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ABSTRACT 

The model in this study, examined the time-dependent changes in the population sizes of 

pathogen-immune system, is presented mathematically by fractional-order differential equations 

(FODEs) system. Qualitative analysis of the model was examined according to the parameters used in 

the model. The proposed system has always namely free-infection equilibrium point and the positive 

equilibrium point exists when specific conditions dependent on parameters are met, According to the 

threshold parameter R_0, it is founded the stability conditions of these equilibrium points. Also, the 

qualitative analysis was supported by numerical simulations. 

Keywords: Fractional-Order Differential Equation, Numerical Simulation, Stability Analysis 
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1. INTRODUCTION 

Transferring process of a situation or incident by using mathematical symbols is 

called as mathematical modeling [1]. In these kinds of modeling, the use of fractional -order 

differential and integral operators has increased recently [2,3]. In this sense, fractional-order 

calculations are widely used especially in physics, thermodynamics, viscoelasticity, 

electrical circuit theory, mechatronic systems, signal process, chemical mixtures, chaos 

theory, engineering, biological systems, economics, and many various areas [4-8]. Stability 

of the equilibrium point for fractional-order differential equations (FODEs) and its systems 

is at least as much as their integer order. Accordingly, the behavior of the system can be 

estimated by the stability analysis of equilibrium points of the suggested system via 
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mathematical modeling. The biological population modeling formed by using FODE is an 

ample source in terms of mathematical ideas [9-11].  

The diseases induced by organisms called as pathogens such as tumor, bacteria,  

fungus or viruses have been considered as the main cause of fatal diseases through the human 

history. Basically, it is a quite complex process for both the pathogen and host. In spite of 

developing different treatment strategies against to diseases caused by these pathogens, main 

and first process of fight against these is played by the individuals immune system. Immune 

system is called as the system of biological structures and processes in an organism 

protecting host against the possible harmful organisms by recognizing and responding to the 

antigens of pathogens [12]. In this context, dynamics between immune system cells of host 

and pathogen that causes disease are important to understand the nature of disease and are 

tried to be explained in [13-19] in different ways. 

The proposed mathematical model in form, nonlinear autonomous two-dimensional 

fractional-order differential equation system considered the main mechanisms of pathogen 

and immune system cells in host, was presented in this study. 

2. PRELIMINARIES AND DEFINITIONS 

Definition 2.1. (Fractional Derivative and Integral in Caputo Sense) For 𝑡 > 0,𝛽 ∈
𝑅+, fractional-order integral of the function 𝑓(𝑡) is defined as 

𝐼𝛽𝑓(𝑡) = ∫
(𝑡 − 𝑠)𝛽−1

𝛤(𝛽)
𝑓(𝑠)𝑑𝑠

𝑡

0

(2.1) 

and fractional-order derivative the function 𝑓(𝑡) is defined as  

𝐷𝛼𝑓(𝑡) = 𝐼𝑛−𝛼𝐷𝑛𝑓(𝑡), 𝐷 =
𝑑

𝑑𝑡
(2.2) 

for 𝛼 ∈ (𝑛 − 1, 𝑛] [3,20-23]. 

 

Lemma 2.1. Stability Analysis of Equilibrium Point of Nonlinear Autonomous Two-

Dimensional Fractional-Order Differential Equations System is as the followings:  

Proof. With initial conditions 

x(0) = x0  and  y(0) = y0, (2.3) 

let us consider the following system 

Dαx(t) = f1(x, y)

Dαy(t) = f2(x, y)
(2.4) 

for α ∈ (0,1]. Also, we have supposed that equilibrium point obtained from equation 

system f1(x̅, y̅) = f2(x̅, y̅) = 0 is shown by (x̅, y̅).  The Jacobian Matrix of system (2.4) is 

founded from J = [

∂f1

∂y1

∂f1

∂y2
∂f2

∂y1

∂f2

∂y2

]. If the eigenvalues λ1 and  λ2 obtained from the equation 

Det (J(x,y)=(x̅,y̅) − λI2) = 0 provide the conditions 

(|arg(λ1)| >
απ

2
,    |arg(λ2)| >

απ

2
) , (2.5) 
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then, the equilibrium point (x̅, y̅)  is locally asymptotically stable (LAS) for system 

(2.4). Stability region of equilibrium point for FODE systems is larger than its integer order 

[24].  

