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Abstract
In this paper, we obtain a characterization of bipolar fuzzy detour g-eccentric node. The
concepts of bipolar fuzzy detour g-boundary nodes and bipolar fuzzy detour g-interior
nodes in a bipolar fuzzy graph are examined. Also we establish the relationship between
bipolar fuzzy cut node and bipolar fuzzy detour g-boundary node. Some properties of
bipolar fuzzy detour g-boundary nodes, bipolar fuzzy detour g-interior nodes and bipolar
fuzzy complete nodes are discussed. Bipolar fuzzy detour g-interior node and bipolar fuzzy
detour g-boundary node of a bipolar fuzzy tree are introduced using maximum bipolar
fuzzy spanning tree. Applications of detour g-distance, detour g-boundary node, detour
g-interior node are given.
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1. Introduction
In real life, the concepts of graph theory are immensely utilized in various field including
computer science, network routing, operation research, electrical engineering, artificial
intelligence, signal processing, robotics and medical science. In 1965 Zadeh [42] replace
the classical set by fuzzy set which gives better exactness in both theory and application. In
1975, Rosenfeld [36] initiate the notion of fuzzy graph and in various field it has manifold
application. The concepts of bipolar fuzzy sets was established by Zhang [44] in 1994.
Mordeson [25] explained the operations on fuzzy graph. The bipolar fuzzy graph and its
different types of operations are discussed by Akram [1, 3] and certain type of product
of bipolar fuzzy graphs given by [15]. The idea of strong arc in fuzzy graph was given
by Kiran R. Bhutani and Rosenfeld [4] and types of arc in fuzzy graph was given by
Sunil Mathew and M. S. Sunitha [23]. The notion of bridge, trees, cycles, cut node, end
node were introduced by Rosenfeld [36]. The concepts of strength of connectedness in
bipolar fuzzy graph, bipolar fuzzy tree, bipolar fuzzy cut node are established by Akram
[1–3]. Different types fuzzy graph with their operation and application are explained in
the references [5–7,11,13,14,16,17,22,26–33,35,37–39].
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Rosenfeld and Bhutani [4] establish the notion of g-distance in fuzzy graph. The notion
of g-boundary node, g-interior node, g-eccentric node was founded by J. P. Linda, and M.
S. Sunitha [18]. A characterization of g-self centrad fuzzy graph was given by K. Sameena
and M. S. Sunitha [40]. The length of longest x − y path in a connected fuzzy graph G
is the detour distance between two nodes x and y explained in G. Chartrand, P. Zang
[12]. Gary Chartrand [9] discussed the concepts of detour center of a graph. The notion
of detour number, detour set, detour nodes, detour basis in a graph were established by
Gary Chatrand, G. L. Johns and Ping Zhang [10]. Interior nodes and boundary nodes are
discussed in G. Chatrand, D. Erwin, G. L. Johns, P. Zhang [8]. Fuzzy detour g-distance
was given by J. P. Linda and M. S. Sunitha [20]. Fuzzy detour g-interior nodes and fuzzy
detour g-boundary nodes of a fuzzy graph are discussed by J. P. Linda and M. S. Sunitha
[19]. In this paper we introduced bipolar fuzzy detour g-distance, bipolar fuzzy detour
g-interior node, bipolar fuzzy detour g-boundary node and explained their relations. Also
some properties of these have been established.

The paper is structured as follows: Section 2 contains a brief background about bipolar
fuzzy sets, bipolar fuzzy graphs and path, connectedness, trees in bipolar fuzzy graphs.
Bipolar fuzzy detour g-distance, bipolar fuzzy geodesic distance are defined with examples
in Section 3. Section 4 proposes the concept of detour g-eccentric node, detour g-periphery,
detour g-eccentric subgraphs in bipolar fuzzy graphs and some of theorems are given. The
idea of bipolar fuzzy detour g-boundary node with example, complete node and Some
properties of are introduced in Section 5. Section 6 the notion of detour g-interior node
with example and some theorems. Some theorems on detour g-interior node, detour g-
boundary using maximum bipolar fuzzy spanning tree are explained in Section 7. Section
8 contains applications of bipolar fuzzy detour g-distance, detourg-interior node, detour
g-boundary node and finally conclusions are given in Section 9.

2. Preliminaries
Definition 2.1. [21,44] Let X be a non-empty set. We say A = {(x, µP

A(x), µN
A (x)) : x ∈

X} is a bipolar fuzzy set in X, where µP
A : X → [0, 1] and µN

A : X → [−1, 0] are mappings.

Definition 2.2. [43] Let X be a non-empty set. The mapping A = (µP
A, µN

A ) : X ×
X → [0, 1] × [−1, 0] is called a bipolar fuzzy relation on X, where µP

A(x, y) ∈ [0, 1] and
µN

A (x, y) ∈ [−1, 0].

