Characterization of automorphisms of Hom-biproducts

Chen Quanguo* ${ }^{\text {(}}$, , Fu Tingting (${ }^{\text {(}}$
School of Mathematical Sciences, Qufu Normal University, Shandong, Qufu 273165, China

Abstract

We study certain subgroups of the full group of monoidal Hom-Hopf algebra automorphisms of a Hom-biproduct, which gives a Hom-version of Radford's results.

Mathematics Subject Classification (2010). 16W30
Keywords. monoidal Hom-Hopf algebra, Hom-biproduct, automorphism

1. Introduction

In the theory of the classical Hopf algebras, Radford's biproducts are very important Hopf algebras, which play a central role in the theory of classification of pointed Hopf algebra [1] and account for many examples of semisimple Hopf algebra. There has been many generalizations of Radford's biproducts such as [2] for quasi-Hopf algebra case, [9] for multiplier Hopf algebra case and [13] for monoidal Hom-Hopf algebra.

Let $B \times H$ be the Radford's biproduct, where B is both a left H-module algebra and a left H-comodule coalgebra. Define $\pi: B \times H \rightarrow H, \pi(b \times h)=\varepsilon_{B}(b) h$ and $j(h)=1_{B} \times h$, let $\operatorname{Aut}_{\text {Hopf }}(B \times H, \pi)$ be the set of Hopf algebra automorphisms F of $B \times H$ satisfying $\pi \circ F=\pi$. Radford [17] characterized the element of $\operatorname{Aut}_{\mathrm{Hopf}}(B \times H, \pi)$, and factorized $F \in \operatorname{Aut}_{\mathrm{Hopf}}(B \times H, \pi)$ into two suitable maps. Motivated by the idea in [17], the study of automorphisms of Radford's Hom-biproducts introduced in [13] is the focus of this paper.
This paper is organized as follows. In Section 2, we recall some definitions and basic results related to monoidal Hom-algebras, Hom-coalgebras, Hom-bialgebras (Hopf algebras), Hom-(co)module, Hom-module algebras, Hom-smash (co)products and Hom-biproducts.
In Section 3, we study the automorphisms of Radford's Hom-biproducts and show that the automorphism has a factorization closely related to the factors B and H of Radford's Hom-biproduct $B \times H$ in [13]. Finally, we characterize the automorphisms of a concrete example.

[^0]
2. Preliminaries

Throughout this paper, k will be a field. More materials about monoidal Hom-(co)algebra, monoidal Hopf Hom-algebra, etc. can be found in ([3-8, 10-16, 18-20]). We denote $i d_{M}$ for the identity map from M to M.

Let $\mathcal{M}=(\mathcal{M}, \otimes, k, a, l, r)$ be the monoidal category of vector spaces over k. We can construct a new monoidal category $\mathcal{H}(\mathcal{M})$ whose objects are ordered pairs (M, μ) with $M \in \mathcal{M}$ and $\mu \in \operatorname{Aut}(M)$ and morphisms $f:(M, \mu) \rightarrow(N, \nu)$ are morphisms $f: M \rightarrow N$ in \mathcal{M} satisfying $\nu \circ f=f \circ \mu$. The monoidal structure is given by $(M, \mu) \otimes(N, \nu)=$ $(M \otimes N, \mu \otimes \nu)$ and $\left(k, i d_{k}\right)$. All monoidal Hom-structures are objects in the tensor category $\tilde{\mathcal{H}}(\mathcal{M})=\left(\mathcal{H}(\mathcal{M}), \otimes,\left(k, i d_{k}\right), \widetilde{a}, \widetilde{l}, \widetilde{r}\right)$ introduced in [3] with the associativity and unit constraints given by

$$
\begin{gathered}
\widetilde{a}_{M, N, C}((m \otimes n) \otimes p)=\mu(m) \otimes\left(n \otimes \gamma^{-1}(c)\right), \\
\widetilde{l}(x \otimes m)=\widetilde{r}(m \otimes x)=x \mu(m),
\end{gathered}
$$

for $(M, \mu),(N, \nu)$ and (C, γ). The category $\widetilde{\mathcal{H}}(\mathcal{M})$ is termed Hom-category associated to \mathcal{M}. In the following, we recall some definitions about Hom-structures from [3] and [13].

2.1. Monoidal Hom-algebra

A monoidal Hom-algebra is an object $(A, \alpha) \in \widetilde{\mathcal{H}}(\mathcal{N})$ together with linear maps m_{A} : $A \otimes A \rightarrow A, m_{A}(a \otimes b)=a b$ and $\eta_{A}: k \rightarrow A$ such that

$$
\begin{align*}
& \alpha(a b)=\alpha(a) \alpha(b), \alpha(a)(b c)=(a b) \alpha(c), \tag{2.1}\\
& \alpha(\eta(1))=\eta(1), a \eta(1)=\alpha(a)=\eta(1) a, \tag{2.2}
\end{align*}
$$

for all $a, b, c \in A$. We shall write $\eta_{A}(1)=1_{A}$.
A left (A, α)-Hom-module consists of an object $(M, \mu) \in \widetilde{\mathcal{H}}(\mathcal{M})$ together with a linear map $\psi: A \otimes M \rightarrow M, \psi(a \otimes m)=a \cdot m$ satisfying the following conditions:

$$
\begin{equation*}
(a b) \cdot \mu(m)=\alpha(a) \cdot(b \cdot m), 1_{A} \cdot m=\mu(m), \tag{2.3}
\end{equation*}
$$

for all $m \in M$ and $a, b \in A$. For ψ to be a morphism in $\widetilde{\mathcal{H}}(\mathcal{M})$, one needs

$$
\begin{equation*}
\mu(a \cdot m)=\alpha(a) \cdot \mu(m) . \tag{2.4}
\end{equation*}
$$

We call that ψ is a left Hom-action of (A, α) on (M, μ).
Let (M, μ) and (M^{\prime}, μ^{\prime}) be two left (A, α)-Hom-modules. We call a morphism $f: M \rightarrow$ M^{\prime} right (A, α)-linear, if $f \circ \mu=\mu^{\prime} \circ f$ and $f(a \cdot m)=a \cdot f(m)$. $\widetilde{\mathcal{H}}\left({ }_{A} \mathcal{M}\right)$ denotes the category of all left (A, α)-Hom-modules.

2.2. Monoidal Hom-coalgebras

A monoidal Hom-coalgebra is an object $(C, \gamma) \in \widetilde{\mathcal{H}}(\mathcal{M})$ together with two linear maps $\Delta_{C}: C \rightarrow C \otimes C, \Delta_{C}(c)=c_{(1)} \otimes c_{(2)}$ (summation implicitly understood) and $\varepsilon_{C}: C \rightarrow k$ such that

$$
\begin{gather*}
\gamma^{-1}\left(c_{(1)}\right) \otimes \Delta_{C}\left(c_{(2)}\right)=c_{(1)(1)} \otimes\left(c_{(1)(2)} \otimes \gamma^{-1}\left(c_{(2)}\right)\right), \Delta_{C}(\gamma(c))=\gamma\left(c_{(1)}\right) \otimes \gamma\left(c_{(2)}\right), \tag{2.5}\\
\varepsilon_{C}(\gamma(c))=\varepsilon_{C}(c), c_{(1)} \varepsilon_{C}\left(c_{(2)}\right)=\gamma^{-1}(c)=\varepsilon_{C}\left(c_{(1)}\right) c_{(2)}, \tag{2.6}
\end{gather*}
$$

for all $c \in C$.
A left (C, γ)-Hom-comodule consists of an object $(M, \mu) \in \widetilde{\mathcal{H}}(\mathcal{M})$ together with a linear map $\rho_{M}: M \rightarrow C \otimes M, \rho_{M}(m)=m_{[-1]} \otimes m_{[0]}$ (summation implicitly understood) satisfying the following conditions:

$$
\begin{gather*}
\Delta_{C}\left(m_{[-1]}\right) \otimes \mu^{-1}\left(m_{[0]}\right)=\gamma^{-1}\left(m_{[-1]}\right) \otimes\left(m_{[0][-1]} \otimes m_{[0][0]}\right), \tag{2.7}\\
\varepsilon_{C}\left(m_{[-1]}\right) m_{[0]}=\mu^{-1}(m), \tag{2.8}\\
\rho_{M}(\mu(m))=\gamma\left(m_{[-1]}\right) \otimes \mu\left(m_{[0]}\right), \tag{2.9}
\end{gather*}
$$

for all $m \in M$. We call that ρ_{M} is a left Hom-coaction of (A, α) on (M, μ).
Let (M, μ) and $\left(M^{\prime}, \mu^{\prime}\right)$ be two left (C, γ)-Hom-comodules. We call a morphism f : $M \rightarrow M^{\prime}$ left (C, γ)-colinear, if $f \circ \mu=\mu^{\prime} \circ f$ and $f(m)_{[0]} \otimes f(m)_{[-1]}=f\left(m_{[0]}\right) \otimes m_{[-1]}$. $\widetilde{\mathcal{H}}\left({ }^{C} \mathcal{M}\right)$ denotes the category of all left (C, γ)-Hom-comodules.

2.3. Monoidal Hom-Hopf algebra

A monoidal Hom-bialgebra $H=\left(H, \beta, m_{H}, 1_{H}, \Delta_{H}, \varepsilon_{H}\right)$ is a bialgebra in the category $\tilde{\mathcal{H}}(\mathcal{M})$. This means that $\left(H, \beta, m_{H}, 1_{H}\right)$ is a monoidal Hom-algebra and $\left(H, \beta, \Delta_{H}, \varepsilon_{H}\right)$ is a monoidal Hom-coalgebra such that Δ_{H} and ε_{H} are Hom-algebra maps, that is, for any $h, g \in H$,

$$
\begin{gather*}
\Delta_{H}(h g)=\Delta_{H}(h) \Delta_{H}(g), \Delta_{H}\left(1_{H}\right)=1_{H} \otimes 1_{H}, \tag{2.10}\\
\varepsilon_{H}(h g)=\varepsilon_{H}(h) \varepsilon_{H}(g), \varepsilon_{H}\left(1_{H}\right)=1 . \tag{2.11}
\end{gather*}
$$

A monoidal Hom-bialgebra (H, β) is called a monoidal Hom-Hopf algebra, if there exists a morphism (called the Hom-antipode) $S_{H}: H \rightarrow H$ in $\widetilde{\mathcal{H}}(\mathcal{M})$ such that

$$
\begin{equation*}
S_{H}\left(h_{(1)}\right) h_{(2)}=\varepsilon_{H}(h) 1_{A}=h_{(1)} S\left(h_{(2)}\right), \tag{2.12}
\end{equation*}
$$

for all $h \in H$.

2.4. Hom-module algebra

Let (H, β) be a monoidal Hom-bialgebra. A monoidal $\operatorname{Hom}-a l g e b r a(B, \alpha)$ is called a left (H, β)-Hom-module algebra, if (B, α) is a left (H, β)-Hom-module with the action • obeying the following axioms:

$$
\begin{equation*}
h \cdot(a b)=\left(h_{(1)} \cdot a\right)\left(h_{(2)} \cdot b\right), h \cdot 1_{B}=\varepsilon_{H}(h) 1_{B}, \tag{2.13}
\end{equation*}
$$

for all $a, b \in A$ and $h \in H$.
Let (B, α) be a left (H, β)-Hom-module algebra. The Hom-smash product ($B \sharp H, \alpha \sharp \beta$) of (B, α) and (H, β) is defined as follows, for all $a, b \in B, h, g \in H$,

- as k-space, $B \sharp H=B \otimes H$,
- Hom-multiplication is given by

$$
(a \sharp h)(b \sharp g)=a\left(h_{(1)} \cdot \alpha^{-1}(b)\right) \sharp \beta\left(h_{(2)}\right) g .
$$

$\left(B \sharp H, 1_{B} \sharp 1_{H}, \alpha \otimes \beta\right)$ is a monoidal Hom-algebra.

