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Abstract
In 2003, Exton established numerous quadratic transformation formulas. The aim of this
short note is to provide generalization of one of the quadratic transformation formulas.
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1. Introduction
The generalized hypergeometric function pFq(a; b; z), where a = (a1, a2, . . . , ap) and

b = (b1, b2, . . . , bp), has series expansion [13, p. 41]

pFq

[ a1, a2, . . . , ap

b1, b2, . . . , bp
; z
]

=
∞∑

n=0

(a1)n(a2)n . . . (ap)n

(b1)n(b2)n . . . (bq)n

zn

n!
,

where for nonnegative n ∈ N0, the Pochhammer symbol is defined by (a)0 = 1, (a)n =
a(a + 1) · · · (a + n − 1).

The generalized hypergeometric functions pFq, and in particular hypergeometric func-
tions 2F1, are fundamental in the field of applied mathematics, mathematical physics and
engineering mathematics. Most of the commonly used functions that occur in analysis are
special cases or limiting cases of hypergeometric functions.

In Wolfram’s Mathematica this important function pFq is implemented as
HypergeometricPFQ and suitable for both symbolic and numerical calculation. For
p = q + 1, it has a branch cut discontinuity in the complex z plane running from 1
to ∞. When p ≤ q the above series on the right-hand side converges for each z ∈ C.

It should be remarked here that whenever hypergeometric function or generalized hy-
pergeometric function can be summed to be expressed in terms of gamma function, the
results are very important from the application point of view. Thus the classical summa-
tion theorems such as those of Gauss, Gauss second, Kummer and Bailey for the series
2F1; Watson, Dixon, Whipple and Saalschütz for the series 3F2 and others play a key role.
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A recent study of generalized summation theorems for the series 2F1 with an applications
to Laplace transforms of convolution type integrals involving Kummer’s functions 1F1 has
been given [10].

Bailey [2], in his very interesting, useful and popular paper, obtained a large number of
results involving the products of the generalized hypergeometric function. Also, interesting
summations due to Ramanujan can also be obtained very quickly with help of above
mentioned classical summation theorems.

In addition to this, in 1982, Gessel and Stanton [7] have evaluated some interesting and
strange evaluation of the hypergeometric function.

Recently good deal of progress had been done in the direction of generalizing the above
mentioned classical summation theorems. For this, we refer a paper by Rakha and Rathie
[12].

Very recently, by means of telescoping method, Chu [4] presented a new proof for a
2F1-series identity conjectured by Gosper [8] and was proved in 2013 by Ebisu [5].

On the other hand, as a consequence of Bailey’s transform, Slater [13, Eq. (2.4.10), p. 60]
gave a useful and general hypergeometric transformation which was recently corrected by
Kim, et. al [9] and is given by

∞∑
n=0

((a))n((d))n((v))2n

((h))n((g))n((f))2n

xnynz2n

n! U+D+V FE+F +G

[
(u), (d) + n, (v) + 2n
(e), (g) + n, (f) + 2n

; xwz

]

=
∞∑

n=0

((d))n((u))n((v))n

((e))n((f))n((g))n

xnwnzn

n!

×A+E+V +1FU+H+F

[
−n, (a), 1 − n − (e), (v) + n

(h), 1 − n − (u), (f) + n
; (−1)1+E−U yz

w

]
,

where we have adopted the convention of writing the finite sequence of parameters
(a1, . . . , aA) simply by (a) and the product of Pochhammer symbols by ((a))n =
(a1)n · · · (aA)n, where an empty product is understood to be unity. The previous general
result contains as special cases many relationships between generalized hypergeometric
functions.

In our present investigations, we are interested in the following special case
∞∑

n=0

((a))n((d))n((v))2n

((h))n((g))n((f))2n

xnyn

n! U+D+V FE+F +G

[
(u), (d) + n, (v) + 2n
(e), (g) + n, (f) + 2n

; x

]

=
∞∑

n=0

((d))n((u))n((v))n

((e))n((f))n((g))n

xn

n!

×A+E+V +1FU+H+F

[
(a), 1 − n − (e), (v) + n, −n

(h), 1 − n − (u), (f) + n
; (−1)1+E−U y

]
,

Further, if we take D = 2, F = 1, U = V = E = G = 0 with d1 = d − 1/2, d2 = d and
f = 2d, we obtained the following corrected version of general quadratic transformation
given by Exton [6, Eqn. (2.1)],

∞∑
n=0

((a))n(d − 1
2)n

((h))(d + 1
2)n4n

xnyn

n! 2F1

[
d + n − 1

2 , d + n
2(d + n) ; x

]

=
∞∑

n=0

(d − 1
2)n(d)n

(2d)n

xn

n! A+1FH+1

[
(a), −n

(h), 2d + n
; −y

]
, (1.1)

because
((d))n

((f))2n
=

(
d − 1

2

)
n

(d)n

(2d)2n
=

(
d − 1

2

)
n

4n
(
d + 1

2

)
n

.
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In this, if we use the result [14, p. 34]

2F1

[
a − 1

2 , a
2a

; x

]
=
( 2

1 +
√

1 − x

)2a−1
,

we get the following result also obtained by Exton [6],( 2
1 +

√
1 − x

)2d−1
A+1FH+1

[ (a), d − 1
2

(h), d + 1
2

; yz

]

=
∞∑

n=0

(d − 1
2)n(d)n

(2d)n

xn

n! A+1FH+1

[
(a), −n

(h), 2d + n
; −y

]
, (1.2)

where
z = x

(1 +
√

1 − x)2 . (1.3)

Now from (1.2), we observe that if the inner hypergeometric function on the right of
(1.2) can be summed by means of known summation theorems, then the resulting quadratic
transformations are obtained. Thus, for example, if in (1.2), we take A = 1, H = 0, y = 1
and a = 2d − 1, we have( 2

