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Abstract
The first part of the paper is devoted to the classification of the statistical structures
which live on the tangent bundle of a statistical manifold endowed with a Sasaki metric.
Further, considering a Kähler structure on the base statistical manifold, we introduce
a family of almost complex structures on the tangent bundle equipped with the Sasaki
metric, and find equivalent conditions for which this family induces a Kähler structure.
Finally, we derive equivalent conditions for existence of holomorphic structures on the
tangent bundle equipped with the Sasaki metric in the presence of a statistical structure.
Several illustrative examples are provided, as well.
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1. Introduction
Information geometry is a very effective branch of science, being regarded as a com-

bination of differential geometry and statistics. Its applications can be found in various
fields of research, like (see [1,3,4,6,7,17]): image processing, physics, computer science and
machine learning. It merges fundamental differential geometry tools like metric, curvature
and geodesics, to statistical models, and makes it possible to illustrate statistical objects
as geometric ones. Moreover, the geodesics, and the totally geodesic submanifolds, in the
presence of an affine connection, are natural generalizations of straight lines and affine
subspaces, respectively, in the Euclidean space. Hence, conceptualizing statistical spaces
in such a geometrical context, makes it convenient to study the statistical behaviors in
depth. This kind of approach is based on the fact that geometrical objects are invari-
ant under coordinate transformations. A detailed survey on information geometry can be
found in [2].
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Let Θ be an open subset of Rn. We call statistical model, a set S of probability density
functions on a sample space Ω with parameter θ = (θ1, · · · , θn), such that

S = {p(x; θ) :
∫

Ω
p(x; θ) = 1, p(x; θ) > 0, θ ∈ Θ ⊆ Rn}.

For a statistical model S, the semi-definite Fisher information matrix g(θ) = [gij(θ)] is
defined as

gij(θ) :=
∫

Ω
∂iℓθ∂jℓθp(x; θ)dx

= Ep[∂iℓθ∂jℓθ],
(1.1)

where ℓθ = ℓ(x; θ) := logp(x; θ), ∂i := ∂
∂θi , and Ep[f ] is the expectation of f(x) with

respect to p(x; θ). Considering such kinds of information matrices, S is also called an info-
manifold (or statistical manifold). Relation (1.1) was the first occurrence of information
in a mathematical survey, introduced by Fisher in 1920 (see [9]). If g is positive-definite
and all of its components are finite, then (S, g) will be a Riemannian manifold and g is
called a Fisher metric on S. In this situation, g reads

gij(θ) =
∫

Ω
∂ip(x; θ)∂jℓθdx =

∫
Ω

1
p(x; θ)

∂ip(x; θ)∂jp(x; θ)dx.

These kinds of metrics were first studied by Rao in 1945 (see [16]). In a Hausdorff manifold
(a customary requirement nowadays), a Riemannian metric induces a distance metric.
When the metric is a Fisher one, this distance function (named as Rao distance as well) is
an indicator to measure the distance between probability distributions. One can see [15]
an implementation of this distance in negative multinomial distributions. For any α ∈ R,
Amari’s α-connection ∇α with respect to p(x; θ) is defined by the Christoffel symbols

Γ(α)
ij,k = g(∇α

∂i
∂j , ∂k) := Ep[(∂i∂jℓθ + 1 − α

2
∂iℓθ∂jℓθ)(∂kℓθ)]. (1.2)

α-connections in the case of finite and discrete sample spaces were first studied by Chentsov
in 1972 (see the English translation [8]), where is provided a detailed interpretation of the
geodesic concept of info-manifolds and of learning curves. Chentsov proved that the Fisher
information metric is the unique intrinsic one on the space of probability distributions on
a sample space containing at least three points (see also [5] for a historical covering). Later
on, Amari studied them in an independent manner and developed the general case by the
formula (1.2) in 1982 (see e.g. [2]).

A statistical manifold is a triple (M, g, ∇), where the manifold M is equipped with a
statistical structure (g, ∇) containing a Riemannian metric g and an affine connection ∇
on M , such that the covariant derivative ∇g is symmetric. A first example appears when
g

∇ is the Levi-Civita connection of g; this case is a trivial statistical manifold. The moti-
vation behind this definition arises from information geometry, and was first introduced
by Lauritzen in 1987 (see [13]). Indeed, one can check that ∇α is torsion-free and that
∇αg is totally symmetric, and hence (S, g, ∇α) is a statistical manifold. However, dealing
with statistical manifolds instead of Fisher metrics is more practical in certain cases. The
difference between two α and β-connections ∇α and ∇β is given by

Γ(α)
ij,k − Γ(β)

ij,k = β − α

2
Tijk, (1.3)

where T is a covariant symmetric tensor of degree 3, defined by Tijk := Eθ[∂iℓθ∂jℓθ∂kℓθ],
and is completely identified by its torsion tensor in differential geometry. For the case
when β = 0, (1.3) reduces to

Γ(α)
ij,k−

g

Γij,k= −α

2
Tijk,
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where
g

Γij,k’s are the Christoffel symbols of the Levi-Civita connection induced by g. There
is a one to one correspondence between the tensors Tijk and the statistical structures (for
a detailed discussion, see [13]).

In differential geometry, the tangent bundle plays an important role. Indeed, this is
the first vector bundle over the base manifold and it is very important to geometers in
studying the relation between objects on the base manifold and their various kinds of lifts
(when such lifts exist) to the tangent bundle. There exists only little research on the
lift over the tangent bundle of statistical manifolds (e.g. [12, 14]). In [12] the author, by
considering a statistical manifold (M, g, ∇) with skewness operator K, introduced a linear
connection over TM by using the horizontal lift and the Sasaki lift with respect to the Levi-
Civita connection of (M, g), and then he studied the conditions that TM together with
the Sasaki metric and this connection is a statistical manifold. Also, in [14], the authors
focused on the semi-Riemannian Norden metric. Among their results, they showed that
(TM, gh, J) is an almost complex manifold, where gh(JX̃, JỸ ) = −gh(X̃, Ỹ ), and gh is
the horizontal lift of the metric g on M for which (M, g, ∇) is a statistical manifold, and J
is constructed using ∇ in a natural way. In our present work, we investigate the relation
between statistical manifolds (M, g, ∇), and (TM, G, ∇̄), where G is the Sasaki lift of g,
and derive several equivalencies for Kähler and holomorphic structures on the tangent
bundle.