2.5. Hom-comodule coalgebra

Let (H, β) be a monoidal Hom-bialgebra. A monoidal Hom-coalgebra (B, α) is called a left (H, β)-Hom-comodule coalgebra, if (B, α) is a left (H, β)-Hom-comodule with the coaction $\rho_{B}(b)=b_{[-1]} \otimes b_{[0]}$ obeying the following axioms:

$$
\begin{equation*}
b_{[-1]} \otimes \Delta_{B}\left(b_{[0]}\right)=b_{(1)[-1]} b_{(2)[-1]} \otimes b_{(1)[0]} \otimes b_{(2)[0]}, b_{[-1]} \varepsilon_{B}\left(b_{[0]}\right)=\varepsilon_{B}(b) 1_{H}, \tag{2.14}
\end{equation*}
$$

for all $b \in B$.
Let (B, α) be a left (H, β)-Hom-comodule cocalgebra. The Hom-smash coproduct $(B \natural H, \alpha \sharp \beta)$ of (B, α) and (H, β) is defined as follows, for all $a, b \in B, h, g \in H$,

- as k-space, $B \natural H=B \otimes H$,
- Hom-comultiplication is given by

$$
\Delta(b \nleftarrow h)=\left(b_{(1)} \& b_{(2)[-1]} \beta^{-1}\left(h_{(1)}\right)\right) \otimes\left(\alpha\left(b_{(2)[0]}\right) \measuredangle h_{(2)}\right) .
$$

$\left(B \natural H, \Delta, \varepsilon_{B} \otimes \varepsilon_{H}, \alpha \otimes \beta\right)$ is a monoidal Hom-coalgebra.

2.6. Hom-comodule algebra

Let (H, β) be a monoidal Hom-bialgebra. A monoidal Hom-algebra (B, α) is called a left (H, β)-Hom-comodule algebra, if (B, α) is a left (H, β)-Hom-comodule with the coaction ρ_{B} obeying the following axioms:

$$
\begin{equation*}
\rho_{B}(a b)=a_{[-1]} b_{[-1]} \otimes a_{[0]} b_{[0]}, \rho_{B}\left(1_{B}\right)=1_{H} \otimes 1_{B}, \tag{2.15}
\end{equation*}
$$

for all $a, b \in B$.

2.7. Hom-module coalgebra

Let (H, β) be a monoidal Hom-bialgebra. A monoidal Hom-coalgebra (B, α) is called a left (H, β)-Hom-module coalgebra, if (B, α) is a left (H, β)-Hom-module with the action • obeying the following axioms:

$$
\begin{equation*}
\Delta_{B}(h \cdot b)=h_{(1)} \cdot b_{(1)} \otimes h_{(2)} \cdot b_{(2)}, \varepsilon_{B}(h \cdot b)=\varepsilon_{H}(h) \varepsilon_{B}(b), \tag{2.16}
\end{equation*}
$$

for all $b \in B$ and $h \in H$.

2.8. Radford's Hom-biproduct

Recall from [Theorem 3.5] that the vector space $B \otimes H$ with the Hom-smash product structure and the Hom-smash coproduct structure is a monoidal Hom-bialgebra if and only if the following conditions hold:

- ε_{B} is an algebra map and $\Delta_{B}\left(1_{B}\right)=1_{B} \otimes 1_{B}$,
- (B, α) is a left (H, β)-Hom-module coalgebra,
- (B, α) is a left (H, β)-Hom-comodule algebra,
- for $a, b \in B$,

$$
\begin{equation*}
\Delta_{B}(a b)=a_{(1)}\left(a_{(2)[-1]} \cdot \alpha^{-1}\left(b_{(1)}\right)\right) \otimes \alpha\left(a_{(2)[0]}\right) b_{(2)} \tag{2.17}
\end{equation*}
$$

- for all $h \in H$ and $b \in B$,

$$
\begin{equation*}
\left(h_{(1)} \cdot \alpha^{-1}(b)\right)_{[-1]} h_{(2)} \otimes \alpha\left(\left(h_{(1)} \cdot \alpha^{-1}(b)\right)_{[0]}\right)=h_{(1)} b_{[-1]} \otimes h_{(2)} \cdot b_{[0]} . \tag{2.18}
\end{equation*}
$$

Under the assumption that $\left(H, S_{H}\right)$ is a monoidal Hom-Hopf algebra and $i d_{B}$ has a convolution inverse in $\operatorname{End}(B), B \otimes H$ is a monoidal Hom-Hopf algebra. The monoidal Hom-Hopf $\operatorname{algebra}(B \otimes H, \alpha \otimes \beta)$ is called the Radford's Hom-biproduct and is denoted by $B \times H$.

3. Factorization of certain biproduct endomorphisms

Let $(B \times H, \alpha \otimes \beta)$ be the Radford's Hom-biproduct. We define $\pi: B \times H \rightarrow H$ by $\pi(b \times h)=\varepsilon_{B}(b) h$ for $b \in B$ and $h \in H$ and $j: H \rightarrow B \times H$ by $j(h)=1_{B} \times h$ for $h \in H$ are monoidal Hom-Hopf algebra maps which satisfy $\pi \circ j=i d_{H}$. Let $\operatorname{End}_{\text {Hom-Hopf }}(B \times H, H, \pi)$ be the set of all monoidal Hom-Hopf algebra endomorphisms F of A such that $\pi \circ F=\pi$ and let $\operatorname{Aut}_{\mathrm{Hom}-\mathrm{Hopf}}(B \times H, H, \pi)$ be its set of units. Thus $\mathrm{Aut}_{\mathrm{Hom}-\mathrm{Hopf}}(B \times H, H, \pi)$ is the group of monoidal Hom-Hopf algebra automorphisms F of $B \times H$ such that $\pi \circ F=\pi$ under composition. We will write $\operatorname{End}_{H o m-H o p f}(B \times H, \pi)$ for $\operatorname{End}_{\text {Hom-Hopf }}(B \times H, H, \pi)$, and $\mathrm{Aut}_{\text {Hom-Hopf }}(B \times H, \pi)$ for $\mathrm{Aut}_{\text {Hom-Hopf }}(B \times H, H, \pi)$. The pupose of this section is to show that F has a factorization closely related to the factors B and H of $B \times H$.
We define $\Pi: B \times H \rightarrow B$ and $J: B \rightarrow B \times H$ by $\Pi(b \times h)=b \varepsilon_{H}(h)$, for all $b \in B, h \in H$ and $J(b)=b \times 1_{H}$, for all $b \in B$. There is a fundamental relationship between these four maps given by:

$$
\begin{equation*}
J \circ \Pi=i d_{B \times H} \star\left(j \circ S_{H} \circ \pi\right) . \tag{3.1}
\end{equation*}
$$

The factorization of F is given in terms of $F_{l}: B \rightarrow B$ and $F_{r}: H \rightarrow B$ defined by:

$$
\begin{equation*}
F_{l}=\Pi \circ F \circ J \quad \text { and } \quad F_{r}=\Pi \circ F \circ j . \tag{3.2}
\end{equation*}
$$

First, we shall reveal the relationships among F, F_{l} and F_{r} in the following lemma.

Lemma 3.1. Let $F \in \operatorname{End}_{\text {Hom-Hopf }}(B \times H, \pi)$. Then:

$$
\begin{gather*}
F_{l}(b) \times 1_{H}=F\left(b \times 1_{H}\right) \tag{3.3}\\
F_{r}(h) \times 1_{H}=F\left(1_{B} \times h_{(1)}\right)\left(1_{B} \times S_{H}\left(h_{(2)}\right)\right), \tag{3.4}\\
F(b \times h)=F_{l}\left(\alpha^{-1}(b)\right) F_{r}\left(h_{(1)}\right) \times \beta\left(h_{(2)}\right), \tag{3.5}
\end{gather*}
$$

for all $b \in B$ and $h \in H$.
Proof. We need to calculate $J \circ \Pi \circ F$. For $b \in B$ and $h \in H$, we use (3.1) to compute

$$
\begin{aligned}
(J \circ \Pi)(F(b \times h)) & =F\left((b \times h)_{(1)}\right)\left(j \circ S_{H} \circ \pi\right)\left(F\left((b \times h)_{(2)}\right)\right) \\
& =F\left((b \times h)_{(1)}\right)\left(j \circ S_{H} \circ \pi\right)\left((b \times h)_{(2)}\right) \\
& =F\left(b_{(1)} \times b_{(2)[-1]} \beta^{-1}\left(h_{(1)}\right)\right)\left(j \circ S_{H} \circ \pi\right)\left(\alpha\left(b_{(2)[0]}\right) \times h_{(2)}\right) \\
& =F\left(\alpha^{-1}(b) \times h_{(1)}\right)\left(1_{A} \times S_{H}\left(h_{(2)}\right)\right) .
\end{aligned}
$$

It follows that

$$
(J \circ \Pi \circ F)(b \times h)=F\left(\alpha^{-1}(b) \times h_{(1)}\right)\left(1_{B} \times S_{H}\left(h_{(2)}\right)\right)
$$

for all $b \in B$ and $h \in H$. Equations (3.3) and (3.4) follow from the above equation. As for (3.5), we calculate

$$
\begin{aligned}
F & (b \times h) \\
& =F\left(\alpha^{-1}(b) \times 1_{H}\right) F\left(1_{B} \times \beta^{-1}(h)\right) \\
& =F\left(\alpha^{-1}(b) \times 1_{H}\right)\left[F\left(1_{B} \times \beta^{-1}\left(h_{(1)}\right)\right)\left(\left(1_{B} \times S_{H}\left(\beta^{-1}\left(h_{(2)(1)}\right)\right)\right)\left(1_{B} \times \beta^{-1}\left(h_{(2)(2)}\right)\right)\right)\right] \\
& =F\left(\alpha^{-1}(b) \times 1_{H}\right)\left[\left(F\left(1_{B} \times \beta^{-2}\left(h_{(1)}\right)\right)\left(1_{B} \times S_{H}\left(\beta^{-1}\left(h_{(2)(1)}\right)\right)\right)\right)\left(1_{B} \times h_{(2)(2)}\right)\right] \\
& =F\left(\alpha^{-1}(b) \times 1_{H}\right)\left[\left(F\left(1_{B} \times \beta^{-1}\left(h_{(1)(1)}\right)\right)\left(1_{B} \times S_{H}\left(\beta^{-1}\left(h_{(1)(2)}\right)\right)\right)\right)\left(1_{B} \times \beta^{-1}\left(h_{(2)}\right)\right)\right] \\
& =\left[F\left(\alpha^{-2}(b) \times 1_{H}\right)\left(F\left(1_{B} \times \beta^{-1}\left(h_{(1)(1)}\right)\right)\left(1_{B} \times S_{H}\left(\beta^{-1}\left(h_{(1)(2)}\right)\right)\right)\right)\right]\left(1_{B} \times h_{(2)}\right) \\
& =\left[F_{l}\left(\alpha^{-2}(b) \times 1_{H}\right)\left(F_{r}\left(\beta^{-1}\left(h_{(1)}\right)\right) \times 1_{H}\right)\right]\left(1_{B} \times h_{(2)}\right) \\
& =F_{l}\left(\alpha^{-1}(b)\right) F_{r}\left(h_{(1)}\right) \times \beta\left(h_{(2)}\right)
\end{aligned}
$$

as desired.
By (3.3) and (3.4) of Lemma 3.1:

$$
\begin{equation*}
\left(i d_{B \times H}\right)_{l}=i d_{B} \quad \text { and } \quad\left(i d_{B \times H}\right)_{r}=\eta_{B} \circ \varepsilon_{H} \tag{3.6}
\end{equation*}
$$