Conditions expressed in (2.5) can be detailed as the following. The characteristic 

polynomial belonging to the eigenvalues λ1 and λ2 obtained from Det (J(x,y)=(x̅,y̅) − λI2) = 0 

is 

p(λ) = λ2 + a1λ + a2 = 0. (2.6) 

When both the conditions (2.5) and the polynomial (2.6) are taken into account 

together; LAS conditions of the equilibrium point (x̅, y̅) are that coefficients of the 

polynomial (2.6) provide either Routh–Hurwitz conditions (a1, a2 > 0)  [1] or 

a1 < 0, 4a2 > (a1)
2, |tan−1 (

√4a2 − (a1)2

a1
)| >

απ

2
. (2.7) 

[25]. 

3. MATHEMATICAL MODEL 

It has been identified pathogen load and level of immunity in a diseased individual. 

Therefore, it is presumed that the population sizes of pathogen load and immune system cells 

at time t denote by P(t) and I(t), respectively. The variable I can be denoted some accurate 

amount, like the density of specific B-cells or antibodies. In this context, the model in the 

form of FODEs system with the initial conditions P(t0)  =  P0 and I(t0)  =  I0 is 

DαP(t) = βPP(t) (1 −
P(t)

Cp
) − µPP(t) − σ̅P(t)I(t)

DαI(t) = ω̅I(t)P(t) − µII(t) + H

(3.1) 

where α shows the orders of derivative and the parameters βP, Cp, µP, σ̅, ω̅, µI and H 

are positive constants. In the model (3.1), the growth rate of pathogen is βP and the carrying 

capacity of pathogen is Cp In this sense, it is supposed that pathogen multiply according to 

logistic rule. Also, the natural death rate of pathogen is µP, the rate at which the immune 

system cells destroy pathogens is  σ̅, the multiplying rate of immune system cells in the 

existence of pathogen is  ω̅  (specific immune system cells), the natural death rate of immune 

system cells is µ𝐈 and the base production density of immune system cells in fixed quantity 

is H (aspecific immune system cells). 
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Figure 2.1. Schematic demonstration of interaction between immune system cells and 

pathogen in the model (3.1). 

 

Let us consider as P(t) = Cpp(t) and I(t) = Cpi(t). When the parameter 

transformations σ̅Cp = σ, ω̅Cp = ω and h =
H

Cp
 are applied to the system (3.1), it is obtained 

that 

Dt
αp = βPp(1 − p) − µPp − σpi  

Dt
αi = ωip − µIi + h
0 < α ≤ 1

(3.2) 

Therefore, stability analysis of the system (3.1) can be sustained through the system 

(3.2). 

3.1. Matrix Form of the System (3.2). FODEs system in (3.2) can be rewritten in 

matrix form as follows,  

DαX(t) = AX(t) + x1(t)BX(t) + R

X(0) = X0
(3.3) 

where 0 < 𝛼 ≤ 1, 𝑡 ∈ (0,1], n ∈ ℕ+, p(t) = x1(t), i(t) = x2(t), X(t) = (
x1(t)

x2(t)
), X0 =

(
x1(0)

x2(0)
), R = (

0
h
), A = (

βP − µP 0
0 −µI

) and B = (
−βP −σ
0 ω

). 

Definition 3.1. For 𝑋(𝑡) = (𝑥1(𝑡) 𝑥2(𝑡))
𝑇
, 𝐶∗[0, 𝑇] set is a continuous set of the vector 

𝑋(𝑡) at interval [0, 𝑇]. Norm of the vector 𝑋(𝑡) ∈ 𝐶∗[0, 𝑇] in (3.3) is ‖𝑋(𝑡)‖ =
∑ 𝑠𝑢𝑝𝑡|𝑥𝑖(𝑡)|
5
𝑖=1 . 

Proposition 3.1. Let us consider Definition 3.1. and 𝑋(𝑡) = (𝑥1(𝑡) 𝑥2(𝑡) )
𝑇 in ℝ+

2 =
{𝑋 ∈ 𝑅2: 𝑋 ≥ 0} and 𝐷𝛼𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] for 𝑓(𝑋) ∈ 𝐶[𝑎, 𝑏], 0 < 𝛼 ≤ 1. According to 

generalized mean value theorem, it is 𝑓(𝑥) = 𝑓(𝑎) +
1

𝛤(𝛼)
𝐷𝛼𝑓(𝜉)(𝑥 − 𝑎)𝛼 for  𝑥 ∈ [𝑎, 𝑏] 

and 0 ≤ 𝜉 ≤ 𝑥. Also, 

• When 𝐷𝛼𝑓(𝑥) > 0 for  𝑥 ∈ [𝑎, 𝑏], the function 𝑓(𝑥) increases for each 𝑥 ∈ [𝑎, 𝑏]. 