This paper is organized as follows. Section 2 contains reminders on splitting TTM into
the direct sum of its vertical and some horizontal complement. Moreover, we provide a
review on the Sasaki lift of a Riemannian metric and the definition of the statistical man-
ifold. In Section 3, we study the statistical manifold (TM, G, ∇̄) induced by a statistical
manifold (M, g, ∇). We find the relation between Christoffel symbols of ∇, and ∇̄. The
curvature components of ∇̄ are computed as well. Section 4 is devoted to the holomor-
phic structures on the tangent space. We derive equivalent conditions for (TM, G, J̄) to
be Kähler, and some equivalent conditions for (TM, G, J̄, ∇̄) to be holomorphic, where
(M, J, g) is a Kähler manifold and where an almost complex structure J̄ arises from J .
We also cover these sections by examples for experimental applications.

2. Preliminaries

Let (M, g) be a Riemannian manifold with the unique Levi-Civita connection
g

∇. By
considering the tangent bundle (TM, π, M), we denote as

V(x,y) = Ker(dπ(x,y)),

the vertical subspace of T(x,y)TM at the point (x, y). Indeed, V(x,y) = T(x,y)TxM . A
horizontal subspace is any choice of H such that

T(x,y)TM = H(x,y) ⊕ V(x,y), (2.1)

holds. Since V = Ker(dπ), we infer that dπ : H(x,y) −→ TxM is a vector space isomor-
phism. The fiber H(x,y) is called the horizontal subspace to TM at (x, y). If the splitting
(2.1) holds, then the horizontal lift of a tangent vector Xx ∈ TxM is the unique vector
Xh

x ∈ H(x,y), such that dπ(Xh
x ) = Xx, and its vertical lift is the unique field Xv

x ∈ V(x,y)
which satisfies Xv

x(df) = Xx(f), for all f ∈ C∞(M).
Let (x,U) be a local chart on M , denoted by its coordinates x = (x1, · · · , xn), where

xi’s belong to C∞(M). If denote xi ◦ π by xi, and by defining

yi(X) = X(xi) = dxi(X), i ∈ {1, · · · , n}, X ∈ X(M),
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one can provide a local chart (x1, · · · , xn, y1, · · · , yn) : π−1(U) −→ R2n on TM . Moreover,
it can be verified that if X = Xi ∂

∂xi , then

Xv = Xi ∂

∂yi
, Xh = Xi ∂

∂xi
− Xjyk

g

Γi
jk

∂

∂yi
,

where
g

Γi
jk are the Christoffel symbols of the Levi-Civita connection

g

∇. If
g

R denotes the

Riemann curvature tensor of
g

∇, then

[Xv, Y v] = 0, [Xh, Y v] = (
g

∇X Y )v, [Xh, Y h] = [X, Y ]h − (
g

R (X, Y )y)v, (2.2)
for any X, Y, Z ∈ X(M) and for any point (x, y) ∈ TM . The Sasaki metric G on the
tangent bundle TM is a natural lift of the metric g given by

G(Xh, Y h)(x,y) = gx(X, Y ), G(Xv, Y h)(x,y) = 0, G(Xv, Y v)(x,y) = gx(X, Y ). (2.3)

If { ∂
∂xi |(x,y),

∂
∂yi |(x,y)}n

i=1 is the natural basis of T(x,y)TM , then H(x,y) can be spanned by
{ δ

δxi |(x,y)}n
i=1, where

δ

δxi
|(x,y) = ∂

∂xi
|(x,y) − yk

g

Γj
ki (x) ∂

∂yj
|(x,y).

So, its dual basis is {dxi, δyi}n
i=1, where

δyi = dyi + yk
g

Γi
kj (x)dxj .

Remark 2.1. In order to simplify the notations, we further write ∂i, δi and ∂ī instead of
∂

∂xi , δ
δxi and ∂

∂yi , respectively.

The equalities (2.2) and (2.3) have the local expressions

[∂ī, ∂j̄ ] = 0, [δi, ∂j̄ ] =
g

Γk
ji ∂k̄, [δi, δj ] = −yr

g

Rk
ijr ∂k̄, (2.4)

and

G

(
δ

δxi
,

δ

δxj

)
(x,y)

= gij |x , G

(
δ

δxi
,

∂

∂yj

)
(x,y)

= 0, G

(
∂

∂yi
,

∂

∂yj

)
(x,y)

= gij |x .

where the Sasaki metric has the generic form
G(x,y) = gij(x, y)dxi ⊗ dxj + gij(x, y)δyi ⊗ δyj .

It is known that the Levi-Civita connection of the Sasaki metric G is given by [18]:

g

∇̄δi
δj =

g

Γk
ij δk − 1

2yl
g

Rk
ijl ∂k̄,

g

∇̄δi
∂j̄ = 1

2yl
g

Rk
lji δk+

g

Γk
ij ∂k̄,

g

∇̄∂ī
δj = 1

2yl
g

Rk
lij δk,

g

∇̄∂ī
∂j̄ = 0.

(2.5)

2.1. Statistical manifolds
A statistical manifold is a triple (M, g, ∇), where g is a Riemannian metric on the

manifold M , and ∇ is a symmetric linear connection such that the cubic tensor field
C = ∇g is totally symmetric, namely, the Codazzi equations hold:

(∇Xg)(Y, Z) = (∇Y g)(Z, X) (= (∇Zg)(X, Y )), ∀X, Y, Z ∈ X(M).
In local coordinates, C has the following form

C(∂i, ∂j , ∂k) = ∂ig(∂j , ∂k) − g(∇∂i
∂j , ∂k) − g(∂j , ∇∂i

∂k),
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and so
Cijk = ∂k(gij) − Γh

ikgjh − Γh
jkgih, Cijk = Cjki = Ckij ,

where Γi
jk are the Christoffel symbols of ∇. Thus, for every statistical manifold (M, g, ∇),

there exists a naturally associated totally symmetric covariant tensor field C of degree
3. Conversely, let (M, g,C) be a semi-Riemannian manifold with a totally symmetric
covariant tensor field C of degree 3. If we define the tensor field A by

g(A(X)Y, Z) = C(X, Y, Z), (2.6)

and a linear connection ∇ by ∇ =
g

∇ −A
2 , then ∇ is torsion-free and satisfies ∇g = C.