Definition 2.3. [43] Let A = (µP
A, µN

A ) and B = (µP
B, µN

B ) be two bipolar fuzzy sets
on X. If A = (µP

A, µN
A ) is a bipolar fuzzy relation on X, then B = (µP

B, µN
B ) is said to

be a bipolar fuzzy relation on A = (µP
A, µN

A ), where µP
B(x, y) 6 min(µP

A(x), µP
A(y)) and

µN
B (x, y) > max(µN

A (x), µN
A (y)), ∀(x, y) ∈ X.

If µP
B(x, y) = µP

B(y, x) and µN
B (x, y) = µN

B (y, x), ∀x, y ∈ X, then B = (µP
B, µN

B ) is called
a symmetric bipolar fuzzy relation on X.

Definition 2.4. [41] If A = (µP
A, µN

A ) is a bipolar fuzzy set on an underlying set V and
B = (µP

B, µN
B ) be a bipolar fuzzy set in Ṽ 2 such that µP

B(x, y) 6 min{µP
A(x), µP

A(y)}
∀(xy) ∈ Ṽ 2 and µN

B (x, y) > max{µN
A (x), µN

A (y)}, ∀(xy) ∈ Ṽ 2, and µP
B(x, y) = µN

B (x, y) =
0, ∀(xy) ∈ Ṽ 2 − E, then G = (V, A, B) is called a bipolar fuzzy graph of the graph
G∗ = (V, E).

Definition 2.5. [1, 3] Let G = (V, A, B) be a bipolar fuzzy graph. If µP
B(x, y) =

min{µP
A(x), µP

A(y)} and µN
B (x, y) = max{µN

A (x), µN
A (y)}, ∀x, y ∈ V , then G is called a

complete bipolar fuzzy graph and if µP
B(x, y) = min{µP

A(x), µP
A (y)} and µN

B (x, y) =
max{µN

A (x), µN
A (y)}, ∀(xy) ∈ E, then G is called strong bipolar fuzzy graph of the graph

G∗ = (V, E).
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Definition 2.6. [2, 3] Let G = (V, A, B) be a bipolar fuzzy graph and x, y ∈ V .

• A path P : x = x0, x1, . . . , xk−1, xk = y in G is a sequence of distinct vertices such
that (µP

B(xi−1, xi) > 0, µN
B (xi−1, xi) < 0), i = 1, 2, . . . , k and the length of the path

is k.
• If P : x = x0, x1, . . . , xk−1, xk = y be a path of length k between

x and y, then (µP
B(x, y))k and (µN

B (x, y))k are defined as (µP
B(x, y))k =

sup{µP
B(x, x1)

∧
µP

B(x1, x2)
∧

. . .
∧

µP
B(xk−1, y)} and (µN

B (x, y))k = inf{µN
B

(x, x1)
∨

µN
B (x1, x2)

∨
. . .

∨
µN

B (xk−1, y)}. (((µP
B(x, y))∞, (µN

B (x, y))∞) is said to
be the strength of connectedness between two vertices x and y in G, where
(µP

B(x, y))∞ = sup
k∈N

{(µP
B(x, y))k} and (µN

B (x, y))∞ = inf
k∈N

{(µN
B (x, y))k}.

• If µP
B(x, y) ≥ (µP

B(x, y))∞ and µN
B (x, y) ≤ (µN

B (x, y))∞, then the arc xy in G is
said to be a strong arc. A path x − y is strong path if all arcs on the path are
strong.

• If ((µP
B(x, y))∞, (µN

B (x, y))∞) lie on same arc of a path between x and y then
this path is called the strongest path between x and y. If µP

B(x, y) > 0 and
µN

B (x, y) < 0, ∀(x, y) in G, then the bipolar fuzzy graph G is said to be a connected
bipolar fuzzy graph.

Two nodes x and y are said to be a bipolar fuzzy neighbor’s [34] if µP
B(x, y) > 0 and

µN
B (x, y) < 0 and also x is said to be a bipolar fuzzy strong neighbors of y if (x, y) is a

bipolar fuzzy strong arc. We denote the set of all bipolar fuzzy neighbors of x by NB.F (x)
and the set of all bipolar fuzzy strong neighbors of x by NB.F.S(x).

Definition 2.7. [2] A connected bipolar fuzzy graph G = (V, A, B) is said to be a bipolar
fuzzy tree if G has a bipolar spanning subgraph S = (A, E) which is also a bipolar fuzzy
tree and ∀ arcs (a, b) not in S, µP

B(a, b) < (µP
E)∞(a, b) and µN

B (a, b) > (µN
E )∞(a, b). The

bipolar spanning subgraph S of G is a maximum spanning subgraph of G if G has no
bipolar spanning subgraph different from S contains S. Since G is a bipolar fuzzy tree, so
G has a unique maximum spanning tree [2].

3. Bipolar fuzzy detour g-distance
Definition 3.1. The length of a x − y strong path P between x and y in a connected
bipolar fuzzy graph G = (V, A, B) is said to be a bipolar fuzzy detour g-distance if there is
no other strong path longer than P between x and y and we denote this by B.F.Dg(x, y).
Any x−y strong path whose length is B.F.Dg(x, y) is called a x−y bipolar fuzzy g-detour.