• When 𝐷𝛼𝑓(𝑥) < 0 for  𝑥 ∈ [𝑎, 𝑏], the function 𝑓(𝑥) decreases for each 𝑥 ∈
[𝑎, 𝑏]. 

Also, the vector field is the points in ℝ+
2 , since 𝐷𝛼𝑥1(𝑡)|𝑥1=𝑥2=0 = 0 and 

𝐷𝛼𝑥2(𝑡)|𝑥1=𝑥2=0 = ℎ. 

http://tureng.com/tr/turkce-ingilizce/in%20addition%20to%20these
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Proposition 3.2. If 𝑋(𝑡) ∈ 𝐶∗[0, 𝑇], the system (3.2) has a single solution.  

Proof. We have DαX(t) = AX(t) + x1(t)BX(t) + R in (3.3). In this situation, it 

is F(X(t)) ∈ C∗[0, T] for X(t) ∈ C∗[0, T]. Also, for vectors that would be like X(t), Y(t) ∈

C∗[0, T]  and X(t) ≠  Y(t), we have the followings 

‖F(X(t)) − F(Y(t))‖ = 

‖(AX(t) + x1(t)BX(t) + R) − (AY(t) + y1(t)BY(t) + R)‖ 

‖AX(t) + x1(t)BX(t) − AY(t) − y1(t)BY(t)‖ 

‖A(X(t) − Y(t)) + x1(t)BX(t) − y1(t)BY(t) − (x1(t)BY(t) − x1(t)BY(t)⏟                
0

)‖ 

‖A(X(t) − Y(t)) + x1(t)B(X(t) − Y(t)) + (x1(t) − y1(t))BY(t)‖ 

≤ (‖A(X(t) − Y(t))‖ + ‖x1(t)B(X(t) − Y(t))‖ + ‖(x1(t) − y1(t))BY(t)‖) 

≤ (‖A‖‖(X(t) − Y(t))‖ + ‖B‖|x1(t)|‖(X(t) − Y(t))‖ + ‖B‖ |(x1(t) − y1(t))|⏟          
≤‖(X(t)−Y(t))‖

‖Y(t)‖) 

≤ (‖A‖ + ‖B‖(|x1(t)|⏟  
≤‖X(t)‖

+ ‖Y(t)‖))‖(X(t) − Y(t))‖ 

and thus it is 

‖F(X(t)) − F(Y(t))‖ ≤ L‖(X(t) − Y(t))‖ 

where L = ‖A‖ + ‖B‖(M1 +M2) > 0 and M1 and M2 are positive constants, such that 

X(t), Y(t) ∈ C∗[0, T], ‖X(t)‖ ≤ M1, ‖Y(t)‖ ≤ M2. Therefore the system (3.2) has a single 

solution. 

4. QUALITATIVE ANALYSIS OF PROPOSED MODEL 

In this part, equilibrium points of model, expressed in (3.2), are found and the stability 

analysis of these points is made. 

Definition 4.1. In system (3.2), the parameters are redefined as  

𝐴1 =
𝛽𝑃 − µ𝑃
𝛽𝑃

, 𝐴2 =
µ𝐼
𝜔
, 𝐴3 =

𝜎

𝛽𝑃
, 𝐴4 =

ℎ

𝜔
(4.1) 

for ease of stability analysis. Because the parameters used in system (3.1) are 

positive, it is 

 𝐴2, 𝐴3, 𝐴4 > 0 (4.2) 

Therefore, the system (3.2) can be rewritten as, 

𝐷𝑡
𝛼𝑝 = 𝑓(𝑝, 𝑖) = 𝑝

1

𝛽𝑃
(𝐴1 − 𝑝 − 𝐴3𝑖 ) 

𝐷𝑡
𝛼𝑖 = 𝑔(𝑝, 𝑖) = 𝜔(𝑖𝑝 − 𝐴2𝑖 + 𝐴4)
0 < 𝛼 ≤ 1

(4.3) 

Proposition 4.1. The system (4.3) has always the equilibrium point 𝐸0 (0,
𝐴4

𝐴2
)  namely 

free-infection equilibrium point. Also, when 𝐴1𝐴2 − 𝐴3𝐴4 > 0, the positive equilibrium point 
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𝐸1 (
(𝐴1+𝐴2)−√(𝐴1−𝐴2)2+4 𝐴3𝐴4

2
,
(𝐴1−𝐴2)+√(𝐴1−𝐴2)2+4 𝐴3𝐴4

2𝐴3
 ) exists. 