Since $F_{l}\left(1_{B}\right)=1_{B}$ by (3.3) of Lemma 3.1. By (3.5) of Lemma 3.1:

$$
\begin{equation*}
F\left(1_{B} \times h\right)=F_{r}\left(\beta\left(h_{(1)}\right)\right) \times \beta\left(h_{(2)}\right), \tag{3.7}
\end{equation*}
$$

for all $h \in H$. We are now able to compute the factors of a composite.
Corollary 3.2. Let $F, G \in \operatorname{End}_{H o m-H o p f}(B \times H, \pi)$. Then
(1) $(F \circ G)_{l}=F_{l} \circ G_{l}$,
(2) $(F \circ G)_{r}=\left(F_{l} \circ G_{r}\right) \star F_{r}$

Proof. For $b \in B$, by (3.3) of Lemma 3.1, we have

$$
(F \circ G)_{l}(b) \times 1_{H}=(F \circ G)(b \times 1)=F\left(G_{l}(b) \times 1_{H}\right)=\left(F_{l} \circ G_{l}\right)(b) \times 1_{H}
$$

Thus, it follows that part (1) holds. Let $h \in H$. Using (3.7), the fact that F is multiplicative, and part (1) of (3.3), we obtain that:

$$
\begin{aligned}
& \quad(F \circ G)_{r}\left(\beta\left(h_{(1)}\right)\right) \times \beta\left(h_{(2)}\right) \\
& (3.7)=(F \circ G)\left(1_{B} \times h\right) \\
& (3.7)=F\left(G_{r}\left(\beta\left(h_{(1)}\right)\right) \times \beta\left(h_{(2)}\right)\right) \\
& \quad=F\left(G_{r}\left(h_{(1)}\right) \times 1_{H}\right) F\left(1_{B} \times h_{(2)}\right)
\end{aligned}
$$

$$
\begin{aligned}
(3.3) & =\left(F_{l} G_{r}\left(h_{(1)}\right) \times 1_{H}\right)\left(F_{r}\left(\beta\left(h_{(2)(1)}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right) \\
& =F_{l} G_{r}\left(h_{(1)}\right) F_{r}\left(\beta\left(h_{(2)(1)}\right)\right) \times \beta^{2}\left(h_{(2)(2)}\right) \\
& =F_{l} G_{r}\left(\beta\left(h_{(1)(1)}\right)\right) F_{r}\left(\beta\left(h_{(1)(2)}\right)\right) \times \beta\left(h_{(2)}\right),
\end{aligned}
$$

i.e.,

$$
(F \circ G)_{r}\left(\beta\left(h_{(1)}\right)\right) \times \beta\left(h_{(2)}\right)=F_{l} G_{r}\left(\beta\left(h_{(1)(1)}\right)\right) F_{r}\left(\beta\left(h_{(1)(2)}\right)\right) \times \beta\left(h_{(2)}\right) .
$$

Applying $i d_{B} \otimes \varepsilon_{H}$ to both sides of the above equation, we can get part (2).
By virtue of Lemma 3.1, to characterize F is a matter of characterizing F_{l} and F_{R}. Note in particular part (5) of the following describes a commutation relation between F_{l} and F_{R}. First, we shall characterize F_{l} in the following lemma.

Lemma 3.3. Let $F \in \operatorname{End}_{\text {Hom-Hopf }}(B \times H, \pi)$. Then:
(1) $F_{l}: B \rightarrow B$ is a monoidal Hom-algebra endomorphism.
(2) $\varepsilon_{B} \circ F_{l}=\varepsilon_{B}$.
(3) for all $b \in B$,

$$
\begin{equation*}
\Delta\left(F_{l}(b)\right)=F_{l}\left(\alpha^{-1}\left(b_{(1)}\right)\right) F_{r}\left(b_{(2)[-1]}\right) \otimes F_{l}\left(\alpha\left(b_{(2)[0]}\right)\right) \tag{3.8}
\end{equation*}
$$

(4) for all $b \in B$,

$$
\begin{equation*}
\rho\left(F_{l}(b)\right)=b_{[-1]} \otimes F_{l}\left(b_{[0]}\right), \tag{3.9}
\end{equation*}
$$

(5) for all $b \in B$ and $h \in H$,

$$
\begin{equation*}
F_{l}\left(h_{(1)} \cdot b\right) F_{r}\left(\beta\left(h_{(2)}\right)\right)=F_{r}\left(\beta\left(h_{(1)}\right)\right)\left(h_{(2)} \cdot F_{l}(b)\right) \tag{3.10}
\end{equation*}
$$

Proof. In order to prove (1), we need to check three aspects. From the above discussion, we have known that $F_{l}\left(1_{B}\right)=1_{B}$. It is easy to check that $F_{l} \circ \alpha=\alpha \circ F_{l}$. Finally, we shall check that F_{l} preserves the multiplication. In fact, for $a, b \in B$, we have

$$
\begin{aligned}
F_{l}(a b) & =(\Pi \circ F \circ J)(a b) \\
& =\Pi\left(F\left(a b \times 1_{H}\right)\right)=\Pi\left(F\left(a \times 1_{H}\right) F\left(b \times 1_{H}\right)\right) \\
(3.3) & =\Pi\left(\left(F_{l}(a) \times 1_{H}\right)\left(F_{l}(b) \times 1_{H}\right)\right) \\
& =F_{l}(a) F_{l}(b) .
\end{aligned}
$$

It is easy to check part (2). Next, we shall check that parts (3) and (4) hold. As a matter of fact, we compute the coproduct of $F_{l}(b) \times 1_{H}=F\left(b \times 1_{H}\right)$ in two ways. First of all,

$$
\Delta\left(F_{l}(b) \times 1_{H}\right)=\left(F_{l}(b)_{(1)} \times \beta\left(F_{l}(b)_{(2)[-1]}\right)\right) \otimes\left(\alpha\left(F_{l}(b)_{(2)[0]}\right) \times 1_{H}\right)
$$

and secondly, since F is a coalgebra map, we have

$$
\begin{aligned}
\Delta & \left(F\left(b \times 1_{H}\right)\right) \\
& =F\left(\left(b \times 1_{H}\right)_{(1)}\right) \otimes F\left(\left(b \times 1_{H}\right)_{(2)}\right) \\
& =F\left(b_{(1)} \times \beta\left(b_{(2)[1]}\right)\right) \otimes F\left(\alpha\left(b_{(2)[0]}\right) \times 1_{H}\right) \\
& =\left[F_{l}\left(\alpha^{-1}\left(b_{(1)}\right)\right) F_{r}\left(\beta\left(b_{(2)[-1](1)}\right)\right) \times \beta^{2}\left(b_{(2)[-1](2)}\right)\right] \otimes\left(F_{l}\left(\alpha\left(b_{(2)[0]}\right)\right) \times 1_{H}\right) .
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \left(F_{l}(b)_{(1)} \times \beta\left(F_{l}(b)_{(2)[-1]}\right)\right) \otimes\left(\alpha\left(F_{l}(b)_{(2)[0]}\right) \times 1_{H}\right) \tag{3.11}\\
& \quad=\left[F_{l}\left(\alpha^{-1}\left(b_{(1)}\right)\right) F_{r}\left(\beta\left(b_{(2)[-1](1)}\right)\right) \times \beta^{2}\left(b_{(2)[-1](2)}\right)\right] . \otimes\left(F_{l}\left(\alpha\left(b_{(2)[0]}\right)\right) \times 1_{H}\right)
\end{align*}
$$

Applying $i d_{B} \otimes \varepsilon_{H} \otimes i d_{B} \otimes \varepsilon_{H}$ to both sides of (3.11) yields (3.8). It follows easily that $\varepsilon_{B} \circ F_{r}=\varepsilon_{B}$ from (3.7). Applying $\varepsilon_{B} \otimes i d_{H} \otimes i d_{B} \otimes \varepsilon_{H}$ to both sides of (3.11) again, we can gain (3.9).

Finally, it is left to us to check part (5). Indeed, for $b \in B$ and $h \in H$, we have
$F\left(\left(1_{B} \times h\right)\left(b \times 1_{H}\right)\right)=F\left(\left(\beta\left(h_{(1)}\right) \cdot b\right) \times \beta^{2}\left(h_{(2)}\right)\right)=F_{l}\left(h_{(1)} \cdot \alpha^{-1}(b)\right) F_{r}\left(\beta^{2}\left(h_{(2)(1)}\right)\right) \times \beta^{3}\left(h_{(2)(2)}\right)$.

On the other hand, Since F preserves the multiplication, we compute:

$$
\begin{aligned}
F\left(\left(1_{B} \times h\right)\left(b \times 1_{H}\right)\right) & =F\left(1_{B} \times h\right) F\left(b \times 1_{H}\right) \\
& =\left(F_{r}\left(\beta\left(h_{(1)}\right)\right) \times \beta\left(h_{(2)}\right)\right)\left(F_{l}(b) \times 1_{H}\right) \\
& =F_{r}\left(\beta\left(h_{(1)}\right)\right)\left(\beta\left(h_{(2)(1)}\right) \cdot F_{l}\left(\alpha^{-1}(b)\right)\right) \times \beta^{3}\left(h_{(2)(2)}\right) .
\end{aligned}
$$

Applying $i d_{B} \otimes \varepsilon_{H}$ to both expressions for $F\left(\left(1_{B} \times h\right)\left(b \times 1_{H}\right)\right)$, we obtain (3.10).
As the reader might suspect, whether or not F_{l} is a coalgebra map is explained in terms of F_{R}.
Corollary 3.4. Let $F \in \operatorname{End}_{\text {Hom-Hopf }}(B \times H, \pi)$. Then, F_{l} is a monoidal Hom-coalgebra if and only if $F_{r}\left(c_{[-1]}\right) \otimes c_{[0]}=1_{B} \otimes \alpha^{-1}(c)$, for all $c \in \operatorname{Im}\left(F_{l}\right)$.
Proof. Suppose $F_{r}\left(c_{[-1]}\right) \otimes c_{[0]}=1_{B} \otimes \alpha^{-1}(c)$, for all $c \in \operatorname{Im}\left(F_{l}\right)$. Then we have

$$
\begin{aligned}
\Delta\left(F_{l}(b)\right) & =F_{l}\left(\alpha^{-1}\left(b_{(1)}\right)\right) F_{r}\left(b_{(2)[-1]}\right) \otimes F_{l}\left(\alpha\left(b_{(2)[0]}\right)\right) \\
(3.9) & =F_{l}\left(\alpha^{-1}\left(b_{(1)}\right)\right) F_{r}\left(F_{l}\left(b_{(2)}\right)_{[-1]}\right) \otimes \alpha\left(F_{l}\left(b_{(2)}\right)_{[0]}\right) \\
& =F_{l}\left(b_{(1)}\right) \otimes F_{l}\left(b_{(2)}\right) .
\end{aligned}
$$

Conversely, suppose that F_{l} is a monoidal Hom-coalgebra map. For all $b \in B$, we compute

$$
\begin{aligned}
& F_{r}\left(F _ { l } (b _ { [- 1] }) \otimes F _ { l } \left(b b_{[0]}\right.\right. \\
&(3.9)=F_{r}\left(b_{[-1]}\right) \otimes F_{l}\left(b_{[0]}\right) \\
&=F_{l}\left(\varepsilon_{B}\left(\alpha^{-1}\left(b_{(1)}\right)\right) 1_{B}\right) F_{r}\left(b_{(2)[-1]}\right) \otimes F_{l}\left(\alpha\left(b_{(2)[0]}\right)\right) \\
&=F_{l}\left(S_{B}\left(\alpha^{-1}\left(b_{(1)(1)}\right)\right) \alpha^{-1}\left(b_{(1)(2)}\right)\right) F_{r}\left(\left(b_{(2)[-1]}\right) \otimes F_{l}\left(\alpha\left(b_{(2)[0]}\right)\right)\right. \\
&=\left[F_{l}\left(S_{B}\left(\alpha^{-1}\left(b_{(1)(1)}\right)\right)\right) F_{l}\left(\alpha^{-1}\left(b_{(1)(2)}\right)\right)\right] F_{r}\left(\left(b_{(2)[-1]}\right) \otimes F_{l}\left(\alpha\left(b_{(2)[0]}\right)\right)\right. \\
&(2.5)=\left[F_{l}\left(S_{B}\left(\alpha^{-2}\left(b_{(1)}\right)\right)\right) F_{l}\left(\alpha^{-1}\left(b_{(2)(1)}\right)\right)\right] F_{r}\left(\beta\left(b_{(2)(2)[-1]}\right)\right) \otimes F_{l}\left(\alpha^{2}\left(b_{(2)(2)[0]}\right)\right) \\
&(2.1)=F_{l}\left(S_{B}\left(\alpha^{-1}\left(b_{(1)}\right)\right)\right)\left[F_{l}\left(\alpha^{-1}\left(b_{(2)(1)}\right)\right) F_{r}\left(b_{(2)(2)[-1)}\right)\right] \alpha\left(F_{l}\left(\alpha\left(b_{(2)(2)[0]}\right)\right)\right) \\
&(3.8)=F_{l}\left(S_{B}\left(\alpha^{-1}\left(b_{(1)}\right)\right)\right) F_{l}\left(b_{(2)}\right)(1) \otimes \alpha\left(F_{l}\left(b_{(2)}\right)(2)\right) \\
&=F_{l}\left(S_{B}\left(\alpha^{-1}\left(b_{(1)}\right)\right)\right) F_{l}\left(b_{(2)(1)}\right) \otimes F_{l}\left(\alpha\left(b_{(2)(2))}\right)\right) \\
&=F_{l}\left(S_{B}\left(b_{(1)(1)}\right)\right) F_{l}\left(b_{(1)(2)}\right) \otimes F_{l}\left(b_{(2)}\right) \\
&=1_{B} \otimes \alpha^{-1}\left(F_{l}(b)\right),
\end{aligned}
$$

as desired.
From Lemma 3.3, we have characterize the conditions that F_{l} satisfies. It is left to us to characterize F_{r} as follows.