Figure 1. Connected bipolar fuzzy graph G

Example 3.2. Let G = (V, A, B) be a connected bipolar fuzzy graph of the graph G∗ =
(V, E) where V = {a, b, c, d} and E = {(a, b), (b, c), (c, d), (d, a), (a, c), (a, x), (x, d)} (see
Figure 1). For the bipolar fuzzy graph of Figure 1, it is seen that all arcs except (a, b) and
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(x, d) are strong arc and the bipolar fuzzy detour g-distance of two nodes are given below:
B.F.Dg(a, b) = 3, B.F.Dg(a, c) = 2, B.F.Dg(a, d) = 2, B.F.Dg(b, c) = 1, B.F.Dg(b, d) = 3,
B.F.Dg(c, d) = 2, B.F.Dg(a, x) = 1, B.F.Dg(x, d) = 3, B.F.Dg(c, x) = 3, B.F.Dg(b, x) =
4.

Definition 3.3. The length of any smallest strong path from x to y is called the bipolar
fuzzy geodesic distance, denoted by B.F.dg(x, y).

The bipolar fuzzy detour g-eccentricity eB.F.Dg (a) for a node a is max(B.F.Dg(a,
x)), ∀x ∈ G. The set of all bipolar fuzzy detour g-eccentric nodes of a, denoted by
a∗

B.F.Dg
. The bipolar fuzzy detour g-radius of G, denoted by radB.F.Dg (G), is defined as

min eB.F.Dg (x), ∀x ∈ G. If eB.F.Dg (a) = radB.F.Dg (G), then the node a is the bipolar
fuzzy detour g-central node of G. The bipolar fuzzy detour g-diameter of G, denoted by
diamB.F.Dg (G), is defined as max eB.F.Dg (x), ∀x ∈ G. If eB.F.Dg (a) = diamB.F.Dg (G), then
the node a is called the bipolar fuzzy detour g-peripheral node of G.

Example 3.4. For the connected bipolar fuzzy graph G in the Figure 1, eB.F.Dg (a) = 3,
eB.F.Dg (b) = 4, eB.F.Dg (c) = 3, eB.F.Dg (d) = 3, eB.F.Dg (x) = 4, and radB.F.Dg (G) = 3,
diamB.F.Dg (G) = 4.

Definition 3.5. A bipolar fuzzy graph G = (V, A, B) is called a bipolar fuzzy g-detour
graph if B.F.Dg(x, y) = B.F.dg(x, y), ∀(x, y) ∈ E.

4. Bipolar fuzzy detour g-periphery (PerB.F.Dg(G)) and bipolar fuzzy de-
tour g-eccentric subgraph (EccB.F.Dg(G))

Definition 4.1. The bipolar fuzzy subgraph of the bipolar fuzzy graph G = (V, A, B),
whose nodes are only the bipolar fuzzy detour g-peripheral nodes is called a bipolar fuzzy
detour g-periphery of G and it is denoted by PerB.F.Dg (G).

Definition 4.2. If each node of a connected bipolar fuzzy graph G = (V, A, B) is a
bipolar fuzzy detour g-eccentric node, then G is said to be a bipolar fuzzy detour g-
eccentric bipolar fuzzy graph. The bipolar fuzzy subgraph of G formed by the set of all
bipolar fuzzy g-eccentric nodes of G is called a bipolar fuzzy detour g-eccentric bipolar
fuzzy subgraph of G, it is denoted by EccB.F.Dg (G).

Example 4.3. For the bipolar fuzzy graph of Figure 2, nodes a, b, d are bipolar fuzzy
detour g-periphery nodes since eB.F.Dg (a) = 3, eB.F.Dg (b) = 3, eB.F.Dg (c) = 2, eB.F.Dg (d) =
3, diamB.F.Dg (G) = 3. Here PerB.F.Dg (G) of connected bipolar fuzzy graph shown in
Figure 2.

Figure 2. Connected bipolar fuzzy graph G and its PerB.F.Dg
(G)
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Example 4.4. From Figure 2, we get a∗
B.F.Dg

= {b}, b∗
B.F.Dg

= {a, d}, c∗
B.F.Dg

= {a, d},
d∗

B.F.Dg
= {b}. Its EccB.F.Dg (G) is shown in Figure 2.

Theorem 4.5. A bipolar fuzzy graph G is a bipolar fuzzy detour g-self centrad if and only
if every node of G is a bipolar fuzzy detour g-eccentric.
Proof. Suppose G is a bipolar fuzzy detour g-self centrad bipolar fuzzy graph and let b
be a node in G. Let a ∈ b∗

B.F.Dg
. So eB.F.Dg (b) = B.F.Dg(a, b). Since G is a bipolar fuzzy

detour g-self centrad bipolar fuzzy graph, eB.F.Dg (a) = eB.F.Dg (b) = B.F.Dg(a, b) and this
implies that b ∈ a∗

B.F.Dg
. Hence b is a bipolar fuzzy detour g-eccentric node of G.