Proof. Let us consider that the general expression of equilibrium points of the system 

(4.3) is Ej = (p̅, i)̅ for j = 1,2. They can be found by solving the equation system f(p̅, i)̅ =

g(p̅, i)̅ = 0 in (4.3). Thus, we have 

p̅(A1 − p̅ − A3i ̅)   = 0
(ip̅̅ − A2i ̅ + A4) = 0

(4.4) 

By the first equation in (4.4), it is either  p̅ = 0  or  A1 − p̅ − A3i ̅ = 0 is obtained. 

• Let p̅ = 0. In this situation, i ̅ =
A4

A2
  is obtained from the second equation of (4.4). 

Therefore the free-infection equilibrium point is E0 (0,
A4

A2
). 

• Consider the other situation being A1 − p̅ − A3i ̅ = 0 that is 

i ̅ =
A1 − p̅

A3
. (4.5) 

When this value in (4.5) is written in the second equation in (4.4), the second degree 

polynomial 

p̅2 − (A1 + A2)p̅ + (A1A2 − A3A4) = 0 (4.6) 

related to p̅ is obtained. Discriminant of (4.6) is Δ = (A1 − A2)
2 + 4 A3A4. In this 

sense, it is clear that Δ > 0 due to (4.2). The roots p̅ are found as, 

p1̅̅ ̅ =
(A1 + A2) − √(A1 − A2)2 + 4 A3A4

2
                                         and

p2̅̅ ̅ =
(A1 + A2) + √(A1 − A2)2 + 4 A3A4

2
.

(4.7) 

For the roots p1̅̅ ̅ and  p2̅̅ ̅ are positive real number, it must be (A1 + A2) ∓

√(A1 − A2)2 + 4 A3A4 > 0 and so, 

A1A2 − A3A4 > 0 (4.8) 

Thus, the values ij̅ for j = 1,2 that correspond to p1̅̅ ̅ and p2̅̅ ̅ can be found from (4.5) 

as 

i1̅ =
(A1 − A2) + √(A1 − A2)2 + 4 A3A4

2A3
                                       and

i2̅ =
(A1 − A2) − √(A1 − A2)2 + 4 A3A4

2A3
,

(4.9) 

respectively. It is clear from (4.2) that i1̅ is always positive and i2̅ is always negative. 

Accordingly when (4.8) is provided, the positive equilibrium point E1(p1̅̅ ̅, i1̅ ) is as 

follows; E1 (
(A1+A2)−√(A1−A2)2+4 A3A4

2
,
(A1−A2)+√(A1−A2)2+4 A3A4

2A3
 ). 

Thus, as a result, the following table can be given. 
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 Table 4.1. The biological existence conditions of equilibrium points of system (4.3)  

Equilibrium Points 
Condition of biological 

existence 

E0 (0,
A4

A2
), Always exists 

𝐸1 (
(𝐴1+𝐴2)−√(𝐴1−𝐴2)2+4 𝐴3𝐴4

2
,
(A1−A2)+√(A1−A2)2+4 A3A4

2A3
A3A4), A1A2 − A3A4 > 0 

Proposition 4.2. For the system (4.3), when equilibrium points shown in Table 4.1 are 

considered, the stability of these points are obtained as follows:  

(i) If 𝐴1𝐴2 − 𝐴3𝐴4 < 0, then the equilibrium point 𝐸0 (0,
𝐴4

𝐴2
) is locally asymptotically 

stable (LAS). 

(ii) We have assumed that the condition (4.8) be provided. In this situation, the positive 

equilibrium point 𝐸1 is locally asymptotically stable (LAS).  

Proof. 

For the stability analysis, Jacobian matrix obtained from the right side of the system 

(4.3) is assigned as: 

J = (

1

βP
(A1 − 2p − A3i ) −A3p

1

βP
ωi ω(p − A2)

) (4.10) 

 

(i) Jacobian Matrix calculated in  E0 (0,
A4

A2
) is as following 

J (E0 (0,
A4
A2
)) =

(

 
βP
A1A2 − A3A4

A2
0

ω
A4
A2

−ωA2)

 (4.11) 

Here, it is clear that eigenvalues are real number. Accordingly, for the stability of 

this equilibrium point, it is enough to look at Routh-Hurwitz criteria. Also, the 

characteristic equation belonging to this matrix is of second degree, since Jacobian 

Matrix in (4.11) is 2x2. As a result of this criteria, for eigenvalues to be negative, and 

so LAS of this point, the condition TrJ(E0) =
βB (A1A2−A3A4)

A2
− A2 ω < 0 and 

DetJ(E0) = −ω βB (A1A2 − A3A4) > 0  must be provided. Thus, if 

A1A2 − A3A4 < 0, (4.12) 

from aforementioned inequality with respect to  TrJ(E0) and DetJ(E0),then E0 (0,
A4

A2
)   

is LAS.  

