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Abstract
In multiple regression analysis, the independent variables should be
uncorrelated within each other. If they are highly intercorrelated, this
serious problem is called multicollinearity. There are several methods
to get rid of this problem and one of the most famous one is the ridge
regression. In this paper, we will propose some modified ridge param-
eters. We will compare our estimators with some estimators proposed
earlier according to mean squared error (MSE) criterion. All results
are calculated by a Monte Carlo simulation. According to simulation
study, our estimators perform better than the others in most of the
situations in the sense of MSE.

Keywords: Multicollinearity, multiple linear regression, ridge regression, ridge estima-
tor, Monte Carlo Simulation.

1. Introduction
Multiple linear regression is one of the most widely used statistical method. Linear

modeling is often used in regression analysis. But in some cases, if the correlation between
dependent and independent variables is not linear, the exponential or quadratic models
could be preferred. For linear regression the generalized model is as follows

Y = Xβ + ε(1.1)

where Y is an n×1 vector of dependent (response) variables, X is a design matrix of order
n× p where p is the number of independent (explanatory) variables, β is a p× 1 vector
of coefficients and ε is an error vector of order n× 1 which is distributed as N(0, σ2In).
The most common method of estimating β is to use the ordinary least squared (OLS)
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estimator where the residual sum of squares is minimized. The OLS estimator of β is
written as

β̂ = (X ′X)−1X ′Y.(1.2)

Therefore Equation (1.2) is an unbiased estimator of β. However, this equation is valid
under several assumptions of multiple linear regression analysis. Regression assumptions
clarify the conditions under which multiple regression works well, ideally with unbiased
and efficient estimates. One of the assumptions is that explanatory variables are uncor-
related to one another. In many situations, this assumption is not the case since the
variables are highly intercorrelated. Thus the design matrix X becomes linearly depen-
dent and not having full rank. This leads that the matrix becomes close to singular. This
problem is called multicollinearity. Multicollinearity is perfect or sometimes called exact
if the predictors are highly correlated. Then the regression coefficients are indeterminate
and their standard errors are infinite. If multicollinearity is moderate, then the regres-
sion coefficients are determinate but possess large standard errors which mean that the
coefficients cannot be estimated with great accuracy [7].

It is an especially common problem in time series regressions, that is, where the data
consists of a series of observations on the variables over a number of time periods. If two
or more of the explanatory variables have a strong time trend, they will be highly corre-
lated and this condition may give rise to multicollinearity. It should be noted that the
presence of multicollinearity does not mean that the model is misspecified. Accordingly,
the regression coefficients remain unbiased and the standard errors remain valid [6].

When the matrix X ′X is close to be singular, the numerical reliability of the calcu-
lations is reduced. In extreme cases it is possible that the reported calculations will be
wrong. A more relevant implication of near multicollinearity is that individual coefficient
estimates will be imprecise. We can see this most simply in homoscedastic linear regres-
sion models. As the correlation coefficient ρ approaches to 1, the matrix X ′X becomes
singular. Therefore the collinearity is indexed by ρ. In this case we can also observe that
the variance of a coefficient estimate

σ2[n(1− ρ2)]−1(1.3)

tends to infinity. It can be easily seen that the expression (1.3) depends on the correlation
ρ and the sample size n [8].

Collinearity is also an important phenomenon in sampling. Unbiasedness is a repeated
sampling property. The explanatory variables in the population may not be linearly
related but they may be related in the particular sample. Therefore one should pay
attention in dealing with the sample values and computing the OLS estimators for each
of these samples [7].

There are many methods to overcome multicollinearity. One of the most commonly
used method is the ridge regression (RR) firstly suggested by Hoerl and Kennard [9, 10].
If the matrix X ′X is ill-conditioned, then the OLS estimate β̂ becomes instable. The
main idea of RR is to add a positive constant k to the diagonals of X ′X before computing
β̂. Then the solution vector becomes

β̂ridge = (X ′X + kIp)
−1X ′Y(1.4)

where k > 0 is called a biased (ridge) estimator and Ip is the p× p identity matrix. The
question is how to choose k. In equation (1.4), if k = 0, β̂ridge becomes the unbiased OLS
estimator whereas if k 6= 0, β̂ridge is the biased ridge estimator of β. There are various
numbers of proposed ridge estimatorss. In papers, we see that the researchers compared
their estimators with the one proposed by Hoerl et al. [11]. Some examples of the
researchers studying in this area are the followings: Lawless and Wang [16], McDonald



and Galarneau [19], Saleh and Kibria [26], Kibria [15], Khalaf and Shukur [14], Alkhamisi
et al. [2], Norliza et al. [23], Akhamisi and Shukur [3], Sakallioglu and Kaciranlar [25],
Muniz and Kibria [20], Liu and Gao [17], Mansson et al. [18], Dorugade and Kashid [5],
Al-Hassan [1], Muniz et al. [21], Dorugade [4] and Karaibrahimoğlu et al.[13].