Lemma 3.5. Let $F \in \operatorname{End}_{\text {Hom-Hopf }}(B \times H, \pi)$. Then,
(1) $F_{r}\left(1_{H}\right)=1_{B}$.
(2) for all $h, g \in H$,

$$
\begin{equation*}
F_{r}(h g)=F_{r}\left(\beta\left(h_{(1)}\right)\right)\left(h_{(2)} \cdot F_{r}\left(\beta^{-1}(g)\right)\right), \tag{3.12}
\end{equation*}
$$

(3) $F_{r}: H \rightarrow B$ is a monoidal Hom-coalgebra map,
(4) for all $h \in H$,

$$
\begin{equation*}
\rho\left(F_{r}(h)\right)=h_{(1)(1)} S\left(\beta^{-1}\left(h_{(2)}\right)\right) \otimes F_{r}\left(\beta\left(h_{(1)(2)}\right)\right) . \tag{3.13}
\end{equation*}
$$

Proof. It is easy to check part (1). We shall check that part (2) holds, for all $h, g \in H$, we calculate on one hand,

$$
F\left(1_{B} \times h g\right)=F_{r}\left(\beta\left(h_{(1)}\right) \beta\left(g_{(1)}\right)\right) \times \beta\left(h_{(2)}\right) \beta\left(g_{(2)}\right),
$$

and on the other hand,

$$
\begin{aligned}
F\left(1_{B} \times h g\right) & =F\left(1_{B} \times h\right) F\left(1_{B} \times g\right) \\
& =\left(F_{r}\left(\beta\left(h_{(1)}\right)\right) \times \beta\left(h_{(2)}\right)\right)\left(F_{r}\left(\beta\left(g_{(1)}\right)\right) \times \beta\left(g_{(2)}\right)\right) \\
& =F_{r}\left(\beta\left(h_{(1)}\right)\right)\left(\beta\left(h_{(2)(1)}\right) \cdot F_{r}\left(g_{(1)}\right)\right) \times \beta^{2}\left(h_{(2)(2)}\right) \beta\left(g_{(2)}\right) .
\end{aligned}
$$

Applying $i d_{B} \otimes \varepsilon_{H}$ to both expressions for $F\left(1_{B} \times h g\right)$, it follows that (3.12) holds.
Let $h \in H$. To show parts (3) and (4), we compute $\Delta\left(F\left(1_{B} \times h\right)\right)$ in two ways as follows.

$$
\begin{aligned}
\Delta\left(F\left(1_{B} \times h\right)\right) & =F\left(1_{B} \times h_{(1)}\right) \otimes F\left(1_{B} \times h_{(2)}\right) \\
& =\left(F_{r}\left(\beta\left(h_{(1)(1)}\right)\right) \times \beta\left(h_{(1)(2)}\right)\right) \otimes\left(F_{r}\left(\beta\left(h_{(2)(1)}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\Delta\left(F\left(1_{B} \times h\right)\right)= & \Delta\left(F_{r}\left(\beta\left(h_{(1)}\right)\right) \times \beta\left(h_{(2)}\right)\right) \\
= & \left(F_{r}\left(\beta\left(h_{(1)}\right)\right)_{(1)} \times F_{r}\left(\beta\left(h_{(1)}\right)\right)_{(2)[-1]} h_{(2)(1)}\right) \\
& \otimes\left(\alpha\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)_{(2)[0]}\right) \times \beta\left(h_{(2)(2)}\right)\right) .
\end{aligned}
$$

Applying $i d_{B} \otimes \varepsilon_{H} \otimes i d_{B} \otimes \varepsilon_{H}$ to the expressions for $\Delta\left(F\left(1_{B} \times h\right)\right)$ gives part (2). Applying $\varepsilon_{B} \otimes i d_{H} \otimes i d_{B} \otimes \varepsilon_{H}$ to the expressions for $\Delta\left(F\left(1_{B} \times h\right)\right)$ again yields

$$
\begin{equation*}
\beta\left(h_{(1)}\right) \otimes F_{r}\left(h_{(2)}\right)=F_{r}\left(\beta\left(h_{(1)}\right)\right)_{[-1]} h_{(2)} \otimes F_{r}\left(\beta\left(h_{(1)}\right)\right)_{[0]} . \tag{3.14}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\rho\left(F_{r}(h)\right) & =\beta^{-1}\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)_{[-1]}\right) \varepsilon_{H}\left(\beta^{-1}\left(h_{(2)}\right)\right) 1_{H} \otimes F_{r}\left(\beta\left(h_{(1)}\right)\right)_{[0]} \\
& =\beta^{-1}\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)_{[-1]}\right)\left[\beta^{-1}\left(h_{(2)(1)}\right) S\left(\beta^{-1}\left(h_{(2)(2)}\right)\right)\right] \otimes F_{r}\left(\beta\left(h_{(1)}\right)\right)_{[0]} \\
(2.1) & =\left[\beta^{-2}\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)_{[-1]}\right) \beta^{-1}\left(h_{(2)(1)}\right)\right] S\left(h_{(2)(2)}\right) \otimes F_{r}\left(\beta\left(h_{(1)}\right)\right)_{[0]} \\
(2.5) & =\left[\beta^{-2}\left(F_{r}\left(\beta^{2}\left(h_{(1)(1)}\right)\right)_{[-1]}\right) \beta^{-1}\left(h_{(1)(2)}\right)\right] S\left(\beta^{-1}\left(h_{(2)}\right)\right) \otimes F_{r}\left(\beta^{2}\left(h_{(1)(1)}\right)\right)_{[0]} \\
& =\beta^{-2}\left(F_{r}\left(\beta^{2}\left(h_{(1)(1)}\right)\right)_{[-1]} \beta\left(h_{(1)(2)}\right)\right) S\left(\beta^{-1}\left(h_{(2))}\right)\right) \otimes F_{r}\left(\beta^{2}\left(h_{(1)(1)(1)}\right)\right)_{[0]} \\
(3.14) & =h_{(1)(1)} S\left(\beta^{-1}\left(h_{(2)}\right)\right) \otimes F_{r}\left(\beta\left(h_{(1)(2)}\right)\right),
\end{aligned}
$$

which shows that (3.13) holds.
Corollary 3.6. Let $F \in \operatorname{End}_{H o m-\operatorname{Hopf}}(B \times H, \pi)$. Then F_{l} is a left (H, β)-Hom-module map if and only if the condition $F_{l}\left(h_{(1)} \cdot b\right) F_{r}\left(\beta\left(h_{(2)}\right)\right)=F_{r}\left(\beta\left(h_{(1)}\right)\right) F_{l}\left(h_{(2)} \cdot b\right)$. hlods.

Proof. The necessary condition can be followed easily from (3.10) of Lemma 3.3. Now, we will prove the sufficient part. Suppose that the condition holds. Note that F_{r} is a Hom-coalgebra map by (3) of Lemma 3.5. Using this fact and (5) of Lemma 3.3, for all $h \in H$ and $b \in B$, we have

$$
\begin{aligned}
h \cdot F_{l}(b) & =\varepsilon_{B}\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)\right) 1_{B}\left(h_{(2)} \cdot F_{l}\left(\alpha^{-1}(b)\right)\right) \\
& =\left(S_{B}\left(F_{r}\left(\beta\left(h_{(1)(1)}\right)\right)\right) F_{r}\left(\beta\left(h_{(1)(2)}\right)\right)\right)\left(h_{(2)} \cdot F_{l}\left(\alpha^{-1}(b)\right)\right) \\
& =S_{B}\left(F_{r}\left(\beta^{2}\left(h_{(1)(1)}\right)\right)\right)\left[F_{r}\left(\beta\left(h_{(1)(2)}\right)\right)\left(\beta^{-1}\left(h_{(2)}\right) \cdot F_{l}\left(\alpha^{-2}(b)\right)\right)\right] \\
(2.5) & =S_{B}\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)\right)\left[F_{r}\left(\beta\left(h_{(2)(1)}\right)\right)\left(h_{(2)(2)} \cdot F_{l}\left(\alpha^{-2}(b)\right)\right)\right] \\
(3.10) & =S_{B}\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)\right)\left[F_{l}\left(h_{(2)(1)} \cdot \alpha^{-2}(b)\right) F_{r}\left(\beta\left(h_{(2)(2))}\right)\right]\right. \\
& =S_{B}\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)\right)\left[F_{r}\left(\beta\left(h_{(2)(1)}\right)\right) F_{l}\left(h_{(2)(2)} \cdot \alpha^{-2}(b)\right)\right] \\
& =\left[S_{B}\left(F_{r}\left(h_{(1)}\right)\right) F_{r}\left(\beta\left(h_{(2)(1)}\right)\right)\right] F_{l}\left(\beta\left(h_{(2)(2)}\right) \cdot \alpha^{-1}(b)\right) \\
(2.5) & =\left[S_{B}\left(F_{r}\left(\beta\left(h_{(1)(1))}\right)\right) F_{r}\left(\beta\left(h_{(1)(2)}\right)\right)\right] F_{l}\left(h_{(2)} \cdot \alpha^{-1}(b)\right)\right. \\
& =\varepsilon_{B}\left(F_{r}\left(h_{(1)}\right)\right) F_{l}\left(\beta\left(h_{(2)}\right) \cdot b\right) \\
& =F_{l}(h \cdot b),
\end{aligned}
$$

which shows that F_{l} is a left (H, β)-Hom-module map.
Lemma 3.7. Let $F \in \operatorname{End}_{\text {Hom-Hopf }}(B \times H, \pi)$. Then, F_{r} is a monoidal Hom-algebra map if and only if $h \cdot F_{r}(g)=\varepsilon_{H}(h) F_{r}(\beta(g))$, for all $h, g \in H$.
Proof. Suppose that F_{r} is a monoidal Hom-algebra map. Using (2) and (3) of Lemma 3.5, for $h, g \in H$, we have:

$$
\begin{aligned}
h \cdot F_{r}(g) & =\left[S\left(F_{r}\left(\beta\left(h_{(1)(1)}\right)\right)\right) F_{r}\left(\beta\left(h_{(1)(2)}\right)\right)\right]\left(h_{(2)} \cdot F_{r}\left(\beta^{-1}(g)\right)\right) \\
& =S\left(F_{r}\left(\beta^{2}\left(h_{(1)(1)}\right)\right)\left[F_{r}\left(\beta\left(h_{(1)(2)}\right)\right)\left(\beta^{-1}\left(h_{(2)}\right) \cdot F_{r}\left(\beta^{-2}(g)\right)\right)\right]\right. \\
(2.5) & =S\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)\right)\left[F_{r}\left(\beta\left(h_{(2)(1)}\right)\right)\left(h_{(2)(2)} \cdot F_{r}\left(\beta^{-2}(g)\right)\right)\right] \\
(3.12) & =S\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)\right) F_{r}\left(h_{(2)} \beta^{-1}(g)\right) \\
& =S\left(F_{r}\left(\beta\left(h_{(1)}\right)\right)\right)\left(F_{r}\left(h_{(2)}\right) F_{r}\left(\beta^{-1}(g)\right)\right) \\
& =\left[S\left(F_{r}\left(h_{(1)}\right)\right) F_{r}\left(h_{(2)}\right)\right] F_{r}(g) \\
& =\varepsilon_{H}(h) F_{r}(\beta(g)) .
\end{aligned}
$$

