low values of n, the 

material properties change rapidly near the surface. The variations of the volume fraction of 

ceramic through the thickness are illustrated in Fig. 2. 

 

 
 

Figure 2: 

Ceramic’s volume fraction distribution through the thickness  

 

It is accepted that the non-homogenous material properties such as modulus of elasticity, E, 

and coefficient of thermal expansion, α, change in the thickness direction, z, whereas Poisson’s 

ratio, ν, is constant. Their expressions are 
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where subscripts m and c represent the metal and ceramic constituents, respectively. When Eq. 

(1) is substituted into Eq. (2), the material properties of the FGM plate are determined. Thus,  
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The effective properties obtained by using Eq. (4) are position dependent in the thickness 

direction. The effective bending rigidity, Deff, of the plate can be obtained by integration over 

the thickness as 
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where νeff is the effective Poisson’s ratio of the FGM plate. In many studies on FGM, Poisson’s 

ratio effect on the deformations is minor compared to that of the modulus of elasticity as given 

in Delale and Erdoğan (1983). Therefore, Poisson’s ratio is kept constant and modulus of 

elasticity is assumed to vary in the direction of thickness. 

 

2.2. Constitutive Relations 

 

The stress-strain relationship for the plates subjected to temperature changes is expressed 

as 

 

 

 

2

2

(1 )
1

(1 )
1

2(1 )

eff

x x eff y eff eff

eff

eff

y y eff x eff eff

eff

eff

xy xy xy

eff

E
T

E
T

E
G

     


     


  


      

      

 


 (5) 

where G is the shear modulus and ∆T is the temperature change. When the stress resultants are 

given in terms of displacements, by the help of the well-known strain-displacement relations, 

Eq. (6) can be determined. 
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In Eqs. (6), N* and M* are the thermal stress resultants which can be expressed as 
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and the flexural rigidity, D, of the plate per unit length is 
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2.3. Solution by Rayleigh-Ritz Method 

The total energy function, F, of a system can be given as 
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where strain energy, kinetic energy, and potential energy are represented by U, T and V, 

respectively. The coefficients, γ1 and γ2 are chosen according to the type of the plate problem. 

For a vibration problem, γ1=1 and γ2=0 whereas for a buckling problem, γ1=0 and γ2=1. U, T, 

and V can be expressed as  
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where ρ is the mass density, N is the in-plane normal force per unit length and 2  is the second 

order Laplace operator which is defined as 
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In the solution of a plate buckling problem, after the substitution of the strain and the 

potential energy expressions, the total energy expression takes the following form: 
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In applying the Rayleigh-Ritz method, which is based on the energy principle, first, an 

appropriate deflection shape must be assumed for the system. In a plate problem, the deflected 

middle surface may be presented as series: 
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where fi(x,y) are continuous functions which satisfy at least the geometrical boundary conditions 

and represents the deflected plate surface. By using the minimum potential energy principle, the 

unknown constants α1, α2,...,αn, are obtained. With this minimization procedure, n simultaneous 

algebraic equations will be determined in terms of the n unknown coefficients α1, α2,...,αn.  
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2.4. Plates with Variable Thicknesses 

 

In many engineering applications where the weight reduction of the structure is 

exceptionally important, the use of plates with variable thickness can be one of the best choices. 

In a previous study which is done by Bayer et al. (2002), the plate thickness variation is 

considered as the following relation:  
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where t0 is the thickness of a plate with a constant thickness, α is a parameter defining the 

constant part of the thickness, β is the taper parameter controlling the thickness variation and c 

is a parameter controlling the volume of the plate and defined as 
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It should be noted that plus and minus signs in Eqs. (14) and (15) denote the clamped and 

simply supported cases, respectively. On account of thickness variety, since the flexural rigidity 

also changes, it should be rewritten as: 
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where D0 is the flexural rigidity of the plate with constant thickness and H is the function 

representing the variable plate thickness which are defined as follows: 
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2.5. Basic Assumptions and Equations  

 

Since the problem in hand considers elliptical boundaries, to solve the problem by 

Rayleigh-Ritz method, firstly, continuous functions representing the plate deflections are 

selected as follows:  
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where r is the degree of the polynomial trial function with a constraint of i+j≤ r and αij are the 

coefficients to be determined. In this study, in order to obtain accurate results, an appropriate 

shape function at the order of r=4 is selected. In Eq. (19), ϕ(x,y) is the boundary shape equation 

which is defined for an elliptical plate as follows: 
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In the equation, ϕ(x,y) assures that boundary conditions given in the problem are satisfied 

by each element of these trial functions. In order to obtain an even function for the deflection 

function of the chosen system, the trial function’s elements having odd powers of x and y are 

cancelled. It should be noted that the selection of the trial functions is very important to have 

better approximations and consume time. 