Conversely, let every node of G is a bipolar fuzzy detour g-eccentric node. If possible, let
G be not bipolar fuzzy detour g-self centrad bipolar fuzzy graph. Then radB.F.Dg (G) ̸=
diamB.F.Dg (G) and ∃ a node r ∈ G such that eB.F.Dg (r) = diamB.F.Dg (G). Also let
p ∈ r∗

B.F.Dg
. Let U be a r − p bipolar fuzzy detour in G. So there must have a node q on

U for which the node q is not a bipolar fuzzy detour g-eccentric node of U . Also q cannot
be a bipolar fuzzy detour g-eccentric node of every other node. Again if q be a bipolar
fuzzy detour g-eccentric node of a node a (say), means q ∈ a∗

B.F.Dg
. Then ∃ an extension

of a − q bipolar fuzzy g−detour up to r or up to p. But this contradicts the facts that
q ∈ a∗

B.F.Dg
. Hence radB.F.Dg (G) = diamB.F.Dg (G) and G is a bipolar fuzzy detour g-self

centrad bipolar fuzzy graph. �
Theorem 4.6. If G is a bipolar fuzzy detour g-self centrad bipolar fuzzy graph, then
radB.F.Dg (G) = diamB.F.Dg (G) = n − 1, where n is the number of nodes of G.
Proof. Let G be a bipolar fuzzy detour g-self centrad bipolar fuzzy graph. If possible, let
diamB.F.Dg (G) = l < n − 1.

Let U1 and U2 be two distinct bipolar fuzzy detour g-peripheral path. Let p ∈ U1, q ∈ U2.
So ∃ a strong path between p and q, because of connectedness of G. Then ∃ nodes on U1
and U2, whose eccentricity > l, but this is impossible, because diamB.F.Dg (G) = l. Hence
U1 and U2 are not distinct. Since U1 and U2 are arbitrary, so ∃ node r in G such that
r is a common in all bipolar fuzzy detour peripheral paths. So eB.F.Dg (r) < l, which is
impossible, because G is a bipolar fuzzy detour g-self centrad. Hence diamB.F.Dg (G) =
n − 1 = radB.F.Dg (G). �
Corollary 4.7. For a connected bipolar fuzzy graph G, PerB.F.Dg (G) = G if and only if
the bipolar fuzzy detour g-eccentricity of each node of G is n − 1, n = number of nodes in
G.
Proof. Let PerB.F.Dg (G) = G. Then eB.F.Dg (p) = diamB.F.Dg (G), ∀p ∈ G. So every node
of G is a bipolar fuzzy detour g-periphery node of G. Therefore G is a self centrad bipolar
fuzzy graph and radB.F.Dg (G) = diamB.F.Dg (G) = n − 1. So the bipolar fuzzy detour
g-eccentricity of each node of G is n − 1.

Conversely, let the bipolar fuzzy detour g-eccentricity of each node of G is n − 1. So
radB.F.Dg (G) = diamB.F.Dg (G) = n − 1. All nodes of G are bipolar fuzzy detour g-
peripheral nodes and hence PerB.F.Dg (G) = G. �
Corollary 4.8. For a connected bipolar fuzzy graph G, EccB.F.Dg (G) = G if and only if
the bipolar fuzzy detour g-eccentricity of each node of G is n − 1, n = number of nodes in
G.
Proof. Let EccB.F.Dg (G) = G. So all nodes of G are bipolar fuzzy detour g-eccentric
node. Therefore G is self centrad bipolar fuzzy graph and diamB.F.Dg (G) = n − 1. Hence
the bipolar fuzzy detour g-eccentricity of each node of G is n − 1.

Conversely, let the bipolar fuzzy detour g-eccentricity of each node of G is n − 1. So
radB.F.Dg (G) = diamB.F.Dg (G) = n − 1. So all nodes of G are bipolar fuzzy detour g-
peripheral nodes as well as bipolar fuzzy detour g-eccentric node. Hence, EccB.F.Dg (G) =
G. �
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Theorem 4.9. In a connected bipolar fuzzy graph G, a node b is a bipolar fuzzy detour
g-eccentric node if and only if b is a bipolar fuzzy detour g-peripheral node.

Proof. Let b be a bipolar fuzzy detour g-eccentric node of G and let b ∈ a∗
B.F.Dg

. Let x and
y be two bipolar fuzzy detour g-peripheral nodes, then B.F.Dg(x, y) = diamB.F.Dg (G) =
k(say). Let P1 and P2 be any x − y and a − b bipolar fuzzy g-detour in G respectively.
There arise two cases.

Case 1: When b is not internal node in G i.e, there is only one node, say c which is
adjacent to b. So c ∈ P2. Since G is connected, c is connected to a node of P1, say c′. So
either c′ ∈ P2 or c′ ∈ (P1 ∩ P2). Thus in any case the path from a to x or a to y through c
and c′ is longer than P2. But it is impossible, since b is a bipolar fuzzy detour g-eccentric
node of a. Hence eB.F.Dg (a) = diamB.F.Dg (G) i.e, b is a bipolar fuzzy detour g-peripheral
node of G.