Hence the triple (M, g, ∇) becomes a statistical manifold. Thus, to equip a statistical
structure (g, ∇) is equivalent to providing a pair of structures (g,C), consisting of a semi-
Riemannian metric g and a totally symmetric trilinear form C.

For a statistical structure (∇, g) we define the difference tensor field
K := K(∇,g) ∈ Γ(TM (1,2)) as

K(X, Y ) = ∇XY −
g

∇X Y.

It is easy to check that K is symmetric and, moreover, that we have
g(K(X, Y ), Z) = g(Y, K(X, Z)). (2.7)

Conversely, if there exists a symmetric tensor field K ∈ Γ(TM (1,2)) on a Riemannian
manifold (M, g) such that it satisfies the above equation, then (∇ =

g

∇ +K, g) becomes a
statistical structure on M (see [10,11] for details).

It is remarkable that considering K = −A
2 , the two approaches from above, coincide.

3. Statistical structures on the tangent bundle
In this section we investigate the condition (TM, G, ∇̄) to be statistical. Here G is the

Sasaki metric of the tangent bundle TM explained in Section 2.
Let ∇̄ be a linear connection on TM . Then, with respect to {δi, ∂ī}, we have:

∇̄δi
δj = Γ̄k

ijδk + Γ̄k̄
ij∂k̄, ∇̄δi

∂j̄ = Γ̄k
ij̄δk + Γ̄k̄

ij̄∂k̄,

∇̄∂ī
δj = Γ̄k

ījδk + Γ̄k̄
īj∂k̄, ∇̄∂ī

∂j̄ = Γ̄k
īj̄δk + Γ̄k̄

īj̄∂k̄,

where Γ̄C
AB, A, B, C ∈ {1, · · · , n, 1̄, · · · , n̄} are smooth functions on TM . By using the

torsion-freeness conditions, we can get the equivalent local conditions as follows.

Lemma 3.1. The symmetry of ∇̄ has the following local alternative form:

i) Γ̄k
ij̄ = Γ̄k

j̄i, ii) Γ̄k̄
ij̄ − Γ̄k̄

j̄i =
g

Γk
ij ,

iii) Γ̄k
ij = Γ̄k

ji, iv) Γ̄k̄
ij − Γ̄k̄

ji = −yrRk
ijr,

v) Γ̄k
īj̄ = Γ̄k

j̄ī, vi) Γ̄k̄
īj̄ = Γ̄k̄

j̄ī.

Proof. The equations from the first line of the Lemma, are obtained by

∇̄δj
∂ī − ∇̄∂ī

δj = [δj , ∂ī] =
g

Γk
ji ∂k̄.

The equations from the second line, can be verified by

∇̄δi
δj − ∇̄δj

δi = [δi, δj ] = −yr
g

Rk
ijr ∂k̄,

and the ones from the third line result as ∇̄∂ī
∂j̄ − ∇̄∂j̄

∂ī = [∂ī, ∂j̄ ] = 0. �
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Lemma 3.2. Let (M, g, ∇) be a statistical manifold. Then, applying the Codazzi equations
for the statistical manifold (TM, G, ∇̄), we yield

i) ∂igjk − Γ̄r
ijgrk − Γ̄r

ikgrj = ∂jgki − Γ̄r
jkgri − Γ̄r

jigrk = ∂kgij − Γ̄r
kigrj − Γ̄r

kjgri, (3.1)
ii) Γ̄r̄

ijgrk + Γ̄r
ik̄

gjr = Γ̄r
jk̄

gri + Γ̄r̄
jigkr = Γ̄r

k̄i
grj + Γ̄r

k̄j
gri, (3.2)

iii) ∂igjk − Γ̄r̄
ij̄grk − Γ̄r̄

ik̄
gjr = −Γ̄r

j̄k̄
gri − Γ̄r̄

j̄igrk = −Γ̄r̄
k̄i

grj − Γ̄r
k̄j̄

gir, (3.3)

iv) Γ̄r̄
īj̄grk + Γ̄r̄

īk̄
grj = Γ̄r̄

j̄k̄
gri + Γ̄r̄

j̄īgrk = Γ̄r̄
k̄ī

grj + Γ̄r̄
k̄j̄

gri. (3.4)

Proof. By using
(∇̄δi

G)(δj , δk) = ∂igjk − Γ̄r
ijgrk − Γ̄r

ikgrj ,

and the Codazzi equation
(∇̄δi

G)(δj , δk) = (∇̄δj
G)(δk, δi) = (∇̄δk

G)(δi, δj),

we get (3.1). Also, the equations
(∇̄δi

G)(δj , ∂k̄) = −Γ̄r̄
ijgrk − Γ̄r

ik̄
gjr,

(∇̄δj
G)(∂k̄, δi) = −Γ̄r̄

jk̄
gri − Γ̄r̄

jigkr,

(∇̄∂k̄
G)(δi, δj) = −Γ̄r

k̄i
grj − Γ̄r

k̄j
gri,

and the Codazzi equations
(∇̄δi

G)(δj , ∂k̄) = (∇̄δj
G)(∂k̄, δi) = (∇̄∂k̄

G)(δi, δj),

imply (3.2). Similarly, from
(∇̄δi

G)(∂j̄ , ∂k̄) = ∂igjk − Γ̄r̄
ij̄

grk − Γ̄r̄
ik̄

gjr,

(∇̄∂j̄
G)(∂k̄, δi) = −Γ̄r

j̄k̄
gri − Γ̄r̄

j̄i
grk,

(∇̄∂k̄
G)(δi, ∂j̄) = −Γ̄r̄

k̄i
grj − Γ̄r

k̄j̄
gir,

and from the Codazzi equations
(∇̄δi

G)(∂j̄ , ∂k̄) = (∇̄∂j
G)(∂k̄, δi) = (∇̄∂k̄

G)(δi, ∂j̄),

we get (3.3). Finally, from

(∇̄∂ī
G)(∂j̄ , ∂k̄) = −Γ̄r̄

īj̄grk − Γ̄r̄
īk̄

grj ,

and from the Codazzi equations
(∇̄∂ī

G)(∂j̄ , ∂k̄) = (∇̄∂j̄
G)(∂k̄, ∂ī) = (∇̄∂k̄

G)(∂ī, ∂j̄),

we infer (3.4). �

Proposition 3.3. Let (M, g, ∇) be a statistical manifold. Then (TM, G, ∇̄) is a statistical
manifold if and only if