1 +
√

1 − x

)2d−1
2F1

[ 2d − 1, d − 1
2

d + 1
2

; z

]

=
∞∑

n=0

(d − 1
2)n(d)n

(2d)n

xn

n! 2F1

[
2d − 1, −n

2d + n
; −1

]
, (1.4)

where z is given by (1.3).
The function 2F1 appearing on the right hand side of (1.4) can be evaluated with the

help of classical Kummer’s summation theorem [14] viz,

2F1

[
a, b

1 + a − b
; −1

]
=

Γ
(
1 + a

2
)

Γ(1 + a − b)
Γ(1 + a) Γ

(
1 + a

2 − b
) ,

and after some simplification, we get the following result( 2
1 +

√
1 − x

)2d−1
2F1

[ 2d − 1, d − 1
2

d + 1
2

; z

]
= 2F1

[
d − 1

2 , d

d + 1
2

; x

]
, (1.5)

where z is given by (1.3). This formula was also obtained by Choi and Rathie [3],
The aim of this short note is to provide generalization of the result (1.5) in the most

general form. For this we will use the results known as the generalizations of Kummer’s
summation theorem obtained earlier by Rakha and Rathie [12].

2. Generalizations of (1.5)
In this section, we prove two master formulas for the quadratic transformation (1.5).

Proposition 2.1. For each i ∈ N0 the following formulas( 2
1 +

√
1 − x

)2d−1
2F1

[
2d + i − 1, d − 1

2
d + 1

2
; z

]

= 2−i
i∑

r=0

(
i

r

)
2F1

[
d − 1

2 , d + r
2

d + 1
2

; x

]
(2.1)
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and ( 2
1 +

√
1 − x

)2d−1
2F1

[
2d − i − 1, d − 1

2
d + 1

2
; z

]

= (−2)i

Γ (i + 1)

i∑
r=0

(−1)r

(
i

r

)
Γ
(
d + r

2
)

Γ
(
d − i + r

2
)3F2

[
1, d − 1

2 , d + r
2

i + 1, d + 1
2

; x

]
(2.2)

hold, where

z = x(
1 +

√
1 − x

)2 .

Proof. The proofs of these formulas are quite straight forward. For this in order to
prove (2.1), if we take A = 1, H = 0, y = 1 and a = 2d + i − 1 in (1.1), then for
z = x/

(
1 +

√
1 − x

)2 and i = 0, 1, 2, . . . , we have( 2
1 +

√
1 − x

)2d−1
2F1

[ 2d + i − 1, d − 1
2

d + 1
2

; z

]

=
∞∑

n=0

(
d − 1

2

)
n

(d)n

(2d)n

xn

n! 2F1

[
2d + i − 1, −n

2d + n
; −1

]
. (2.3)

We now observe that the 2F1 appearing on the right hand side of the last formula can
be evaluated with the help of generalized Kummer’s summation theorem [12],

2F1

[
a, b

1 + a − b − i
; −1

]
=

2−aΓ
(

1
2

)
Γ(1 + a − b − i)

Γ
(

1
2(1 + a − 2b − i)

)
Γ
(

1
2(2 + a − 2b − i)

)
×

i∑
r=0

(
i

r

)Γ
(

1
2(a − 2b − i + r + 1)

)
Γ
(

1
2(a − i + r + 1)

) ,

taking a = 2d + i − 1 and b = −n, i.e.,

2F1

[
2d + i − 1, −n

2d + n
; −1

]
=

2−(2d+i−1)Γ
(

1
2

)
Γ(2d + n)

Γ(d + n)Γ
(

1
2 + d + n

) n∑
r=0

(
i

r

)
Γ
(
d + n + r

2
)

Γ
(
d + r

2
) .

Using the functional equality Γ(z + n) = (z)nΓ(z) and applying Legendre’s duplication
formula for the gamma function (cf. [1, p. 256]),

Γ(2d) = 22d−1
√

π
Γ(d)Γ

(
d + 1

2

)
,

we obtain

2F1

[
2d + i − 1, −n

2d + n
; −1

]
= 2−i(2d)n

(d)n

(
d + 1

2

)
n

n∑
r=0

(
i

r

)(
d + r

2

)
n

.

Now, the right hand side of (2.3) reduces to

∞∑
n=0

(
d − 1

2

)
n(

d + 1
2

)
n

xn

n!
1
2i

n∑
r=0

(
i

r

)(
d + r

2

)
n

= 1
2i

i∑
r=0

(
i

r

)
2F1

[
d − 1

2 , d + r
2

d + 1
2

; x

]
.

Thus, this completes the proof of (2.1).
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In a similar manner, the result (2.2) can be proved with the help of the summation
formula

2F1

[
a, b

1 + a − b + i
; −1

]
=

2−aΓ
(

1
2

)
Γ(1 + a − b + i)Γ(b − i)

Γ(b)Γ
(

1
2(1 + a − 2b + i)

)
Γ
(

1
2(2 + a − 2b + i)

)
×

i∑
r=0

(−1)r

(
i

r

)Γ
(

1
2(a − 2b + i + r + 1)

)
Γ
(

1
2(a − i + r + 1)

) ,

obtained recently also by Rakha and Rathie [12] for each i ∈ N0. �

3. Special cases
We mention here a few special cases of formulas given in Proposition 2.1.
For particular values of i we have:
(1) Taking i = 0, the both of formulas, (2.1) and (2.2), reduce to (1.5) due to Exton

[6].
(2) For i = 1, 2, 3, 4, 5 formulas (2.1) and (2.2) give results obtained earlier by Pogany

and Rathie [11].
Similarly other results can be obtained.
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