If the edges are simply supported, then in Eq. (20), Ω=1. If the edges are clamped, then, 

Ω=2. In this investigation, the plate thickness is expected to differ parabolically. Thus, by using 

Eqs. (15), (16) and (18), the total energy expression for the buckling problem of an elliptical 

plate takes the following form: 
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During the solution of the differential equations, there are difficulties because of the 

integration over the elliptical area. Therefore, the integration over the elliptical region should be 

taken in accordance with the elliptical boundary equation which defines the ranges of the 

variables as 
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In the application of the Rayleigh-Ritz method, the thickness variation should be taken into 

account. This effect introduces the parameters α and β. During the numerical applications one 

dimension of the plate is kept constant (a=1). The boundary conditions are assumed as fully 

clamped and simply supported. 

For the solution of FGM plates, effective material properties are obtained by using Eqs. (1) 

and (2) in accordance with the variation of the power law index, n. Again, it is assumed that 

plate layers are composed of ceramics and metals with the mixing ratio changing continuously 

in the thickness direction. The effective modulus of elasticity and the thermal expansion 

coefficient of the FGM layers are temperature-dependent, whereas Poisson’s ratio depends 

weakly on the temperature change. Therefore, in this study, it is assumed to be constant and 

taken as 0.3. As a result of the analyses, the thermal buckling load factor, λ, changes due to the 

change in the material properties and the variation of the α and β parameters. According to this, 

λ is calculated for the different values of a/b ratios and used in the calculation of the buckling 

temperature of the elliptical FGM plate with variable thickness. After having found the buckling 

factors, buckling temperatures are calculated by substituting Eq. (7) into Eq. (6) where ∆T 

denotes the buckling temperature, Tcr. Hence, the formulation for Tcr can be written as; 
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3. NUMERICAL RESULTS AND DISCUSSION 

The analyses for the buckling temperatures of elliptical FGM plates with parabolic 

thickness variation start with the calculation of the buckling parameters. Before the thermal 

analyses, the buckling loads of homogenous, isotropic elliptical plates are obtained by using the 

Rayleigh-Ritz method with clamped and simply supported boundaries. The results are compared 

in Table 1with those obtained in the study done by Wang et al. (1994). So, for the comparison 
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of the results, the same aspect ratios are used and all values are normalized by the parameter 

λ=Na
2
/D.  

 

Table 1. Comparison of the buckling load factors of homogenous elliptical plates 

Buckling Load Factors for Simply Supported Elliptical Plates ( λ=Na²/D) 

a/b 1 1.125 1.25 1.375 1.5 2 2.5 3 

Wang et 

al. (1994) 
16.78 19.13 21.99 25.36 29.19 48.76 74.15 104.65 

Present 

study 
16.79 19.15 22.02 25.39 29.23 48.82 74.25 104.8 

Buckling Load Factors for Clamped Elliptical Plates ( λ=Na²/D) 

a/b 1 1.125 1.25 1.375 1.5 2 2.5 3 

Wang et 

al. (1994) 
58.67 66.85 76.68 88.1 101.06 166.84 253.06 358.67 

Present 

study 
58.73 66.91 76.74 88.17 101.13 166.94 253.18 358.87 

 

Table 2. Buckling parameters for the simply supported elliptical plate with variable 