Case 2: When b is internal node in G, then ∃ a connection between b to x and b to
y, because of connectedness of G. Then a − b bipolar fuzzy g-detour can be extend to x
or y. This is impossible, because b is a bipolar fuzzy detour g-eccentric node of a. Hence
eB.F.Dg (a) = diamB.F.Dg (G) i.e, b is a bipolar fuzzy detour g-peripheral node of G.

Conversely, we assume that b be a bipolar fuzzy detour g-peripheral node G. So ∃ a
bipolar fuzzy detour g-peripheral node, say a (distinct from b). Therefore b is a bipolar
fuzzy detour g-eccentric node of a. �

5. Bipolar fuzzy detour g-boundary node of a bipolar fuzzy graph
Definition 5.1. In a connected bipolar fuzzy graph G, a node b is said to be a bipolar
fuzzy detour g-boundary node of a node a if B.F.Dg(a, b) ≥ B.F.Dg(a, c) for each c in
G, where c is a neighbor of b. The set of all bipolar fuzzy detour g-boundary nodes of a
denoted by a′

B.F.Dg
.

Example 5.2. For the connected bipolar fuzzy graph G in Figure 3,
a′

B.F.Dg
= {c, x, z, t}, b′

B.F.Dg
= {c, z, t}, c′

B.F.Dg
= {z, t}, x′

B.F.Dg
= {c, z, t}, y′

B.F.Dg
=

{c, x, z, t}, z′
B.F.Dg

= {x, t}, t′
B.F.Dg

= {c, x, z}. Here c, x, z, t are the bipolar fuzzy detour
g-boundary nodes of G.

Figure 3. Connected bipolar fuzzy graph G

Definition 5.3. If the bipolar fuzzy subgraph formed by strong neighbor of a node b in
a bipolar fuzzy graph G, form a complete bipolar fuzzy graph then the node b is said to
be a complete node of G.

Theorem 5.4. A node in a complete bipolar fuzzy graph is bipolar fuzzy detour g-boundary
node of every other nodes if and only if the node is complete.
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Proof. Let a node b be a complete node in a connected bipolar fuzzy graph G. Let a
be an another node of G. Each arc in G is strong, because of completeness of G [24].
So B.F.Dg(a, b) = n − 1 = B.F.Dg(a, c), ∀c ∈ N(b), where n = numbers of nodes in G.
Therefore b is a bipolar fuzzy detour boundary node of a.

Conversely, let b be a bipolar fuzzy detour g−boundary node of every other node.
Then each arc in G is strong, because of completeness of G [24]. Then B.F.Dg(a, b) =
n − 1, ∀a ∈ G. So all neighbor of b are strong neighbor. Hence by definition 5.3, the node
b is complete. �

Theorem 5.5. If a node in a connected bipolar fuzzy graph G is a complete node of G,
then the node is a bipolar fuzzy detour g-boundary node of all other node.

Proof. Let a node b be a complete node in a connected bipolar fuzzy graph G and let a
be another node of G. Assume that a = b0, b1, . . . , bk−1, bk = b be a a − b bipolar fuzzy
g-detour and c be a strong neighbor of b. There arises two cases

Case 1: If c = bk−1, then B.F.Dg(a, c) ≤ B.F.Dg(a, b). Hence b be a bipolar fuzzy
detour g-boundary node of a.

Case 2: If c ̸= bk−1, since c is a strong neighbor of b, so the arc (c, bk−1) is a strong arc
and also c ̸= bk−1. So the length of the path a = b0, b1, . . . , bk−1, c, bk = b is greater than
than the length of the path a = b0, b1, . . . bk−1, bk = b. Hence B.F.Dg(a, c) ≤ B.F.Dg(a, b).
Therefore b is a bipolar fuzzy detour g-boundary node of a. �

Remark 5.6. Converse of the above theorem may not be true. For example, consider the
bipolar fuzzy graph of Figure 4. We see that

Figure 4. Connected bipolar fuzzy graph G

q is a bipolar fuzzy detour g-boundary node of every other nodes, but q is not a complete
node.

Theorem 5.7. A connected bipolar fuzzy graph G is a bipolar fuzzy tree if and only if G
is bipolar fuzzy g-detour graph.

Proof. Let G be a bipolar fuzzy tree. Then between any two nodes in G, there is exactly
one bipolar fuzzy strong path. So B.F.Dg(a, b) = B.F.dg(a, b) for any two nodes a, b in
G. Hence G is bipolar fuzzy g−detour graph.