(Γ̄r
ik − Γr

ik)grj = (Γ̄r
jk − Γr

jk)gri, (3.5)
Γ̄r̄

ijgrk = Γ̄r
k̄j

gri, (3.6)

Γ̄r
ik̄

gjr − ym
g

Rijmk= Γ̄r
jk̄

gri, (3.7)

(Γ̄r̄
ik̄

−
g

Γr
ik)gjr = Γ̄r

j̄k̄
gri, (3.8)

Γ̄r̄
j̄igrk = Γ̄r̄

k̄i
grj , (3.9)

Γ̄r̄
īk̄

grj = Γ̄r̄
j̄k̄

gri, (3.10)

where
g

Rijmk=
g

Rr
ijm grk.
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Proof. From (i) of Lemma 3.2, we obtain

∂igjk − ∂jgki = Γ̄r
ikgrj − Γ̄r

jkgri. (3.11)

On the other hand, by applying the Codazzi equations for the couple of g and ∇, we get

∂igjk − ∂jgki = Γr
ikgrj − Γr

jkgri. (3.12)

From (3.11) and (3.12), we have the first claimed equation (3.5). From the first equality
of (ii) in Lemma 3.2 and (iv) of Lemma 3.1, we get (3.7). From the equality of the first
and the last sides of (ii) of Lemma 3.2 and (i) of Lemma 3.1, we get (3.6). We note that
(3.6) could be obtained from the last equality of (ii) of Lemma 3.2. From (ii) in Lemma
3.1 and the first equality of (iii) in Lemma 3.2, we obtain

∂igjk−
g

Γr
ij grk = Γ̄r̄

ik̄
gjr − Γ̄r

j̄k̄
gri. (3.13)

But, from the compatibility condition of the Levi-Civita connection
g

∇ with the metric g,
we will have

∂igjk =
g

Γr
ij grk+

g

Γr
ik gjr. (3.14)

From (3.13) and (3.14), we obtain (3.8). We note that the first and the third sides of (iii)
of Lemma 3.2 could be applied to infer the same result. From the last equation of (iii) of
Lemma 3.2 and (v) of Lemma 3.1, we get (3.9). As well, from (iv) of Lemma 3.2 and (vi)
of Lemma (3.1), we get (3.10). �

Example 3.4. Let (M, g, ∇) be a statistical manifold and let C be the cubic tensor field
of ∇, with the coefficients

Cijk = ∂kgij − Γh
ikgjh − Γh

jkgih.

Now we consider the horizontal lift Ch of C (see [18, p. 97]). Then we have
Ch(δi, δj , ∂k̄) = Ch(δi, ∂j̄ , δk) = Ch(δi, ∂j̄ , δk)

= (C(∂i, ∂j , ∂k))v = (Cijk)v = Cijk ◦ π,

Ch(δi, δj , δk) = (C(∂i, ∂j , ∂k))h = (Cijk)h = 0,

Ch(∂ī, ∂j̄ , ∂k̄) = 0.

Since Ch is symmetric, then using (2.6) we infer that there exists the tensor field Ã such
that

G(Ã(X̃)Ỹ , Z̃) = Ch(X̃, Ỹ , Z̃). (3.15)

By setting X̃ = δi, Ỹ = δj and Z̃ = δr in (3.15) we deduce that the horizontal part of
Ã(δi)δj is zero. Similarly, setting X̃ = δi, Ỹ = δj and Z̃ = ∂r̄ in (3.15) we deduce that the
vertical part of Ã(δi)δj is gkrCijr∂k̄. So we have

Ã(δi)δj = gkrCijr∂k̄. (3.16)

In a similar way we can obtain the following equations:

Ã(δi)∂j̄ = gkrCijrδk + gkrCijr∂k̄,

Ã(∂ī)δj = gkrCjirδk + gkrCjir∂k̄,

Ã(∂ī)∂j̄ = gkrCijrδk. (3.17)



Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric 127

Now we consider the Levi-Civita connection
g

∇̄ of Sasaki metric G and the linear connection
∇̄ =

g

∇̄ − Ã
2 . Then using (2.5) and (3.16)-(3.17) we get

∇̄δi
δj =

g

Γk
ij δk − 1

2(yl
g

Rk
ijl +gkrCjri)∂k̄,

∇̄δi
∂j̄ = 1

2(yl
g

Rk
lji −gkrCjri)δk + (

g

Γk
ij −1

2gkrCjri)∂k̄,

∇̄∂ī
δj = 1

2(yl
g

Rk
lij −gkrCirj)δk − 1

2gkrCirj∂k̄,

∇̄∂ī
∂j̄ = −1

2gkrCjriδk.

(3.18)

From the first equation of (3.18) we have

(Γ̄r
ik − Γr

ik)grj = (
g

Γ̄r
ik −Γr

ik)grj . (3.19)

Since K(∂i, ∂j) = (Γr
ij−

g

Γr
ij)∂r, then using (2.7) we get

(
g

Γ̄r
ik −Γr

ik)grj = (
g

Γ̄r
kj −Γr

kj)gir. (3.20)

Finally, (3.19) and (3.20) imply

(Γ̄r
ik − Γr

ik)grj = (
g

Γ̄r
kj −Γr

kj)gir = (Γ̄r
kj − Γr

kj)gir.

Thus the Christoffel coefficients of ∇̄ satisfy (3.5). Similarly, we note that the other
equations of Proposition 3.3 hold true for ∇̄, and (G, ∇̄) is a statistical structure on TM .

Remark 3.5. The statistical structure introduced by Example 3.4 has been studied by
Matsuzoe-Inoguchi in [14]. They globally showed that if (M, g, ∇) is a statistical manifold,
then (TM, G, Ch) is a statistical one too.