thickness 

   a/b 

  1 1.11 1.25 1.43 1.67 2 2.5 3.33 5 10 

α β λ=Na²/D 

2.0 0.0 16.79 18.86 22.02 26.98 35.04 48.82 74.26 127.91 276.27 1060.45 

2.0 0.2 19.11 21.47 25.07 30.72 39.92 55.67 84.80 146.37 316.92 1219.21 

2.0 0.6 25.40 28.54 33.33 40.86 53.14 74.22 113.37 196.52 427.66 1652.79 

2.0 1.0 35.16 39.50 46.14 56.60 73.67 103.06 157.86 274.81 601.12 2333.88 

1.8 0.0 16.79 18.86 22.02 26.98 35.04 48.82 74.26 127.91 276.27 1060.45 

1.8 0.2 19.40 21.79 25.45 31.18 40.52 56.51 86.10 148.64 321.94 1238.86 

1.8 0.6 26.73 30.03 35.08 43.01 55.94 78.16 119.43 207.17 451.23 1745.22 

1.8 1.0 38.82 43.61 50.95 62.50 81.37 113.89 174.58 304.26 666.52 2591.14 

1.4 0.0 16.79 18.86 22.02 26.98 35.04 48.82 74.26 127.91 276.27 1060.45 

1.4 0.2 20.25 22.75 26.57 32.56 42.32 59.03 89.97 155.44 336.93 1297.48 

1.4 0.6 31.14 34.98 40.86 50.11 65.21 91.18 139.52 242.50 529.47 2052.30 

1.4 1.0 52.82 59.35 69.35 85.09 110.86 155.35 238.65 417.36 918.10 3582.57 

1.2 0.0 16.79 18.86 22.02 26.98 35.04 48.82 74.26 127.91 276.27 1060.45 
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Table 2. Buckling parameters for the simply supported elliptical plate with variable 

thickness (continued) 

   a/b 

  1 1.11 1.25 1.43 1.67 2 2.5 3.33 5 10 

α β λ=Na²/D 

1.2 0.2 20.93 23.52 27.46 33.65 43.74 61.03 93.05 160.83 348.83 1344.01 

1.2 0.6 35.16 39.50 46.14 56.60 73.67 103.06 157.86 274.81 601.12 2333.88 

1.2 1.0 68.51 76.98 89.95 110.41 143.91 201.84 310.56 544.50 1201.63 4702.40 

1.0 0.0 16.79 18.86 22.02 26.98 35.04 48.82 74.26 127.91 276.27 1060.45 

1.0 0.2 21.94 24.64 28.78 35.27 45.85 63.99 97.61 168.84 366.49 1413.14 

1.0 0.6 42.15 47.36 55.32 67.87 88.38 123.75 189.80 331.11 726.18 2826.02 

1.0 1.0 104.00 116.87 136.59 167.70 218.73 307.15 473.61 833.32 1847.41 7259.47 

 

Table 3. Buckling parameters for the clamped elliptical plate with variable thickness 

   a/b 

  1 1.11 1.25 1.43 1.67 2 2.5 3.33 5 10 

α β λ=Na²/D 

1.0 0.0 58.73 65.92 76.74 93.55 120.67 166.98 253.47 442.55 995.53 4047.11 

1.0 0.2 46.99 52.74 61.38 74.78 96.39 133.24 202.07 352.78 794.19 3228.95 

1.0 0.6 32.04 35.96 41.83 50.92 65.53 90.42 136.96 239.20 539.27 2192.66 

1.0 1.0 23.28 26.12 30.37 36.93 47.48 65.43 99.04 173.11 390.76 1588.66 

0.8 0.0 58.73 65.92 76.74 93.55 120.67 166.98 253.47 442.55 995.53 4047.11 

0.8 0.2 44.60 50.06 58.26 70.97 91.46 126.39 191.64 334.59 753.38 3063.11 

0.8 0.6 28.24 31.69 36.86 44.85 57.70 79.58 120.49 210.50 474.80 1930.48 

0.8 1.0 19.53 21.91 25.48 30.97 39.79 54.80 82.93 145.05 327.64 1331.88 

0.4 0.0 58.73 65.92 76.74 93.55 120.67 166.98 253.47 442.55 995.53 4047.11 

0.4 0.2 35.02 39.30 45.73 55.67 71.68 98.95 149.90 261.77 589.96 2398.76 

0.4 0.6 16.64 18.67 21.70 26.37 33.86 46.62 70.55 123.48 279.07 1134.26 

0.4 1.0 9.84 11.04 12.82 15.57 19.97 27.47 41.61 73.01 165.29 671.29 

0.2 0.0 58.73 65.92 76.74 93.55 120.67 166.98 253.47 442.55 995.53 4047.11 

0.2 0.2 23.28 26.12 30.37 36.93 47.48 65.43 99.04 173.11 390.76 1588.66 

0.2 0.6 7.97 8.94 10.38 12.60 16.15 22.22 33.69 59.19 134.06 544.24 

0.2 1.0 4.24 4.76 5.52 6.70 8.60 11.84 18.01 31.75 71.98 291.81 

 