Conversely, let G be a bipolar fuzzy g-detour graph, which has n nodes. Then
B.F.Dg(a, b) = B.F.dg(a, b) for any two nodes a, b in G. If n = 2 then G is a bipolar
fuzzy tree. �
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Let n ≥ 3. If possible, let G be not a bipolar fuzzy tree. So ∃ two nodes p, q in G for
which there is at least two strong path between p and q. Let Q1 and Q2 be two p−q bipolar
fuzzy strong paths. So Q1 ∪ Q2 has a cycle C(say) in G. If node a and b are adjacent
nodes in G, then we have B.F.dg(a, b) = 1 and B.F.Dg(a, b) > 1. This contradicts the
fact that B.F.Dg(a, b) = B.F.dg(a, b). Hence G is a bipolar fuzzy tree.
Theorem 5.8. In a bipolar fuzzy tree G, a node b is a bipolar fuzzy detour g-boundary
node of G if and only if b cannot be a bipolar fuzzy cut node of G.
Proof. Let G be a bipolar fuzzy tree and a node b in G be a bipolar fuzzy detour
g−boundary node of a node c in G. If possible, let b be a bipolar fuzzy cut node of
G.

Let E be a bipolar fuzzy maximum spanning tree in G, which is unique in G. Since b
is a bipolar fuzzy cut node, so b cannot be an internal node of E. Let x ∈ NB.F.S(b) such
that x does not lie on the bipolar fuzzy detour in E. Therefore B.F.Dg(p, q) is same when
p, q be any two nodes of E and G both. But B.F.Dg(c, x) = B.F.Dg(c, b)+B.F.Dg(b, x) >
B.F.Dg(c, b). This contradicts the fact that b is a bipolar fuzzy detour g−boundary node
of a node c in G. Therefore the node b cannot be a bipolar fuzzy cut node of G.

Conversely, let b be not a bipolar fuzzy cut node of the bipolar fuzzy graph G. So b
is end node of maximum bipolar spanning tree, which is unique. Then b has a strong
neighbor which is also unique [2]. So there does not exist any extension of any bipolar
fuzzy g-detour for a node x to b. Hence b is a bipolar fuzzy detour g-boundary node of
G. �
Definition 5.9. A node x in a bipolar fuzzy graph G is said to be a bipolar fuzzy end
node of G if y is only strong neighbor of x, where y ∈ G.
Example 5.10. For the bipolar fuzzy graph G in Figure 3, the nodes c, z, t are bipolar
fuzzy end node of G.
Theorem 5.11. A node b in a bipolar fuzzy tree G is a bipolar fuzzy detour g-boundary
node if and only if b is a bipolar fuzzy end node.
Proof. Let a node b be a bipolar fuzzy detour g-boundary node for a node a in a bipolar
fuzzy tree G. Let E be a maximum bipolar spanning tree in G, which is unique in G [2].
By Theorem 5.9, each node of G is a bipolar fuzzy cut node of G or a bipolar fuzzy end
node of G [2]. So by Theorem 5.9, b must be a bipolar fuzzy end node of G.

Conversely, let b be a bipolar fuzzy end node of a bipolar fuzzy tree G. Let E be the
maximum bipolar spanning tree of G. Then b is a bipolar fuzzy end node of E. Hence b is
not a bipolar fuzzy cut node of G. Therefore by Theorem 5.9, b is a bipolar fuzzy detour
g-boundary node of G. �

6. Bipolar fuzzy detour g-interior node of a bipolar fuzzy graph
In a connected bipolar fuzzy graph G, a node b lie between the nodes a and c in the

sense of bipolar fuzzy detour g-distance if B.F.Dg(a, c) = B.F.Dg(a, b) + B.F.Dg(b, c).
Definition 6.1. In a connected bipolar fuzzy graph G, a node b is said to be a bipolar
fuzzy detour g−interior node if for each node a in G different from b, there is a node c in
G for which B.F.Dg(a, c) = B.F.Dg(a, b) + B.F.Dg(b, c).
Definition 6.2. The set of all bipolar fuzzy detour g-interior node of G, denoted by
IntB.F.Dg (G), form a bipolar fuzzy subgraph of G.
Example 6.3. For the bipolar fuzzy graph in Figure 3, IntB.F.Dg (G) = {a, b, y}.
Theorem 6.4. A node in a connected bipolar fuzzy graph G is a bipolar fuzzy detour
g-boundary node of G if and only if the node cannot be a bipolar fuzzy detour g-interior
node of G.
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Proof. Let b be a bipolar fuzzy detour g-boundary node of a node a in a connected
bipolar fuzzy graph G. If possible, let b be a bipolar fuzzy detour g-interior node of
G. So there exist a node c different from a and b such that b lies between a and c.
Let U : a = b1, b2, . . . , b = bk, bk+1, . . . , bl = c be a a − c bipolar fuzzy g−detour and
1 < k < l. Then bk+1 ∈ NB.F.S(b), and this implies B.F.Dg(a, bk+1) > B.F.Dg(a, b), this
is a contradiction. Hence b cannot be a bipolar fuzzy detour g- interior node of G.