If $h \cdot F_{r}(g)=\varepsilon_{H}(h) F_{r}(\beta(g))$ holds, by using (2) of Lemma 3.5, we have

$$
\begin{aligned}
F_{r}(h g) & =F_{r}\left(\beta\left(h_{(1)}\right)\right)\left(h_{(2)} \cdot F_{r}\left(\beta^{-1}(g)\right)\right) \\
& \left.=F_{r}\left(\beta\left(h_{(1)}\right)\right) \varepsilon_{H}\left(h_{(2)}\right) F_{r}(g)\right) \\
& =F_{r}(h) F_{r}(g) .
\end{aligned}
$$

Corollary 3.8. Let $F \in \operatorname{End}_{\text {Hom-Hopf }}(B \times H, \pi)$. Then F_{r} has a convolution inverse J_{r} defined by $J_{r}(h)=h_{(1)} \cdot F_{r}\left(S_{H}\left(h_{(2)}\right)\right)$
Proof. Let $h \in H$. Then by parts (1) and (2) of Lemma 3.5, we have

$$
\begin{aligned}
F_{r} \star J_{r}(h) & =F_{r}\left(h_{(1)}\right) J_{r}\left(h_{(2)}\right) \\
& =F_{r}\left(h_{(1)}\right)\left(h_{(2)(1)} \cdot F_{r}\left(S_{H}\left(h_{(2)(2)}\right)\right)\right) \\
(2.5) & =F_{r}\left(\beta\left(h_{(1)(1)}\right)\right)\left(h_{(1)(2)} \cdot F_{r}\left(\beta^{-1}\left(S_{H}\left(h_{(2)}\right)\right)\right)\right) \\
(3.12) & =F_{r}\left(h_{(1)} S_{H}\left(h_{(2)}\right)\right) \\
& =\varepsilon_{H}(h) 1_{B}
\end{aligned}
$$

and using the fact that (B, α) is a left (H, β)-Hom-module algebra, we have

$$
\begin{aligned}
J_{r} \star F_{r}(h)= & J_{r}\left(h_{(1)}\right) F_{r}\left(h_{(2)}\right) \\
= & \left(h_{(1)(1)} \cdot F_{r}\left(S_{H}\left(h_{(1)(2)}\right)\right)\right) F_{r}\left(h_{(2)}\right) \\
(2.5)= & \left(\beta\left(h_{(1)(1)(1)}\right) \cdot F_{r}\left(S_{H}\left(h_{(1)(2)}\right)\right)\right) \\
& \times\left(\left[\beta\left(h_{(1)(1)(2)(1)}\right) S_{H}\left(\beta\left(h_{(1)(1)(2)(2)}\right)\right)\right] \cdot F_{r}\left(\beta^{-1}\left(h_{(2)}\right)\right)\right) \\
= & \left(\beta\left(h_{(1)(1)(1)}\right) \cdot F_{r}\left(S_{H}\left(h_{(1)(2)}\right)\right)\right) \\
& \times\left(\beta^{2}\left(h_{(1)(1)(2)(1)}\right) \cdot\left(S_{H}\left(\beta\left(h_{(1)(1)(2)(2)}\right)\right) \cdot F_{r}\left(\beta^{-2}\left(h_{(2)}\right)\right)\right)\right) \\
= & \left(\beta^{2}\left(h_{(1)(1)(1)(1)}\right) \cdot F_{r}\left(S_{H}\left(h_{(1)(2))}\right)\right)\right. \\
& \times\left(\beta^{2}\left(h_{(1)(1)(1)(2)}\right) \cdot\left(S_{H}\left(h_{(1)(1)(2)}\right) \cdot F_{r}\left(\beta^{-2}\left(h_{(2)}\right)\right)\right)\right) \\
= & \beta^{2}\left(h_{(1)(1)(1)}\right) \cdot\left[F_{r}\left(S_{H}\left(h_{(1)(2)}\right)\right)\left(S_{H}\left(h_{(1)(1)(2)}\right) \cdot F_{r}\left(\beta^{-2}\left(h_{(2)}\right)\right)\right)\right] \\
(2.5)= & \beta\left(h_{(1)(1)}\right) \cdot\left[F_{r}\left(S_{H}\left(\beta\left(h_{(1)(2)(2))}\right)\right)\right)\left(S_{H}\left(h_{(1)(2)(1)}\right) \cdot F_{r}\left(\beta^{-2}\left(h_{(2)}\right)\right)\right)\right] \\
= & \beta\left(h_{(1)(1)}\right) \cdot\left[F_{r}\left(\beta\left(S_{H}\left(h_{(1)(2)}\right)(1)\right)\right)\left(S_{H}\left(h_{(1)(2))}\right) \cdot F_{r}\left(\beta^{-2}\left(h_{(2)}\right)\right)\right)\right] \\
(3.12)= & \beta\left(h_{(1)(1)}\right) \cdot F_{r}\left(S_{H}\left(h_{(1)(2)}\right) \beta^{-1}\left(h_{(2)}\right)\right) \\
= & \varepsilon_{H}(h) 1_{B} .
\end{aligned}
$$

The proof is completed.
Using the above lemmas and corollaries what we have got, we can gain the main result.
Theorem 3.9. Let $B \times H$ be a Hom-biproduct, let $\pi: B \times H \rightarrow H$ be the projection from $B \times H$ onto H, and let $\mathcal{F}_{B, H}$ be the set of pairs $(\mathcal{L}, \mathcal{R})$, where $\mathcal{L}: B \rightarrow B, \mathcal{R}: H \rightarrow B \in$ $\tilde{\mathcal{H}}(\mathcal{M})$ are maps which satisfy the conclusions of Lemma 3.3 and Lemma 3.5 for F_{l} and F_{r}, respectively. Then
(1) The function $\Phi: \mathcal{F}_{B, H} \rightarrow \operatorname{End}_{\text {Hom- }} \operatorname{Hopf}(B \times H, \pi)$, described by $(\mathcal{L}, \mathcal{R}) \mapsto F$, where $F(b \times h)=\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\left(h_{(1)}\right) \times \beta\left(h_{(2)}\right)$, for all $b \in B$ and $h \in H$, is a bijection. Furthermore, $F_{l}=\mathcal{L}$ and $F_{r}=\mathcal{R}$.
(2) Suppose $(\mathcal{L}, \mathcal{R}) \in \mathcal{F}_{B, H}$, then, $F \in \operatorname{Aut}_{\text {Hom- }}$ Hopf $(B \times H, \pi)$ if and only if \mathcal{L} is a bijection.

Proof. In order to prove (1), we define $\Psi: \operatorname{End}_{\text {Hom-Hopf }}(B \times H, \pi) \rightarrow \mathcal{F}_{B, H}$ by $\Psi(F)=$ $(\Pi \circ F \circ J, \Pi \circ F \circ j)$. It is easily proved that Φ and Ψ are mutually inverse.

According the definition of F, we shall check that $F \in \operatorname{End}_{H o m-H o p f}(B \times H, \pi)$. It is easy to see that $\pi \circ F=\pi$. Note that $F\left(1_{B} \times 1_{H}\right)=1_{B} \times 1_{H}$ and

$$
\begin{aligned}
\varepsilon(F(b \times h)) & =\varepsilon\left(\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\left(h_{(1)}\right) \times \beta\left(h_{(2)}\right)\right) \\
& =\varepsilon_{B}\left(\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\left(h_{(1)}\right)\right) \varepsilon_{H}\left(\beta\left(h_{(2)}\right)\right) \\
& =\varepsilon_{B}\left(\mathcal{L}\left(\alpha^{-1}(b)\right)\right) \varepsilon_{B}\left(\mathcal{R}\left(h_{(1)}\right)\right) \varepsilon_{H}\left(\beta\left(h_{(2)}\right)\right. \\
& =\varepsilon_{B}(b) \varepsilon_{H}(h),
\end{aligned}
$$

for $b \in B$ and $h \in H$ which means $\varepsilon \circ F=\varepsilon$.
Let $b, b^{\prime} \in B$ and $h, h^{\prime} \in H$. Then,

$$
\begin{aligned}
& F\left((b \times h)\left(b^{\prime} \times h^{\prime}\right)\right) \\
&= F\left(b\left(h_{(1)} \cdot \alpha^{-1}\left(b^{\prime}\right)\right) \times \beta\left(h_{(2)}\right) h^{\prime}\right) \\
&= \mathcal{L}\left(\alpha^{-1}(b)\left(\beta^{-1}\left(h_{(1)}\right) \cdot \alpha^{-2}\left(b^{\prime}\right)\right)\right) \mathcal{R}\left(\beta\left(h_{(2)(1)}\right) h_{(1)}^{\prime}\right) \times \beta^{2}\left(h_{(2)(2)}\right) \beta\left(h_{(2)}^{\prime}\right) \\
&= {\left[\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{L}\left(\beta^{-1}\left(h_{(1)}\right) \cdot \alpha^{-2}\left(b^{\prime}\right)\right)\right] \underline{\mathcal{R}\left(\beta\left(h_{(2)(1)}\right) h_{(1)}^{\prime}\right) \times \beta^{2}\left(h_{(2)(2)}\right) \beta\left(h_{(2)}^{\prime}\right)} } \\
& \stackrel{(3.12)}{=}\left[\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{L}\left(\beta^{-1}\left(h_{(1)}\right) \cdot \alpha^{-2}\left(b^{\prime}\right)\right)\right] \\
& {\left[\mathcal{R}\left(\beta^{2}\left(h_{(2)(1)(1)}\right)\right)\left(\beta\left(h_{(2)(1)(2)}\right) \cdot \mathcal{R}\left(\beta^{-1}\left(h_{(1)}^{\prime}\right)\right)\right)\right] \times \beta^{2}\left(h_{(2)(2)}\right) \beta\left(h_{(2)}^{\prime}\right) } \\
& \stackrel{(2.1)}{=}\left\{\mathcal{L}\left(\alpha^{-1}(b)\right)\left[\mathcal{L}\left(\beta^{-2}\left(h_{(1)}\right) \cdot \alpha^{-3}\left(b^{\prime}\right)\right) \mathcal{R}\left(\beta\left(h_{(2)(1)(1)}\right)\right)\right]\right\}\left(\beta^{2}\left(h_{(2)(1)(2)}\right) \cdot \mathcal{R}\left(h_{(1)}^{\prime}\right)\right) \\
& \times \beta^{2}\left(h_{(2)(2)}\right) \beta\left(h_{(2)}^{\prime}\right) \\
& \stackrel{(2.5)}{=}\left\{\mathcal{L}\left(\alpha^{-1}(b)\right)\left[\mathcal{L}\left(\beta^{-1}\left(h_{(1)(1)}\right) \cdot \alpha^{-3}\left(b^{\prime}\right)\right) \mathcal{R}\left(h_{(1)(2)}\right)\right]\right\}\left(\beta\left(h_{(2)(1)}\right) \cdot \mathcal{R}\left(h_{(1)}^{\prime}\right)\right) \\
& \times \beta^{2}\left(h_{(2)(2)}\right) \beta\left(h_{(2)}^{\prime}\right) \\
& \stackrel{(3.10)}{=}\left\{\mathcal{L}\left(\alpha^{-1}(b)\right)\left[\mathcal{R}\left(h_{(1)(1)}\right)\left(\beta^{-1}\left(h_{(1)(2)}\right) \cdot \mathcal{L}\left(\alpha^{-3}\left(b^{\prime}\right)\right)\right)\right]\right\}\left(\beta\left(h_{(2)(1)}\right) \cdot \mathcal{R}\left(h_{(1)}^{\prime}\right)\right) \\
& \quad \times \beta^{2}\left(h_{(2)(2)}\right) \beta\left(h_{(2)}^{\prime}\right) \\
& \stackrel{(2.1)}{=}\left[\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\left(\beta\left(h_{(1)(1)}\right)\right)\right]\left[\left(h_{(1)(2)} \cdot \mathcal{L}\left(\alpha^{-2}\left(b^{\prime}\right)\right)\right)\left(h_{(2)(1)} \cdot \mathcal{R}\left(\beta^{-1}\left(h_{(1)}^{\prime}\right)\right)\right)\right] \\
& \quad \times \beta^{2}\left(h_{(2)(2)}\right) \beta\left(h_{(2)}^{\prime}\right) \\
&= {\left[\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\left(h_{(1)}\right)\right]\left[\left(\beta\left(h_{(2)(1)(1)}\right) \cdot \mathcal{L}\left(\alpha^{-2}\left(b^{\prime}\right)\right)\right)\left(\beta\left(h_{(2)(1)(2)}\right) \cdot \mathcal{R}\left(\beta^{-1}\left(h_{(1)}^{\prime}\right)\right)\right)\right] } \\
& \quad \times \beta^{2}\left(h_{(2)(2)}\right) \beta\left(h_{(2)}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(2.1)}{=}\left[\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\left(h_{(1)}\right)\right]\left[\beta\left(h_{(2)(1)}\right) \cdot\left(\mathcal{L}\left(\alpha^{-2}\left(b^{\prime}\right)\right) \mathcal{R}\left(\beta^{-1}\left(h_{(1)}^{\prime}\right)\right)\right)\right] \times \beta^{2}\left(h_{(2)(2)}\right) \beta\left(h_{(2)}^{\prime}\right) \\
& =F(b \times h) F\left(b^{\prime} \times h^{\prime}\right) .
\end{aligned}
$$