(ii) We have the positive equilibrium point E1 under condition 

 A1A2 − A3A4 > 0. Jacobian matrix calculated in E1 is written as 
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J(E1) = (

−βSp̅ −σp̅

ωi̅ −
h

i̅

) (4.13) 

Characteristic equation obtained from (4.13) is as follows: 

λ2 + (βPp̅ +
h

i̅
) λ + p̅ (ωσi̅ + βP

h

i̅
) = 0 (4.14) 

When Lemma 2.1. is considered, as coefficients of (4.14) are positive real number. 

According to Routh-Hurwitz criteria, the eigenvalues λ are either negative real 

number or complex numbers having negative real parts. In this respect, when the 

positive equilibrium point E1 biologically exists, it is also the stable equilibrium 

point.  

Stability conditions of equilibrium points expressed in Table 4.1. are summarized in 

the following table. 

Table 4.2. Stability conditions of equilibrium points of (4.3). 

Equilibrium Point Stability Condition 

E0 (0,
A4
A2
) A1A2 − A3A4 < 0 

E1 (
(A1+A2)−√(A1−A2)2+4 A3A4

2
,
(A1−A2)+√(A1−A2)2+4 A3A4

2A3
A3A4). 

When It exists as biological  

(that is, A1A2 − A3A4 > 0) 

 

Definition 4.2. For (4.3) system, the threshold parameter 𝑅0, minimum infection free 

parameter, has the following property: 

If 𝑅0 < 1, then equilibrium point 𝐸0 is LAS, and if 𝑅0 > 1,  then positive equilibrium point 𝐸1 

is LAS. Here 𝑅0 parameter is defined as following 

𝑅0 =
𝐴1𝐴2
𝐴3𝐴4

(4.15) 

Table 4.3. According to the parameter 𝑅0, stability conditions of equilibrium points of 

(4.3). 

Equilibrium Point Stability Condition 

E0 (0,
A4
A2
)  𝑅0 < 1 

E1 (
(A1+A2)−√(A1−A2)2+4 A3A4

2
,
(A1−A2)+√(A1−A2)2+4 A3A4

2A3
A3A4). 𝑅0 > 1 

 

5. RESULTS 

 In this part, qualitative analysis of system is supported via numerical simulations by 

giving values to parameters used in system (3.2).  
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Table 5.1. For system (3.2), values and expressions of parameter values. 

Parameters Descriptions Values 

βP Growth rate of pathogen, 0.8 day−1 

Cp Carrying capacity of pathogen, 109 cells 

µP Natural death rate of pathogen, 0.312 day−1 

µI Natural death rate of immune cells, 0.1512 day−1 

σ̅ 
The rate at which the immune system cells destroy 

pathogens, 
3*10-6 cells−1 days−1 

ω̅ 
Proliferation rate of immune system cells in 

pathogenesis, 
10-9 cells−1 days−1 

H Intensity of base production of immune system cells, 106 cells 

α The orders of the derivative in the system, 
0.25, 0.50, 0.75, 0.9, 

0.99 

[P0 I0] Initial condition [10000 1000] 

In the light of data obtained from Table 5.1., it is founded as following  

A1 = 0.61, A2 = 1.512, A3 = 3750, A4 = 0.001 

and the equilibrium points  

E0(0,661375.7) and E1(−927316121.8,409951). 

Because it is  

A1A2 − A3A4 = −2.82768, 

the positive equilibrium point E1  is biologically meaningless and E0 is locally 

asymptotically stable. This situation with different derivative orders is clearly seen in Figure 

5.1 and Figure 5.2.  
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Figure 5.1. In case of α = 0,25, 0.50, 0.75, 0.90 and 0.99 in system (3.2), respectively, 

temporal courses of pathogen obtained by using datas in the Table 5.1.  

 

 

Figure 5.2. In case of α = 0,25, 0.50, 0.75, 0.90 and 0.99 in system (3.2), respectively, 

temporal courses of Immune system cells obtained by using datas in the Table 5.1. 

 

In the numerical studies in this section, the parameters obtained from the literature 

for mycobacterium tuberculosis were used. Within about 100 days, as can be seen from the 

figures above, the pathogen population disappears and the immune system cells increase. 
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