By using the definition of the curvature tensor of ∇̄, i.e.,

R̄(X̃, Ỹ )Z̃ = ∇̄X̃∇̄Ỹ Z̃ − ∇̄Ỹ ∇̄X̃ Z̃ − ∇̄[X̃,Ỹ ]Z̃, ∀X̃, Ỹ , Z̃ ∈ X(TM),

and by using (2.4) we conclude the following:

Proposition 3.6. Let (M, g, ∇) be a statistical manifold such that the Riemannian cur-
vature of (M, g) is zero. Then (TM, G, ∇̄) is flat if and only if

gmrCkrjCilm = 0,
g

∇∂i
Cjlk = 0, (3.21)

where (G, ∇̄) is the statistical structure on TM given by Example 3.4.

Proposition 3.7. Let (En, g, ∇) be a statistical manifold, where gij = δij is the Euclidean
metric and Γi

jk are the Christoffel symbols of ∇. Then (TEn, G, ∇̄) is flat if and only if

∇̄ reduces to the Levi-Civita connection
g

∇̄.

Proof. From the first equation of (3.21) we conclude that (TEn, G, ∇̄) is flat if and only
if CkmjCilm = 0, where i, j, k, l, m ∈ {1, · · · , n}. But this equation is equivalent with
Cilm = 0, for all i, l, m ∈ {1, · · · , n}. �

Example 3.8. Consider the Fisher metric

g =
[ 1

x22 0
0 2

x22

]
, (3.22)
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on M ={(x1, x2) : x1 ∈ R, x2 ∈ R+} of the normal distribution, with the local coordinates
(x1, x2). It is easy to see that

g−1 =
[
x2

2 0
0 x22

2

]
.

We choose the trivial statistical structure (g, ∇ :=
g

∇) on M . So, Γk
ij =

g

Γk
ij , and we shall

have

Γ1
11 = Γ1

22 = Γ2
12 = Γ2

21 = 0, Γ1
12 = Γ1

21 = − 1
x2

, Γ2
11 = 1

2x2
, Γ2

22 = − 1
x2

.

It can be verified that all the Riemannian curvature components of the Fisher metric
(3.22) are zero except than the following components:

g

R2
121= −

g

R2
211= 1

2x2
2
,

g

R1
122= −

g

R1
212= − 1

x2
2
.

Now, we are going to compute all of the Γ̄·
··’s. We use Lemma 3.1 by some technical efforts

to this aim and only mention details of one of these computations. Say, applying i = k = 1
and j = 2 in (3.5) together with (iii) of Lemma 3.1, leads to

Γ̄2
12 = Γ̄2

21 = 2(Γ̄2
11 − 1

x2
).

There are 17 independent Christoffel symbols on which the other depend. These symbols
are synthetically presented by the following table.

A synthetic table for the Christoffel symbols of ∇̄ from Example 3.8.
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α = Γ̄1
11 –

β = Γ̄2
11 Γ̄2

12 = Γ̄2
21 = 2(β − 1

x2
), Γ̄1

12 = Γ̄1
21 = 2β − 1

x2
, Γ̄1

22 = 4(β − 1
x2

)

γ = Γ̄1̄
11 Γ̄1

1̄1 = Γ̄1
11̄ = γ

δ = Γ̄2̄
11 Γ̄1

2̄1 = Γ̄1
12̄ = 2δ

ϵ = Γ̄1̄
12 Γ̄2

11̄ = Γ̄2
1̄1 = 1

2 ϵ, Γ̄1
1̄2 = Γ̄1

21̄ = ϵ − y2
x2

2
, Γ̄1̄

21 = ϵ − y2
x2

2

ε = Γ̄2̄
12 Γ̄1

2̄2 = Γ̄1
22̄ = 2ε + y1

2x2
2
, 2Γ̄2̄

21 = 2ε + y1
2x2

2
, Γ̄2

2̄1 = Γ̄2
12̄ = ε

ζ = Γ̄2
22 –

η = Γ̄1̄
22 Γ̄2

1̄2 = Γ̄2
21̄ = 1

2 η

θ = Γ̄2̄
22 Γ̄2

2̄2 = Γ̄2
22̄ = θ

ϑ = Γ̄1̄
1̄1 Γ̄1

1̄1̄ = Γ̄1̄
11̄ = ϑ

ι = Γ̄1̄
1̄2 Γ̄2

1̄1̄ = 1
2 ι, Γ̄1̄

21̄ = ι − 1
x2

κ = Γ̄1
2̄2̄ Γ̄2̄

1̄1 = Γ̄2̄
2̄1 = Γ̄2̄

12̄ = 1
2 κ, Γ̄1

2̄1̄ = Γ̄1
1̄2̄ = Γ̄1̄

2̄1 = κ, Γ̄1̄
12̄ = κ − 1

x2
, Γ̄2̄

11̄ = 1
2 (κ + 1

x2
)

λ = Γ̄2
2̄2̄ Γ̄2̄

1̄2 = Γ̄2̄
21̄ = Γ̄2

1̄2̄ = Γ̄2
2̄1̄ = 1

2 λ, Γ̄1̄
22̄ = Γ̄1̄

2̄2 = Γ2̄
2̄2 = λ, Γ̄2̄

22̄ = λ − 1
x2

µ = Γ̄1̄
2̄2̄ Γ̄2̄

1̄2̄ = Γ̄2̄
2̄1̄ = 1

2 µ

ν = Γ̄2̄
2̄2̄ –

ξ = Γ̄1̄
1̄1̄ –

π = Γ̄2̄
1̄1̄ Γ̄1̄

1̄2̄ = 2π, Γ̄1̄
2̄1̄ = 2π

Example 3.9. Consider the n-dimensional Euclidean space En equipped with the Rie-
mannian metric gij = δij . It is known that all of the Christoffel symbols induced by the

Levi-Civita connection
g

∇ are zero. So, also
g

Γk
ij are zero and this space is flat. Now, we

equip it by the trivial statistical structure (g, ∇ :=
g

∇). By plugging in these data in Propo-
sition 3.3, we can characterize all of the induced statistical structures (G, ∇̄) on TEn, as
follows

Γ̄j
ik = Γ̄i

jk, Γ̄k̄
ij = Γ̄i

k̄j
, Γ̄j

ik̄
= Γ̄i

jk̄
, Γ̄j̄

ik̄
= Γ̄i

j̄k̄
, Γ̄k̄

j̄i = Γ̄j̄

k̄i
, Γ̄j̄

īk̄
= Γ̄ī

j̄k̄
.