Therefore, F is a monoidal Hom-algebra morphism. Next, we shall check that $\Delta \circ F=$ $(F \otimes F) \circ \Delta$ holds. Indeed, for all $b \in B, h \in H$,

```
\(\Delta(F(b \times h))\)
    \(=\Delta\left(\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\left(h_{(1)}\right) \times \beta\left(h_{(2)}\right)\right)\)
    \(=\frac{\left(\left(\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\left(h_{(1)}\right)\right)_{(1)}\right.}{\alpha\left(\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\right.\right.\right.} \times \underline{\left.\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\left(h_{(1)}\right)\right)_{(2)[-1]}} h_{(2)(1))}\)
    \(\otimes\left(\left(\alpha\left(\left(\mathcal{L}\left(\alpha^{-1}(b)\right) \mathcal{R}\left(h_{(1)}\right)\right)_{(2)[0]}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right)\)
\(\stackrel{(2.17)}{=}\left[\mathcal{L}\left(\alpha^{-1}(b)\right)_{(1)}\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[-1]} \cdot \beta^{-1}\left(\mathcal{R}\left(h_{(1)}\right)_{(1)}\right)\right)\right.\)
    \(\left.\times\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0]}\right) \mathcal{R}\left(h_{(1)}\right)_{(2)}\right)_{[-1]} h_{(2)(1)}\right]\)
    \(\otimes\left[\alpha\left(\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0]}\right) \mathcal{R}\left(h_{(1)}\right)_{(2)}\right)_{[0]}\right) \times \beta\left(h_{(2)(2)}\right)\right]\)
\(=\left[\mathcal{L}\left(\alpha^{-1}(b)\right)_{(1)}\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[-1]} \cdot \mathcal{R}\left(\beta^{-1}\left(h_{(1)(1)}\right)\right)\right)\right.\)
    \(\left.\times\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0]}\right) \mathcal{R}\left(h_{(1)(2)}\right)\right)_{[-1]} h_{(2)(1)}\right]\)
    \(\otimes\left[\alpha\left(\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0]}\right) \mathcal{R}\left(h_{(1)(2)}\right)\right)_{[0]}\right) \times \beta\left(h_{(2)(2)}\right)\right] \quad\) (By (3) of Lemma 3.5)
\(=\left[\mathcal{L}\left(\alpha^{-1}(b)\right)_{(1)}\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[-1]} \cdot \mathcal{R}\left(\beta^{-1}\left(h_{(1)(1)}\right)\right)\right)\right.\)
    \(\left.\times\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0]}\right)_{[-1]} \mathcal{R}\left(h_{(1)(2)}\right)_{[-1]}\right) h_{(2)(1)]}\right]\)
    \(\otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0]}\right)_{[0]} \mathcal{R}\left(h_{(1)(2)}\right)_{[0]}\right) \times \beta\left(h_{(2)(2)}\right)\right]\)
\(=\left[\mathcal{L}\left(\alpha^{-1}(b)\right)_{(1)}\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[-1]} \cdot \mathcal{R}\left(\beta^{-1}\left(h_{(1)(1)}\right)\right)\right)\right.\)
    \(\left.\times\left(\beta\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0][-1]}\right) \mathcal{R}\left(h_{(1)(2)}\right)_{[-1]}\right) h_{(2)(1)]}\right]\)
    \(\otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0][0]}\right) \underline{\left.\mathcal{R}\left(h_{(1)(2)}\right)_{[0]}\right)} \times \beta\left(h_{(2)(2)}\right)\right]\right.\)
\(\stackrel{(3.13)}{=}\left[\mathcal{L}\left(\alpha^{-1}(b)\right)_{(1)}\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[-1]} \cdot \mathcal{R}\left(\beta^{-1}\left(h_{(1)(1)}\right)\right)\right)\right.\)
    \(\left.\times\left(\beta\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0][-1]}\right)\left(h_{(1)(2)(1)(1)} S_{H}\left(\beta^{-1}\left(h_{(1)(2)(2)}\right)\right)\right)\right) h_{(2)(1)}\right]\)
    \(\otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0][0]}\right) \mathcal{R}\left(\beta\left(h_{(1)(2)(1)(2)}\right)\right)\right) \times \beta\left(h_{(2)(2)}\right)\right]\)
\(\stackrel{(2.1)}{=}\left[\mathcal{L}\left(\alpha^{-1}(b)\right)_{(1)}\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[-1]} \cdot \mathcal{R}\left(\beta^{-1}\left(h_{(1)(1)}\right)\right)\right)\right.\)
    \(\left.\times\left(\beta\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0][-1]}\right) \beta\left(h_{(1)(2)(1)(1)}\right)\right)\left(S_{H}\left(h_{(1)(2)(2)}\right) \beta^{-1}\left(h_{(2)(1)}\right)\right)\right]\)
    \(\otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0][0]}\right) \mathcal{R}\left(\beta\left(h_{(1)(2)(1)(2)}\right)\right)\right) \times \beta\left(h_{(2)(2)}\right)\right]\)
\(\stackrel{(2.5)}{=}\left[\mathcal{L}\left(\alpha^{-1}(b)\right)_{(1)}\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[-1]} \cdot \mathcal{R}\left(\beta^{-2}\left(h_{(1)}\right)\right)\right)\right.\)
    \(\left.\times\left(\beta\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0][-1]}\right) h_{(2)(1)(1)}\right)\left(\underline{S_{H}\left(\beta\left(h_{(2)(2)(1)(1)}\right)\right)}\right) \beta\left(h_{(2)(2)(1)(2))}\right)\right]\)
    \(\otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0][0]}\right) \mathcal{R}\left(h_{(2)(1)(2)}\right)\right) \times \beta^{2}\left(h_{(2)(2)(2)}\right)\right]\)
\(\stackrel{(2.12)}{=}\left[\mathcal{L}\left(\alpha^{-1}(b)\right)_{(1)}\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[-1]} \cdot \mathcal{R}\left(\beta^{-2}\left(h_{(1)}\right)\right)\right) \times\left(\beta^{2}\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0][-1]}\right) \beta\left(h_{(2)(1)(1)}\right)\right)\right]\)
    \(\otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}(b)\right)_{(2)[0][0]}\right) \mathcal{R}\left(h_{(2)(1)(2)}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right]\)
\(\stackrel{(3.8)}{=}\left[\left(\mathcal{L}\left(\alpha^{-2}\left(b_{(1)}\right)\right) \mathcal{R}\left(\beta^{-1}\left(b_{(2)[-1]}\right)\right)\right)\left(\underline{\mathcal{L}\left(b_{(2)}[0]\right.}\right)_{[-1]} \cdot \mathcal{R}\left(\beta^{-2}\left(h_{(1)}\right)\right)\right)\)
    \(\left.\left.\times\left(\beta^{2}\left(\underline{\mathcal{L}\left(b_{(2)}[0]\right.}\right)_{[0][-1]}\right) \beta\left(h_{(2)(1)(1)}\right)\right)\right]\)
    \(\otimes\left[\alpha\left(\alpha\left(\underline{\left.\mathcal{L}\left(b_{(2)[0]}\right)_{[0][0]}\right)}\right) \mathcal{R}\left(h_{(2)(1)(2)}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right]\)
```