Conversely, let a node b in G, which is not a bipolar fuzzy detour g-interior node
of G. Then there exist a node a in G for which any node c different from a and b,
B.F.Dg(a, c) ̸= B.F.Dg(a, b)+B.F.Dg(b, c). Therefore B.F.Dg(a, q) ≤ B.F.Dg(a, b) where
q ∈ NB.F.S(b). This implies that b is a bipolar fuzzy detour g-boundary node of a. �

Theorem 6.5. A bipolar fuzzy end node of a connected bipolar fuzzy graph G cannot be
a bipolar fuzzy detour g-interior node.

Proof. Let q be a bipolar fuzzy end node of a bipolar fuzzy graph G. Then there is only
one bipolar fuzzy strong neighbor of q. So there is no strong bipolar fuzzy g-detour for
which b lies between a and c, where a and c be two node of G and also different from b.
Hence b is not a bipolar fuzzy detour g-interior node of G. �

Example 6.6. For the bipolar fuzzy graph G in Figure 5, the node p is not a bipolar

Figure 5. Connected bipolar fuzzy graph G

fuzzy detour g-interior node and also p is not a bipolar fuzzy end node of G.

So the converse of the Theorem 6.5 need not true.

7. Bipolar fuzzy detour g-interior node and bipolar fuzzy detour g-
boundary node determined by bipolar fuzzy maximum spanning tree

Theorem 7.1. In a connected bipolar fuzzy graph G, if a node b is a bipolar fuzzy detour
g-interior node, then the node b is also an internal node for any maximum bipolar spanning
tree of G.

Proof. Let b be a bipolar fuzzy detour g-interior node in a connected bipolar fuzzy graph
G. Then for each node a different from b, there exist a node c in G such that B.F.Dg(a, c) =
B.F.Dg(a, b) + B.F.Dg(b, c). So a − b − c is a bipolar fuzzy g-detour and this path lie on
each maximum bipolar spanning tree in G. �

Converse of this theorem need not true. For example, the bipolar fuzzy graph in Figure
5, the node p is a bipolar fuzzy internal node in each maximum bipolar fuzzy spanning
tree in G, but p cannot be a bipolar fuzzy detour g-interior node in G.
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Theorem 7.2. In a bipolar fuzzy tree G, a node b is an bipolar fuzzy internal node for
the unique maximum bipolar fuzzy spanning tree of G if and only if b is a bipolar fuzzy
detour g-interior node of G.

Proof. Let a node b be an internal node for the unique maximum bipolar fuzzy spanning
tree of a bipolar fuzzy tree G. So b must be a bipolar fuzzy cut node of G [2]. Then b
cannot be a bipolar fuzzy detour g-boundary node of G (by Theorem 5.9). Hence b is a
bipolar fuzzy detour g-interior node of G (by Theorem 6.4).

The converse part also true, from the previous Theorem 7.1. �

Theorem 7.3. In a connected bipolar fuzzy graph G, if a node x is an end node of a
maximum bipolar spanning tree of G, then x is a bipolar fuzzy detour g-boundary node of
G.

Proof. Let x be an end node of a maximum bipolar spanning tree of a bipolar fuzzy graph
G. Then for any maximum bipolar spanning tree of G, x is not an internal node. Hence
x is not a bipolar fuzzy detour g-interior node of G, by Theorem 7.1. Therefore x is a
bipolar fuzzy detour g-boundary node of G, by Theorem 6.4. �

8. Applications
8.1. Wi-Fi network connections in a town in terms of bipolar fuzzy graph

During the present time, the use of Wi-Fi network is very indispensable in such of many
places like office, court, educational field, town, bus stand, railway station etc. The speed
of Wi-Fi network become slow due to certain reasons like excessive users, natural disaster,
mechanical disturbances. So it is uncertain. Here, we present a Wi-Fi network connection
in Midnapore town as a bipolar fuzzy graph G which is shown in Figure 6. The nodes
k, l, c, b, r, s of the bipolar fuzzy graph G in Figure 6 denotes the Wi-Fi network in places
Keranitola, LIC more, Church school, Bus stand, Railway station, St. John’s church in
Midnapore town respectively. Each edge of G denote the roads between corresponding
places.

The positive membership value of each node represents the power of a Wi-Fi networks
in corresponding place of the town. Its value is 0 if the internet speed is ≤ 10% and
its value is 1 if the internet speed is ≥ 90%. So the positive membership value of each
nodes lies in (0, 1) if its internet speed lies between > 10% and < 90%. The negative
membership value of each node represents the possibility of slowing down internet speed
by the reasons excessive users, natural disaster, mechanical disturbance etc. Its value is 0
if the possibility is ≤ 5% and its value is −1 if the possibility is ≥ 80%. So the negative
membership value of each nodes lies in (−1, 0) if the possibility lies between > 5% and
< 80%. The positive membership value of each edge represents the average internet speed
on corresponding road. Its value is 0 if the average internet speed is ≤ 10% and its value
is 1 if the average internet speed is ≥ 85%. So the positive membership of each edge
lies in (0, 1) if the average internet speed lies between > 10% and < 85%. The negative
membership value of each edge represents the average possibility of slowing down internet
speed by the same reasons. Its value is 0 if the average possibility is ≤ 10% and its value
is −1 if the average possibility is ≥ 80%. So the negative membership value of each edge
lies in (−1, 0) if the average possibility lies between > 10% and < 80%.