In the analysis of FGM plates, the volume fractions of ceramic, Vc, and metal, Vm, effective 

moduli of elasticity, Eeff, and effective thermal expansion coefficients, αeff, are obtained in 

accordance with the variation of the power law index, n. Seven arbitrary values of the power 

law index, n= 0.1, 0.3, 0.5, 1, 2, 5, 15 are considered in the calculations. The case n=0 

represents a fully ceramic plate and n=1 represents the linear variation of the composition of 

ceramics and metals. During the numerical applications, modulus of elasticity and coefficient of 
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thermal expansion for metal are taken as Em=70 GPa and αm=23x10
-6

 1/ºC and for the ceramic 

Ec=380 GPa and αc=7.4x10
-6

 1/ºC, respectively. Poisson’s ratio is assumed to be 0.3. The results 

of these calculations are presented in Table 4. 

 

Table 4. Effective material properties 

n  Vc Vm Eeff (GPa) αeff (1/ºC) 

0.1 0.909 0.091 351.79 8.82E-06 

0.3 0.769 0.231 308.39 1.1E-05 

0.5 0.667 0.333 276.77 1.26E-05 

1 0.5 0.5 225 1.52E-05 

2 0.333 0.667 173.23 1.78E-05 

5 0.167 0.833 121.77 2.04E-05 

15 0.062 0.938 89.22 2.2E-05 

 

After obtaining the effective values of moduli of elasticity and the thermal expansion 

coefficients, it is possible to achieve the buckling load factors for elliptical FGM plates. Since 

the effect of the parabolic thickness variation is taken into account, the buckling load factors for 

different thickness variations and a/b ratios are calculated. In the calculations, the controlling 

parameter of the constant part of the thickness, α, is taken as 1 while the controlling parameter 

of the thickness variation, β, changes. When the buckling load factors for all cases are found for 

the selected α and β values, the buckling temperatures of elliptical FGM plates with variable 

thicknesses can be obtained. The critical temperature results under the uniform temperature rise 

for the simply supported and clamped elliptical FGM plates with variable thicknesses are 

presented in Figs. 3 and Figs. 4, respectively. 

 

   (a)         (b)   

 
                 (c)         (d) 

Figure 3: 

Buckling temperatures of simply supported elliptical FGM plates  

(a) α=1, β=0, (b)  α=1, β=1, (c) α=1, β=0.2, (d)  α=1, β=0.6 
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   (a)         (b)  

 

            (c)            (d) 

Figure 4: 

Buckling temperatures of clamped elliptical FGM plates  

(a) for α=1, β=0, (b) for α=1, β=1, , (c) α=1, β=0.2, (d) α=1, β=0.6 

 

4. CONCLUSIONS 

 

In this study, thermal buckling analyses of elliptical FGM plates with variable thicknesses 

are studied. First, buckling analyses for the homogenous elliptical plates are employed. The 

plates are assumed as simply supported and fully clamped. The results in the literature for the 

same kind of plates are compared with the present study. In the studies encountered in the 

literature, the buckling load factors are defined in different ways. For the comparison, the results 

are converted into the same buckling load factor definition which is λ=Na
2
/D. Buckling factors 

for elliptical plates with a wide range of aspect ratios are computed by using the Rayleigh-Ritz 

method. These buckling results for simply supported and clamped plates are given in Tables 1-

2. In comparison, it is seen that very accurate buckling load factors with rapid convergence are 

obtained. The difference between the results of the present investigation and those acquired in 

the study done by Wang et al. (1994) is less than 1%. 

After obtaining the buckling load factors for the homogenous plates, thermal buckling 

analyses of FGM tapered plates are employed. In the case of the parabolic variation of the plate 

thicknesses, for all the boundary conditions, controlling parameter of the constant part of the 

plate is kept constant (α=1) and the controlling parameter of the thickness variation is changed 

between 0 and 1 (0≤β≤1). It should be noted that the results of α=1, β=0 represents the plates 

with a constant thickness. While the controlling parameter of the thickness variation, β 

decreases, the buckling load factors and as a result of this, buckling temperatures decrease as 

well. The buckling temperatures for the elliptical plates increase by the increase of a/b and 

decrease by the increase of the power law index, n. It is also observed that for the higher values 

of n, there is no significant difference in the temperatures for the FGM plates with variable 

thicknesses. In the case of parabolic variation of the plate thickness, no matter what the 
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boundary conditions are, the buckling load factor increases according to the constant thickness 

values.  
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