$$
\begin{aligned}
& \stackrel{(3.9)}{=}\left[\left(\mathcal{L}\left(\alpha^{-2}\left(b_{(1)}\right)\right) \mathcal{R}\left(\beta^{-1}\left(b_{(2)[-1]}\right)\right)\right)\left(b_{(2)}[0][-1] \cdot \mathcal{R}\left(\beta^{-2}\left(h_{(1)}\right)\right)\right)\right. \\
& \left.\times\left(\beta^{2}\left(\mathcal{L}\left(b_{(2)}[0][0]\right)[-1]\right) \beta\left(h_{(2)(1)(1)}\right)\right)\right] \\
& \otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(b_{(2)[0][0]}\right)_{[0]}\right) \mathcal{R}\left(h_{(2)(1)(2)}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right] \\
& \stackrel{(2.7)}{=} \frac{\left[\left(\mathcal{L}\left(\alpha^{-2}\left(b_{(1)}\right)\right) \mathcal{R}\left(b_{(2)[-1](1)}\right)\right)\left(b_{(2)[-1](2)} \cdot \mathcal{R}\left(\beta^{-2}\left(h_{(1)}\right)\right)\right)\right.}{\times\left(\beta^{2}\left(\mathcal{L}\left(\alpha^{-1}\left(b_{(2)[0]}\right)\right)_{[-1]}\right) \beta\left(h_{(2)(1)(1))}\right)\right]} \\
& \otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}\left(b_{(2)[0]}\right)\right)_{[0]}\right) \mathcal{R}\left(h_{(2)(1)(2)}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right] \\
& \stackrel{(2.1)}{=}\left[\mathcal{L}\left(\alpha^{-1}\left(b_{(1)}\right)\right)\left(\mathcal{R}\left(b_{(2)}[-1](1)\right)\left(\beta^{-1}\left(b_{(2)[-1](2)}\right) \cdot \mathcal{R}\left(\beta^{-3}\left(h_{(1)}\right)\right)\right)\right)\right. \\
& \left.\times\left(\beta^{2}\left(\mathcal{L}\left(\alpha^{-1}\left(b_{(2)[0]}\right)\right)_{[-1]}\right) \beta\left(h_{(2)(1)(1)}\right)\right)\right] \\
& \otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}\left(b_{(2)[0]}\right)\right)_{[0]}\right) \mathcal{R}\left(h_{(2)(1)(2)}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right] \\
& \stackrel{(3.12)}{=}\left[\mathcal{L}\left(\alpha^{-1}\left(b_{(1)}\right)\right) \mathcal{R}\left(\beta^{-1}\left(b_{(2)[-1]}\right) \beta^{-2}\left(h_{(1)}\right)\right) \times\left(\beta^{2}\left(\underline{\mathcal{L}\left(\alpha^{-1}\left(b_{(2)[0]}\right)\right)_{[-1]}}\right) \beta\left(h_{(2)(1)(1)}\right)\right)\right] \\
& \otimes\left[\alpha\left(\alpha\left(\underline{\left.\mathcal{L}\left(\alpha^{-1}\left(b_{(2)[0]}\right)\right)_{[0]}\right)} \mathcal{R}\left(h_{(2)(1)(2)}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right]\right. \\
& \stackrel{(3.9)}{=}\left[\mathcal{L}\left(\alpha^{-1}\left(b_{(1)}\right)\right) \mathcal{R}\left(\beta^{-1}\left(b_{(2)[-1]}\right) \beta^{-2}\left(h_{(1)}\right)\right) \times\left(\beta\left(b_{(2)[0][-1]}\right) \beta\left(h_{(2)(1)(1)}\right)\right)\right] \\
& \otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-1}\left(b_{(2)[0][0]}\right)\right)\right) \mathcal{R}\left(h_{(2)(1)(2)}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right] \\
& \stackrel{(2.7)}{=}\left[\mathcal{L}\left(\alpha^{-1}\left(b_{(1)}\right)\right) \mathcal{R}\left(b_{(2)[-1](1)} \beta^{-2}\left(h_{(1)}\right)\right) \times\left(\beta\left(b_{(2)[-1](2)}\right) \beta\left(h_{(2)(1)(1)}\right)\right)\right] \\
& \otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-2}\left(b_{(2)[0]}\right)\right)\right) \mathcal{R}\left(h_{(2)(1)(2)}\right)\right) \times \beta\left(h_{(2)(2)}\right)\right] \\
& \stackrel{(2.5)}{=}\left[\mathcal{L}\left(\alpha^{-1}\left(b_{(1)}\right)\right) \mathcal{R}\left(b_{(2)[-1](1)} \beta^{-1}\left(h_{(1)(1)}\right)\right) \times\left(\beta\left(b_{(2)[-1](2)}\right) h_{(1)(2)}\right)\right] \\
& \otimes\left[\alpha\left(\alpha\left(\mathcal{L}\left(\alpha^{-2}\left(b_{(2)[0]}\right)\right)\right) \mathcal{R}\left(\beta^{-1}\left(h_{(2)(1)}\right)\right)\right) \times \beta\left(h_{(2)(2)}\right)\right] \\
& =\left[\mathcal{L}\left(\alpha^{-1}\left(b_{(1)}\right)\right) \mathcal{R}\left(b_{(2)[-1](1)} \beta^{-1}\left(h_{(1)(1)}\right)\right) \times\left(\beta\left(b_{(2)[-1](2)}\right) h_{(1)(2)}\right)\right] \\
& \otimes\left[\mathcal{L}\left(b_{(2)[0]}\right) \mathcal{R}\left(h_{(2)(1)}\right) \times \beta\left(h_{(2)(2)}\right)\right] \\
& =F\left((b \times h)_{(1)}\right) \otimes F\left((b \times h)_{(2)}\right) \text {. }
\end{aligned}
$$

The other conditions which make $F \in \operatorname{End}_{H o m-\operatorname{Hopf}}(B \times H, \pi)$ can be checked easily. Thus the proof of part (1) is completed.

As for (2), suppose $F \in \operatorname{Aut}_{H o m-\operatorname{Hopf}}(B \times H, \pi)$. it is easily showed that F_{l} and $\left(F^{-1}\right)_{l}$ are inverses. Thus F_{l} is bijective and $\left(F_{l}\right)^{-1}=\left(F^{-1}\right)_{l}$.

Conversely, suppose that F_{l} is bijective. Set $G_{l}=\left(F_{l}\right)^{-1}$. From Corollary 3.8, F_{r} has a convolution inverse J_{r}. $G_{r}=G_{l} \circ J_{r}=\left(F_{l}\right)^{-1} \circ J_{r}$. Define $G(b \times h)=G_{l}\left(\alpha^{-1}(b)\right) G_{r}\left(h_{(1)}\right) \times$ $\beta\left(h_{(2)}\right)$. For all $b \in B$ and $h \in H$, we compute

$$
\begin{aligned}
G(F(b \times h)) & =G\left(F_{l}\left(\alpha^{-1}(b)\right) F_{r}\left(h_{(1)}\right) \times \beta\left(h_{(2)}\right)\right) \\
(3.5) & =G_{l}\left(F_{l}\left(\alpha^{-2}(b)\right) F_{r}\left(\beta^{-1}\left(h_{(1)}\right)\right)\right)\left(G_{l} \circ J_{r}\right)\left(\beta\left(h_{(2)(1)}\right)\right) \times \beta^{2}\left(h_{(2)(2)}\right) \\
& =\alpha^{-1}(b) G_{l}\left(F_{r}\left(\beta^{-1}\left(h_{(1)}\right)\right) J_{r}\left(h_{(2)(1)}\right)\right) \times \beta^{2}\left(h_{(2)(2)}\right) \\
(2.5) & =\alpha^{-1}(b) G_{l}\left(F_{r}\left(h_{(1)(1)}\right) J_{r}\left(h_{(1)(2)}\right)\right) \times \beta\left(h_{(2)}\right) \\
& =\alpha^{-1}(b) 1_{B} \varepsilon_{H}\left(h_{(1)}\right) \times \beta\left(h_{(2)}\right) \quad(\text { By Corollary 3.8) } \\
& =b \times h . \\
F(G(b \times h)) & =F\left(G_{l}\left(\alpha^{-1}(b)\right) G_{r}\left(h_{(1)}\right) \times \beta\left(h_{(2)}\right)\right) \\
(3.5) & =F_{l}\left(\alpha^{-1}\left(G_{l}\left(\alpha^{-1}(b)\right) G_{r}\left(h_{(1)}\right)\right)\right) F_{r}\left(\beta\left(h_{(2)(1)}\right)\right) \times \beta^{2}\left(h_{(2)(2)}\right) \\
& =\left(\alpha^{-2}(b)\left(F_{l} \circ G_{r}\right)\left(\beta^{-1}\left(h_{(1)}\right)\right)\right) F_{r}\left(\beta\left(h_{(2)(1)}\right)\right) \times \beta^{2}\left(h_{(2)(2)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\alpha^{-2}(b) J_{r}\left(\beta^{-1}\left(h_{(1)}\right)\right)\right) F_{r}\left(\beta\left(h_{(2)(1)}\right)\right) \times \beta^{2}\left(h_{(2)(2)}\right) \\
& =\alpha^{-1}(b)\left(J_{r}\left(\beta^{-1}\left(h_{(1)}\right)\right) F_{r}\left(h_{(2)(1)}\right)\right) \times \beta^{2}\left(h_{(2)(2)}\right) \\
(2.5) & =\alpha^{-1}(b)\left(\frac{\left.J_{r}\left(h_{(1)(1)}\right) F_{r}\left(h_{(1)(2)}\right)\right)}{(\text { By Corollary 3.8) }}\right. \\
& =b \times h\left(h_{(2)}\right)
\end{aligned}
$$

Thus we have shown that $G \circ F=i d_{B \times H}=F \circ G$.
Let $\mathcal{F}_{B, H}^{\bullet}$ denote the set of $(\mathcal{L}, \mathcal{R}) \in \mathcal{F}_{B, H}$ such that \mathcal{L} is bijective. Then, the corresponding of part induces a bijection $\mathcal{F}_{B, H}^{\bullet} \rightarrow \operatorname{Aut}_{\text {Hom-Hopf }}(B \times H, \pi)$.

Let (B, α) be a monoidal Hom-algebra and (C, β) be a monoidal Hom-coalgebra over k. Let $\operatorname{Hom}(C, B)$ be the set of linear maps $f: C \rightarrow B$ satisfying $\alpha \circ f=f \circ \beta$. Then $\operatorname{Hom}(C, B)$ is an ordinary associative algebra with the unit $\eta_{B} \circ \varepsilon_{C}$ under the convolution \star. Indeed, for $f, \phi, \varphi \in \operatorname{Hom}(C, B)$ and $c \in C$,

$$
\begin{aligned}
((f \star \phi) \star \varphi)(c) & =\left(f\left(c_{(1)(1)}\right) \phi\left(c_{(1)(2)}\right)\right) \varphi\left(c_{(2)}\right) \\
& =\left(f\left(\beta^{-1}\left(c_{(1)}\right)\right) \phi\left(c_{(2)(1)}\right)\right) \varphi\left(\beta\left(c_{(2)(2)}\right)\right) \\
& =\alpha\left(f\left(\beta^{-1}\left(c_{(1)}\right)\right)\right)\left(\phi\left(c_{(2)(1)}\right) \alpha^{-1}\left(\varphi\left(\beta\left(c_{(2)(2)}\right)\right)\right)\right) \\
& =f\left(c_{(1)}\right)\left(\phi\left(c_{(2)(1)}\right) \varphi\left(c_{(2)(2)}\right)\right. \\
& =(f \star(\phi \star \varphi))(c) .
\end{aligned}
$$

and

$$
\left(f \star\left(\eta_{B} \circ \varepsilon_{C}\right)\right)(c)=f\left(c_{(1)}\right) \varepsilon_{C}\left(c_{(2)}\right) 1_{B}=\alpha\left(f\left(\beta^{-1}(c)\right)\right)=f(c)
$$

Thus it follows that $f \star\left(\eta_{B} \circ \varepsilon_{C}\right)=f$. That $\left(\eta_{B} \circ \varepsilon_{C}\right) \star f=f$ can be checked similarly.
The group $\mathcal{G}(B)=$ Aut $_{\text {Hom-algebra }}(B)$ acts on the convolution algebra $\operatorname{Hom}(C, B)$ by $f \triangleright g=f \circ g$ for all $f \in \mathcal{G}(B)$ and $g \in \operatorname{Hom}(C, B)$. This action satisfies:

$$
f \triangleright\left(\eta \circ \varepsilon_{C}\right)=\eta \circ \varepsilon_{C} \quad \text { and } \quad f \triangleright(\phi \star \varphi)=(f \triangleright \phi) \star(f \triangleright \varphi)
$$

for all $f \in \mathcal{G}(B)$ and $\phi, \varphi \in \operatorname{Hom}(C, B)$. Let $\mathcal{U}(C, B)$ be the group of units of the algebra $\operatorname{Hom}(C, B)$. Then, $\mathcal{G}(B) \triangleright \mathcal{U}(C, B) \subseteq \mathcal{U}(C, B)$; thus there is a group homomorphism,

$$
\begin{equation*}
\Gamma: \mathcal{G}(B) \rightarrow \operatorname{Aut}_{\text {Group }}(\mathcal{U}(C, B)) \tag{3.15}
\end{equation*}
$$

given by $\Gamma(f)(\phi)=f \triangleright \phi$, for all $f \in \mathcal{G}(B)$ and $\phi \in \operatorname{Hom}(C, B)$. The resulting group $\mathcal{U}(C, B) \rtimes_{\Gamma} \mathcal{G}(B)$ has product given by

$$
(\phi, f)\left(\varphi, f^{\prime}\right)=\left(\phi \star(f \circ \varphi), f \circ f^{\prime}\right)
$$

Theorem 3.10. Suppose that $B \times H$ is a Hom-biproduct. Then, there is a one-to-one group homomorphism Aut ${ }_{\text {Hom-Hopf }}(B \times H, \pi) \rightarrow \mathcal{U}(C, B)^{o p} \rtimes \mathcal{G}(B)$, wich is given by $F \mapsto\left(F_{r}, F_{l}\right)$, for all $F \in \operatorname{End}_{\text {Hom-Hopf }}(B \times H, \pi)$.