For the bipolar fuzzy graph G in Figure 6, the arcs (k, l), (l, b), (b, c), (k, c), (c, s), (s, r)
are strong arcs. The paths r − s − c − b − l − k and r − s − c − k are only two strong
paths from r to k. So B.F.Dg(r, k) = 5 and B.F.dg(r, k) = 3. So the path r − s − c − k is
the shortest strong path from Railway station to Keranitola. If a person wants to go from
Railway station to Keranitola in shortest path with best average internet speed, then for
him the path r − s − c − k will be the best route to go.
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Figure 6. Bipolar fuzzy graph G corresponding to the Wi-Fi network in a town

8.2. Modeling of wireless sensor network in terms of bipolar fuzzy graph
and determination of its boundary and interior stations

In a wireless sensor network, if the sensor failure or sensor give expansive errors or
disconnection of network, then the capability of each station to capture the sense of oc-
currence and communication between them are uncertain. Here we present a bipolar fuzzy
graph G (see Figure 7) which is applied on a wireless sensor network (W.S.N) to determine
its boundary and interior station which is shown in Figure 7. The nodes u, v, w, x, y, z of G
represents the stations and each edge represents the communication between correspond-
ing stations.

The positive membership value of each nodes of G represents the capability of the
station to capture the sense of occurrence. Its value is 0 if the capability is ≤ 5% and its
value is 1 if the capability is ≥ 80%. So the positive membership value of each node lies in
(0, 1) if the capability lies between > 5% and < 80%. The negative membership value of
each node of G represents the disability of the station to capture the sense of occurrence
(disability means it gives expansive error, change in sensor position or disconnection of
network). Its value is 0 if the disability is ≤ 10% and its value is −1 if the disability is
≥ 75%. So the negative membership value of each node lies in (−1, 0) if the disability lies
between > 10% and < 75%. The positive membership value of each edge represents the
ability to communicate of two corresponding stations. Its value is 0 if the ability is ≤ 25%
and its value is 1 if the ability is ≥ 70%. So the positive membership value of each edge
lies in (0, 1) if the ability lies between > 25% and < 70%. The negative membership value
of each edge represents the disability to communicate of two corresponding stations. Its
value is 0 if the disability is ≤ 30% and its value is −1 if the disability is ≥ 80%. So the
negative membership value of each edge lies in (−1, 0) if the disability lies between > 30%
and < 80%.

In W.S.N connecting and covering the whole area are very essential. If the sensor failure
or sensor give expansive errors or disconnection of network to coverage the whole area,
then we have to find out the boundary stations and interior stations of the W.S.N, which
is equivalent to determine the bipolar fuzzy detour g-boundary and g-interior nodes of G.

For the bipolar fuzzy graphs in Figure 7, B.F.Dg(u, v) = 1, B.F.Dg(u, w) = 3,
B.F.Dg(u, x) = 4, B.F.Dg(u, y) = 1, B.F.Dg(u, z) = 3, B.F.Dg(v, w) = 4, B.F.Dg(v, x) =
5, B.F.Dg(v, y) = 2, B.F.Dg(v, z) = 4, B.F.Dg(w, x) = 1, B.F.Dg(w, y) = 2,
B.F.Dg(w, z) = 2, B.F.Dg(x, y) = 3, B.F.Dg(x, z) = 3, B.F.Dg(y, z) = 2. So u′

B.F.Dg
=

{x}, v′
B.F.Dg

= {x}, w′
B.F.Dg

= {v}, x′
B.F.Dg

= {v}, y′
B.F.Dg

= {x}, z′
B.F.Dg

= {v}.
Therefore v, x are bipolar fuzzy detour g-boundary nodes and u, w, x, y are bipolar fuzzy

detour g-interior nodes of G. Hence the stations at v, x are boundary stations and the
stations u, w, y, z are the interior stations of the W.S.N.
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Figure 7. Bipolar fuzzy graph G corresponding to the W.S.N

9. Conclusion
An extensive number of application of fuzzy graph in manifold field of real life. The

bipolar fuzzy graph give more exactness and malleable and it has application of the notion
of the bipolar fuzzy graph in many cases. In geodesics using fuzzy graph and fuzzy detour
graph we get more useful results in various field including electrical networks, computer
science, engineering, operation research, optimization, wireless sensor network etc. In this
article, we have introduced detour g-distance, detour g-boundary nodes, detour g-interior
nodes in bipolar fuzzy graphs and properties of these. We initiated theorems on detour
g-interior node, detour g-boundary node, cut node in bipolar fuzzy graph, using maximum
bipolar fuzzy spanning tree. Applications of our research work are shown in Wi-Fi network
in a town and in wireless sensor network.
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