For instance, the couple (G, ∇̄) is a statistical structure on TEn, where ∇̄ has the coeffi-
cients 

Γ̄k
ij = f1(x1, · · · , xn, y1, · · · , yn),

Γ̄k̄
ij = Γ̄k

īj
= Γ̄k

ij̄
= f2(x1, · · · , xn, y1, · · · , yn),

Γ̄k̄
īj

= Γ̄k̄
ij̄

= Γ̄k
īj̄

= f3(x1, · · · , xn, y1, · · · , yn),
Γ̄k̄

īj̄
= f4(x1, · · · , xn, y1, · · · , yn).
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4. Holomorphic statistical manifolds
Let (M, g) be a Riemannian manifold, (TM, π, M) be its tangent bundle on a domain

U ⊆ M of a local chart, and let g have the components gij(x), (i, j ∈ {1, · · · , n}). On
π−1(U) ⊆ TM , we consider τ = gij(x)yiyj . Then τ is globally defined and differentiable
on TM .

A (1, 1)-tensor field J on a differential manifold M with dimension n = 2m ≥ 2 is called
an almost complex structure if J2 = −Id. Also, an almost Hermitian manifold (M, g, J)
is defined to be a differential manifold M endowed with an almost complex structure J
and a semi-Riemannian metric g, such that g(JX, JY ) = g(X, Y ), for all X, Y ∈ χ(M).
Moreover, if the 2-form ω(X, Y ) = g(X, JY ) is closed, then (M, g, J) is called an almost
Kähler manifold. In the case when J is integrable, then we have the definition of a Kähler
manifold.

Let (M, g, J) be a Kähler manifold. Then the above conditions in local form reduce to
the following equations{

J j
i Jk

j = −δk
i , Jk

i Jjk = gij , ωij = Jji, ∂iJkj + ∂jJik + ∂kJji = 0,

Jm
i ∂m(Js

j ) − Jm
j ∂m(Js

i ) − ∂i(Jm
j )Js

m + ∂j(Jm
i )Js

m = 0,
(4.1)

where Jjk = Jr
j grk. Note that two first equations give Jjk = −Jkj .

Now, we define an almost complex structure J̄ on the open set π−1(U) ⊆ TM by{
J̄δi = B∂ī + AJ j

i ∂j̄ = (Bδj
i + AJ j

i )∂j̄ ,

J̄∂ī = − B
A2+B2 δi + A

A2+B2 J j
i δj = (− B

A2+B2 δj
i + A

A2+B2 J j
i )δj ,

where A and B are functions with respect to τ .

Lemma 4.1. (TM, G, J̄) is an almost Hermitian structure if and only if
A2 + B2 = 1. (4.2)

Proof. Direct calculations give us G(J̄δi, J̄∂j̄) = 0 = G(δi, ∂j̄), G(J̄δi, J̄∂δj
) = (A2 +

B2)G(δi, δj), G(J̄∂ī, J̄∂j̄) = 1
A2+B2 G(∂ī, ∂j̄). Thus, G(J̄X, J̄Y ) = G(X, Y ) if and only if

A2 + B2 = 1. �
Now, we consider the 2-form Ω(X, Y ) = G(X, JY ).

Lemma 4.2. Ω is closed if and only if

Ayl(−
g

Rm
ijl Jmk+

g

Rm
ikl Jmj−

g

Rm
jkl Jmi) = 0, (4.3)

and
Bτ (yjgik − ykgij) = Aτ (yjJki − ykJji). (4.4)

Proof. It is easy to see that
dΩ(∂ī, ∂j̄ , ∂k̄) = 0 = dΩ(δi, δj , ∂k̄),

dΩ(δi, δj , δk) = Ayl(−
g

Rm
ijl Jmk+

g

Rm
ikl Jmj−

g

Rm
jkl Jmi),

and
dΩ(δi, ∂j̄ , ∂k̄) = Bτ (yjgik − ykgij) + Aτ (ykJji − yjJki).

The above equations complete the proof. �
Lemma 4.3. The almost complex structure J̄ is integrable if and only if

BBτ yiδ
n
j + BAτ yiJ

n
j + AJm

i Bτ ymδn
j + AJm

i Jn
j Aτ ym − BBτ yjδn

i

−BAτ yjJn
i − AJm

j Bτ ymδn
i − AAτ Jm

j Jn
i ym + ym

g

Rn
ijm= 0.

(4.5)
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Proof. Using the property of J̄ , we can derive that NJ̄(∂ī, ∂j̄) = NJ̄(δi, ∂j̄) = 0 if and
only if NJ̄(δi, δj) = 0 (see [14] for details). Therefore, it is sufficient to obtain NJ̄(δi, δj).
To this aim, we use the straightforward equality

NJ̄(δi, δj) = {BBτ yiδ
n
j + BAτ yiJ

n
j + AJm

i Bτ ymδn
j + AJm

i Jn
j Aτ ym − BBτ yjδn

i

−BAτ yjJn
i − AJm

j Bτ ymδn
i − AAτ Jm

j Jn
i ym + ym

g

Rn
ijm}∂n̄.

�
Theorem 4.4. Let (M, g, J) be a Kähler manifold. Then (TM, G, J̄) is a Kähler manifold
if and only if (4.2)-(4.5) hold.

Corollary 4.5. Let (M, g, J) be a flat Kähler manifold and let A and B be constant
functions with respect to τ , satisfying in A2 + B2 = 1. Then (TM, G, J̄) is a Kähler
manifold.

Definition 4.6. [11] A triple (∇, g, J) is called a holomorphic statistical structure on M
if (∇, g) is a statistical structure, (g, J) is a Kähler structure on M , and the formula

KXJY + JKXY = 0, (4.6)

holds for any X, Y ∈ Γ(TM).