As the end of this paper, we consider an example in [13]. Let $B=k<1_{B}, x>$ and the automorphism $\alpha: B \rightarrow B, 1_{B} \mapsto 1_{B}$ and $x \mapsto-x .(B, \alpha)$ is both a monoidal Hom-algebra and a monoidal Hom-coalgebra with multiplication, comultiplication and counit given by

$$
\begin{gathered}
1_{B} 1_{B}=1_{B}, 1_{B} x=x 1_{B}=-x, x^{2}=0 \\
\Delta_{B}\left(1_{B}\right)=1_{B} \otimes 1_{B}, \Delta_{B}(x)=(-x) \otimes 1_{B}+1_{B} \otimes(-x) \\
\varepsilon_{B}\left(1_{B}\right)=1, \varepsilon_{B}(x)=0
\end{gathered}
$$

We define $S_{B}: B \rightarrow B, S_{B}\left(1_{B}\right)=1_{B}, \quad S_{B}(x)=-x$, which is the convolution inverse of id_{B}.

Let $H=k<1_{H}, g>$ be the group Hopf algebra with $g^{2}=1_{H}$ and $\Delta_{H}(g)=g \otimes g$, $S_{H}(g)=g=g^{-1}$. Then $\left(H, i d_{H}\right)$ is a monoidal Hom-Hopf algebra. (B, α) is $\left(H, i d_{H}\right)$ module algebra and module coalgebra with the action $\cdot: H \otimes B \rightarrow B$ given by

$$
1_{H} \cdot 1_{B}=1_{B}, 1_{H} \cdot x=-x, g \cdot 1_{B}=1_{B} \text { and } g \cdot x=x
$$

Also, (B, α) is a left $\left(H, i d_{H}\right)$-comodule algebra and comodule coalgebra with the coaction $\rho_{B}: B \rightarrow H \otimes B$ given by

$$
\rho_{B}\left(1_{B}\right)=1_{H} \otimes 1_{B}, \quad \rho_{B}(x)=g \otimes(-x)
$$

Then $\left(B \times H=\left\{1_{B} \otimes 1_{H}, 1_{B} \otimes g, x \otimes 1_{H}, x \otimes g, \alpha \otimes i d_{H}\right\}\right)$ is a Radford's Hom-biproduct with multiplication, comultiplication, counit and antipode defined as follows:

- Multiplication

m	$1_{B} \times 1_{H}$	$1_{B} \times g$	$x \times 1_{H}$	$x \times g$
$1_{B} \times 1_{H}$	$1_{B} \times 1_{H}$	$1_{A} \times g$	$-x \times 1_{H}$	$-x \times g$
$1_{A} \times g$	$1_{B} \times g$	$1_{B} \times 1_{H}$	$x \times g$	$x \times 1_{H}$
$x \times 1_{H}$	$-x \times 1_{H}$	$-x \times g$	0	0
$x \times g$	$-x \times g$	$-x \times 1_{H}$	0	0

- Comultiplication

$$
\begin{gathered}
\Delta\left(1_{B} \times 1_{H}\right)=\left(1_{B} \times 1_{H}\right) \otimes\left(1_{B} \times 1_{H}\right), \Delta\left(1_{B} \times g\right)=\left(1_{B} \times g\right) \otimes\left(1_{B} \times g\right), \\
\Delta\left(x \times 1_{H}\right)=\left(-x \times 1_{H}\right) \otimes\left(1_{B} \times 1_{H}\right)+\left(1_{B} \times g\right) \otimes\left(-x \times 1_{H}\right), \\
\Delta(x \times g)=(-x \times g) \otimes\left(1_{B} \times g\right)+\left(1_{B} \times 1_{H}\right) \otimes(-x \times g)
\end{gathered}
$$

- Counit

$$
\varepsilon\left(1_{B} \times 1_{H}\right)=1=\varepsilon\left(1_{B} \times g\right), \varepsilon\left(x \times 1_{H}\right)=0=\varepsilon(x \times g)
$$

- Hom-antipode
$S\left(1_{B} \times 1_{H}\right)=1_{B} \times 1_{H}, S\left(1_{B} \times g\right)=1_{B} \times g, S\left(x \times 1_{H}\right)=x \times g, S(x \times g)=-x \times 1_{H}$.
Now, we compute the morphisms $\mathcal{L} \in \operatorname{End}(B)$ satisfying the conclusions of lemma 3.1. Taking a base of $\operatorname{End}(B) \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$ and \mathcal{L}_{4} given respectively by

$$
\begin{aligned}
& \mathcal{L}_{1}: 1_{B} \mapsto 1_{B}, x \mapsto 0, \\
& \mathcal{L}_{2}: 1_{B} \mapsto 0, x \mapsto 1_{B}, \\
& \mathcal{L}_{3}: 1_{B} \mapsto x, x \mapsto 0, \\
& \mathcal{L}_{4}: 1_{B} \mapsto 0, x \mapsto x .
\end{aligned}
$$

Let $\mathcal{L}=t_{1} \mathcal{L}_{1}+t_{2} \mathcal{L}_{2}+t_{3} \mathcal{L}_{3}+t_{4} \mathcal{L}_{4}$. If \mathcal{L} satisfies part (2) of, we can get $t_{1}=1$ and $t_{2}=0$. Thus $\mathcal{L}=\mathcal{L}_{1}+t_{3} \mathcal{L}_{3}+t_{4} \mathcal{L}_{4}$. By part (4) of Lemma 3.1, it follows that $t_{3}=0$. So $\mathcal{L}=\mathcal{L}_{1}+t_{4} \mathcal{L}_{4}$. So there is a bijection between the set of the morphisms $\mathcal{L} \in \operatorname{End}(B)$ satisfying the conclusions of lemma 2.1 and the set $\left\{\left.\left(\begin{array}{cc}1 & 0 \\ 0 & t\end{array}\right) \right\rvert\, t \in k\right\}$.

Now, We will discuss the morphisms of $\operatorname{Hom}(H, B)$ which satisfy Lemma 3.3 in similar way as above. Taking a base of $\operatorname{Hom}(H, B) \mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}$ and \mathcal{R}_{4} given respectively by

$$
\begin{aligned}
& \mathcal{R}_{1}: 1_{H} \mapsto 1_{B}, g \mapsto 0, \\
& \mathcal{R}_{2}: 1_{H} \mapsto 0, g \mapsto 1_{B}, \\
& \mathcal{R}_{3}: 1_{H} \mapsto x, g \mapsto 0, \\
& \mathcal{R}_{4}: 1_{B} \mapsto 0, g \mapsto x .
\end{aligned}
$$

Let $\mathcal{R}=k_{1} \mathcal{R}_{1}+k_{2} \mathcal{R}_{2}+k_{3} \mathcal{R}_{3}+k_{4} \mathcal{R}_{4}$. If \mathcal{R} satisfies part (1) of Lemma 3.3, it follows that $k_{1}=1$ and $k_{3}=0$. Thus $\mathcal{R}=\mathcal{R}_{1}+k_{2} \mathcal{R}_{2}+k_{4} \mathcal{R}_{4}$. By (3.13) of Lemma 3.3, we can get $k_{4}=0$ and furthermore $\mathcal{R}=\mathcal{R}_{1}+k_{2} \mathcal{R}_{2}$. Using part (4), we can obtain $k_{2}=1$. Thus $\mathcal{R}=\mathcal{R}_{1}+\mathcal{R}_{2}$, i.e., $\mathcal{R}\left(1_{H}\right)=1_{B}$ and $\mathcal{R}(g)=1_{B}$. Hence $\mathcal{F}_{B, H}^{\bullet} \cong\left\{\left.\left(\begin{array}{cc}1 & 0 \\ 0 & t\end{array}\right) \right\rvert\, 0 \neq t \in k\right\} \cong k^{*}$. We can give the concrete characterization of $\operatorname{Aut}_{\text {Hom-Hopf }}(B \times H, \pi)$. Let $\mathcal{F} \in \operatorname{Aut}_{\text {Hom-Hopf }}(B \times H, \pi)$. By Theorem 3.9, we have

$$
\mathcal{F}\left(1_{B} \times 1_{H}\right)=1_{B} \times 1_{H}, \quad \mathcal{F}\left(1_{B} \times g\right)=1_{B} \otimes g
$$

$$
\mathcal{F}\left(x \times 1_{H}\right)=t x \times 1_{H}, \quad \mathcal{F}(x \times g)=t x \otimes g
$$

where $t \in k^{*}$.
Acknowledgment. The authors sincerely thank the referee for his/her numerous very valuable comments and suggestions on this article. This work was supported by the National Natural Science Foundation of China (Nos. 11871301, 11471186 , 11501317 and11801304) and the Natural Foundation of Shandong Province (No. ZR2018MA012).

References

[1] N. Andruskiewitsch and H.J. Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. Math. 171 (1), 375-417, 2010.
[2] D. Bulacu and E. Nauwelaerts, Radford's biproduct for quasi-Hopf algebras and bosonization, J. Pure Appl. Algebra, 174 (1), 1-42, 2002.
[3] S. Caenepeel and I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Alg. 39 (6), 2216-2240, 2011.
[4] Q.G. Chen and D.G. Wang, Constructing Quasitriangular Hopf Algebras, Comm. Alg. 43 (4), 1698-1722, 2015.
[5] Q.G. Chen and D.G. Wang, A Class of Coquasitriangular Hopf Group Algebras, Comm. Alg. 44 (1), 310-335, 2016.
[6] Q.G. Chen and D.G. Wang, Duality theorem for $L-R$ crossed coproducts, Appl. Math. J. Chinese Univ. Ser. A, 33 (3), 359-378, 2018.
[7] Q.G. Chen and D.G. Wang, Hom-coalgebra cleft extensions and braided tensor Homcategories of Hom-entwining structures, Hacet. J. Math. Stat. 48 (1), 1-15, 2019.
[8] Q.G. Chen, D.G. Wang and X.D. Kang, Twisted partial coactions of Hopf algebras, Front. Math. China, 12 (1), 63-86, 2017.
[9] L. Delvaux, Multiplier Hopf algebras in categories and the biproduct construction, Algebr. Represent. Theory, 10 (6), 533-554, 2007.
[10] Y. Fregier, A. Gohr and S.D. Silvestrov, Unital algebras of Hom-associative type and surjective or injective twistings, J. Gen. Lie Theory Appl. 3 (4), 285-295, 2009.
[11] A. Gohr, On Hom-algebras with surjective twisting, J. Algebra, 324 (7), 1483-1491, 2010.
[12] S.J. Guo, X.H. Zhang and S.X. Wang, Braided monoidal categories and Doi-Hopf modules for monoidal Hom-Hopf algebras, Colloq. Math. 143 (1), 79-103, 2016.
[13] L. Liu and B.L. Shen, Radford's biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras, J. Math. Phys. 55 (3), 031701, 2014.
[14] A. Makhlouf and F. Panaite, Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys. 55 (1), $013501,2014$.
[15] A. Makhlouf and S.D. Silvestrov, Hom-algebras structures, J. Gen. Lie Theory Appl. 2 (2), 51-64, 2008.
[16] A. Makhlouf and S.D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (4), 553-589, 2010.
[17] D.E. Radford, On automorphisms of biproducts, Comm. Alg. 45(4), 1365-1398, 2017.
[18] D. Yau, Hom-algebras and homology, J. Lie Theory, 19 (2), 409-421, 2009.
[19] D. Yau, Hom-bialgebras and comodule algebras, Int. Electron. J. Algebra, 8, 45-64, 2010.
[20] X.F. Zhao and X.H. Zhang, Lazy 2-cocycles over monoidal Hom-Hopf algebras, Colloq. Math. 142 (1), 61-81, 2016.

[^0]: *Corresponding Author.
 Email addresses: cqg211@163.com (C. Quanguo), 1443391873@qq.com (F. Tingting)
 Received: 15.11.2017; Accepted: 02.10.2018