Remark 4.7. We note that (4.6) induces Jm
j Ks

im + Km
ij Js

m = 0, where

Km
ij = Γm

ij −
g

Γm
ij . (4.7)

Lemma 4.8. The difference tensor field K̄ = ∇̄−
g

∇̄, has its components

K̄(δi, δj) = ∇̄δi
δj −

g

∇̄δi
δj = K̄k

ijδk + K̄ k̄
ij∂k̄,

K̄(δi, ∂j̄) = ∇̄δi
∂j̄ −

g

∇̄δi
∂j̄ = K̄k

ij̄δk + K̄ k̄
ij̄∂k̄,

K̄(∂ī, ∂j̄) = ∇̄∂ī
∂j̄ −

g

∇̄∂ī
∂j̄ = K̄k

īj̄δk + K̄ k̄
īj̄∂k̄.

explicitly given by:

K̄k
ij = Γ̄k

ij−
g

Γk
ij , (4.8)

K̄ k̄
ij = Γ̄k̄

ij + 1
2

yl
g

Rk
ijl, (4.9)

K̄k
ij̄ = Γ̄k

ij̄ − 1
2

yl
g

Rk
lji, (4.10)

K̄ k̄
ij̄ = Γ̄k̄

j̄i, (4.11)

K̄k
īj̄ = Γ̄k

īj̄ , (4.12)

K̄ k̄
īj̄ = Γ̄k̄

īj̄ . (4.13)

Theorem 4.9. The components of the difference tensor field K̄ satisfy the
following relations:

K̄k
ij = Kk

ij + Γ̄k
ij−

g

Γk
ij , (4.14)

(K̄r
ik − Kr

ik)grj = (K̄r
jk − Kr

jk)gri, (4.15)
K̄ r̄

ik̄
gjr = K̄r

j̄k̄
gri, (4.16)

K̄ r̄
īk̄

grj = K̄ r̄
j̄k̄

gri, (4.17)
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K̄ r̄
ij̄grk = K̄ r̄

ik̄
grj , (4.18)

K̄r
ik̄

gjr = K̄r
jk̄

gri, (4.19)

K̄ r̄
ijgrk = K̄r

jk̄
gri. (4.20)

Proof. From (4.8) and (4.7), we obtain (4.14). Also (4.14) and (3.5) give (4.15). Using
(4.11), (4.12) and (3.8), we get (4.16). (4.13) and (3.10) imply (4.17). Also, (4.11) and
(3.9) imply (4.18). (4.10) and (3.7) give (4.19). Moreover, (4.9), (4.10) and (3.6) imply
(4.20). �

We further study the holomorphic conditions for connections ∇̄, where (G, ∇̄) is a
statistical structure on the tangent bundle endowed with Sasaki metric G. To this aim,
we need to check the equation (4.6); direct calculations lead to:

K̄δi
J̄δj + J̄K̄δi

δj = [B(Γ̄s
ij̄ − 1

2
yl

g

Rs
lji) + AJm

j (Γ̄s
im̄ − 1

2
yl

g

Rs
lmi) − B(Γ̄s̄

ij + 1
2

yl
g

Rs
ijl)

+ AJs
n(Γ̄n̄

ij + 1
2

yl
g

Rn
ijl)]δs + [BΓ̄s̄

j̄i + AJm
j Γ̄s̄

m̄i + B(Γ̄s
ij−

g

Γs
ij )

+ AJs
n(Γ̄n

ij−
g

Γn
ij )]∂s̄,

K̄∂ī
J̄∂j̄ + J̄K̄∂ī

∂j̄ = [−B(Γ̄s
īj − 1

2
yl

g

Rs
lij) + AJm

j (Γ̄s
īm − 1

2
yl

g

Rs
lim) + (−BΓ̄s̄

īj̄

+ AΓ̄m̄
īj̄ Js

m)]δs + [−BΓ̄s̄
īj + AJm

j Γ̄s̄
īm + BΓ̄s

īj̄ + AΓ̄m
īj̄ Js

m]∂s̄,

K̄δi
J̄∂j̄ + J̄K̄δi

∂j̄ = [−B(Γ̄s
ij−

g

Γs
ij ) + AJm

j (Γ̄s
im−

g

Γs
im) − BΓ̄s̄

j̄i + AJs
mΓ̄m̄

j̄i ]δs

+ [−B(Γ̄s̄
ij + 1

2
yl

g

Rs
ijl) + AJm

j (Γ̄s̄
im + 1

2
yl

g

Rs
iml)

+ B(Γ̄s
ij̄ − 1

2
yl

g

Rs
lji) + AJs

m(Γ̄m
ij̄ − 1

2
yl

g

Rm
lji)]∂s̄,

K̄∂ī
J̄δj + J̄K̄∂ī

δj = {BΓ̄s
īj̄ + AJm

j Γ̄s
īm̄ − BΓ̄s̄

īj + AJs
mΓ̄m̄

īj }δs

+ {BΓ̄s̄
īj̄ + AJm

j Γ̄s̄
īm̄ + B(Γ̄s

jī − 1
2

yl
g

Rs
lij) + AJs

m(Γ̄m
jī − 1

2
yl

g

Rm
lij)}∂s̄.

Theorem 4.10. Let (M, g, J) be a Kähler manifold, let (g, ∇) be a statistical structure
on M , and (G, ∇̄) be a statistical structure on TM . Then (TM, G, J̄, ∇̄) is holomorphic
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if and only if (4.2)-(4.5) hold and, moreover,

B(Γ̄s
ij̄

− 1
2 yl

g

Rs
lji) + AJm

j (Γ̄s
im̄ − 1

2 yl
g

Rs
lmi)

−B(Γ̄s̄
ij + 1

2 yl
g

Rs
ijl) + AJs

n(Γ̄n̄
ij + 1

2 yl
g

Rn
ijl) = 0,

BΓ̄s̄
j̄i

+ AJm
j Γ̄s̄

m̄i + B(Γ̄s
ij−

g

Γs
ij ) + AJs

n(Γ̄n
ij−

g

Γn
ij ) = 0,

−B(Γ̄s
īj

− 1
2 yl

g

Rs
lij) + AJm

j (Γ̄s
īm

− 1
2 yl

g

Rs
lim) + (−BΓ̄s̄

īj̄
+ AΓ̄m̄

īj̄
Js

m) = 0,

−BΓ̄s̄
īj

+ AJm
j Γ̄s̄

īm
+ BΓ̄s

īj̄
+ AΓ̄m

īj̄
Js

m = 0,

−B(Γ̄s
ij−

g

Γs
ij ) + AJm

j (Γ̄s
im−

g

Γs
im) − BΓ̄s̄

j̄i
+ AJs

mΓ̄m̄
j̄i

= 0,

−B(Γ̄s̄
ij + 1

2 yl
g

Rs
ijl) + AJm

j (Γ̄s̄
im + 1

2 yl
g

Rs
iml)

+B(Γ̄s
ij̄

− 1
2 yl

g

Rs
lji) + AJs

m(Γ̄m
ij̄

− 1
2 yl

g

Rm
lji) = 0.

BΓ̄s
īj̄

+ AJm
j Γ̄s

īm̄
− BΓ̄s̄

īj
+ AJs

mΓ̄m̄
īj

= 0,

BΓ̄s̄
īj̄

+ AJm
j Γ̄s̄

īm̄
+ B(Γ̄s

jī
− 1

2 yl
g

Rs
lij) + AJs

m(Γ̄m
jī

− 1
2 yl

g

Rm
lij) = 0.

Theorem 4.11. Let (M, g, J) be a Kähler manifold, let (g, ∇) be a statistical structure
on M , and let (G, ∇̄) be the statistical structure on TM given by Example 3.4. Then
(TM, G, J̄, ∇̄) is holomorphic if and only if (4.2)-(4.5) hold and, moreover, ∇̄ reduces to
the Levi-Civita connection of G.

Proof. Using Theorems 4.4 and 4.10, it is easy to check that (TM, G, J̄, ∇̄) is holomorphic
if and only if (4.2)-(4.5) hold, and

A(Jm
j gsrCmri + Js

mgmrCjri) = 0,

BgsrCjri + AJm
j gsrCmri = 0, (4.21)

BgsrCjri − AJm
j gsrCmri = 0. (4.22)

(4.21) and (4.22) imply BgsrCjri = 0. If B ̸= 0, then we deduce Cjri = 0, i.e., ∇̄ reduces to
the Levi-Civita connection. But, if B = 0, then from (4.21) we conclude Jm

j gsrCmri = 0.
We note that in this case we have A ̸= 0. By multiplying this equations with J j

hgsn, we
infer Chni = 0. Thus, in this case, ∇̄ reduces to the Levi-Civita connection as well. �

Corollary 4.12. Let (M, g, J) be a flat Kähler manifold, let A and B be constant functions
with respect to τ satisfying the condition A2 + B2 = 1, let (g, ∇) be a statistical structure
on M , and let (G, ∇̄) be the statistical structure on TM given by Example 3.4. Then
(TM, G, J̄, ∇̄) is holomorphic if and only if ∇̄ reduces to the Levi-Civita connection of G.

Proposition 4.13. The Riemannian manifold introduced in Example 3.8 carries only two
Kähler structures J1

1 = J2
2 = 0, J2

1 = ± 1√
2 , J1

2 = ∓
√

2,

ω11 = ω22 = 0, ω21 =
√

2 1
x2

2
= −ω12.

(4.23)

Proof. The first relation in (4.1) leads to

(J1
1 )2 + J2

1 J1
2 = (J2

2 )2 + J2
1 J1

2 = −1, J1
1 J2

1 + J2
2 J2

1 = J1
1 J1

2 + J2
2 J1

2 = 0. (4.24)

The second relation in (4.1) leads to{
J1

1 J1
2 + 2J2

2 J2
1 = J1

1 J1
2 + 2J2

2 J2
1 = 0,

(J1
1 )2 + 2(J2

1 )2 = 1, (J1
2 )2 + 2(J2

2 )2 = 2.
(4.25)
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From (4.24) and (4.25), it results that the only possible situations for J to satisfy the first
two equations in (4.1) are the ones described in (4.23). Further, the third relation in (4.1)
allows to find the coefficients of ω, as described in (4.23). Also, it is easy to check that
the other relations in (4.1) can be achieved by (4.23). �
Proposition 4.14. Let (R2, g, J) be the Kähler manifolds introduced in Proposition 4.13.
Then, (TR2, G, J̄) is an almost Kähler manifold if and only if A and B are constant
functions with respect to τ .

Proof. It is sufficient to verify the relations (4.3) and (4.4). Straight computations lead
to (4.3). If A and B are constants, then (4.4) shall be obtained. Otherwise, putting i =
j = 1, k = 2 and i = j = 2, k = 2 in (4.4) leads to the meaningless relation y2

2 = −2y2
1. �

Theorem 4.15. The structure (TR2, G, J̄) mentioned in Proposition 4.14 cannot be a
Kähler one.

Proof. Indeed, we must show that J̄ cannot be integrable. Since A and B are constant
functions with respect to τ , (4.5) reduces to ym

g

Rn
ijm= 0. The above relation contradicts

the non-flatness of the upper half-space of the Poincare plane. �
Proposition 4.16. The Riemannian manifold introduced in Example 3.9 carries only two
Kähler structures, {

J1
1 = J2

2 = 0, J2
1 = ±1, J1

2 = ∓1,

ω11 = ω22 = 0, ω21 = 1 = −ω12.

Proof. Similar to the proof of Proposition 4.13. �
Proposition 4.17. Let (E2, g, J) be the Kähler manifolds introduced in Proposition 4.16.
Then, (TE2, G, J̄) is a Kähler manifold if and only if A and B are constant functions with
respect to τ .

Proof. We check first (4.4). By putting i = j = 1, k = 2 and i = j = k = 2 in (4.4), it
results Bτ y2 = Aτ y1 and Bτ y1 = −Aτ y2 respectively. From the two latter ones, one can
deduce that Aτ y2

1 = −Aτ y2
1, and hence A is constant; thus, B is constant as well. Because

the curvature is zero, it follows that (4.3) and (4.5) hold. �

Example 4.18. We consider the Kähler structure (TE2, G, J̄) with A = 0, B = 1 and fix
the connection ∇̄ with the coefficients

Γ̄s
ij = −Γ̄s̄

j̄i
= −f(x1, x2, y1, y2),

Γ̄s
īj̄

= Γ̄s̄
īj

= f(x1, x2, y1, y2),
Γ̄s̄

īj̄
= Γ̄s

īj
= Γ̄s

ij̄
= 0,

for all i, j, s ∈ {1, 2}. It is easy to see that (G, ∇̄) is a statistical structure on TE2, and it
satisfies the relations from the Theorem 4.10. Therefore, (TE2, G, J̄ , ∇̄) is a holomorphic
manifold.
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