The aim of this study is to propose some new modified ridge estimators and com-
pare some of them to early proposed estimators from the literature. Multicollinearity
is a serious problem and it must be overcomed to get an accurate result in regression
models. Therefore we will choose the best k parameter after comparison according to
mean squared error (MSE) criterion. In section 2, we will explain the theoretical back-
ground of the ridge regression and define the new estimators. In section 3, we will give
the details of the Monte Carlo simulation. We will present the results and discussions in
section 4. Conclusively, we will make some comments on the results and choose the best
estimator of k. All the tables of the simulation results and the graphs will be present in
the appendix.

2. Ridge Regression and Ridge Estimators
2.1. Detection of Multicollinearity. There are several methods to detect multi-
collinearity problem. However some of them do not tell anything about the degree of
multicollinearity. Two of the most commonly used methods are the followings

(1) Condition number: Let λ1, λ2, ..., λp are eigenvalues of the matrix X ′X. Let
λmax and λmin denote the maximum and minimum of these eigenvalues, respec-
tively. The condition number κ is defined as

κ =
λmax
λmin

.(2.1)

If 10 <
√
κ < 30, then there is an intermediate multicollinearity and if

√
κ > 30

there is a severe multicollinearity in the model. One can also see that if λmin
is equal to 0 or very close to 0 then the ratio is infinite. Equivalently, if λmin
and λmax are close to each other, then the value of κ = 1 or close to 1, meaning
that the predictors are said to be orthogonal. That is, there is no collinearity
problem.

(2) Variance Inflation Factor (V IF ): V IF value is computed as

V IF =
1

1−R2
j

(2.2)

where R2
j is the coefficient of determination in the regression of explanatory

variable Xj on the remaining explanatory variables of the model. Generally,
when V IF > 10, it is assumed that there exists highly multicollinearity.

2.2. Theoretical Background of Ridge Regression. Two American statisticians,
Arthur Hoerl and Robert Kennard, published a paper in 1970 on ridge regression, a
method for solving badly conditioned linear regression problems. Bad conditioning means
numerical difficulties in performing the inverse of a matrix which is necessary to obtain
the variance matrix. Meanwhile, the Russian theoretician Andre Tikhonov (1977) was
working on the solution of ill-posed problems for which no unique solution exists because,
in effect, there is not enough information specified in the problem. Hoerl and Kennard
called the method as "ridge regression" whereas Tikhonov developed a method known as
regularization. Hoerl and Kennard’s method was in fact a crude form of regularization
[12].

One of the main methods to solve the multicollinearity problem is principle compo-
nent regression. This method can be considered as the basis of the ridge regression idea.



Principal component regression (PCR) is a regression analysis that uses principal compo-
nent analysis when estimating regression coefficients. It is a procedure used to overcome
problems which arise when the multicollinearity exists. Often the principal components
with the highest variance are selected. However, the low-variance principal components
may also be important in some cases even more important [24].

The idea of ridge regression was developed based on PCR in the same manner. After
writing the general regression equation in canonical form, the orthogonalization process
is applied. At this point, ridge regression differs from the principal component regression.
The OLS estimator of β is obtained via using different components in latter whereas the
biased estimator of β is calculated adding a parameter k to the diagonal elements in
former. The theoretical procedure of ridge regression is as follows: Consider the general
model given in (1.1). First, write this equation in canonical form. Suppose that there
exits an orthogonal matrix Q such that

Q′X ′XQ = Λ = diag(λ1, λ2, ..., λp)(2.3)

where Q is a p × p orthogonal matrix and Λ is a p × p diagonal matrix whose diagonal
elements are the eigenvalues λ1, λ2, ..., λp of X ′X. Thus, we obtain the equivalent model

Y = Zα+ ε(2.4)

where Z = XQ, Z′Z = Λ and α = Q′β. Therefore the OLS estimator of α is defined as

α̂ = Λ−1Z′Y .(2.5)

Also, the OLS estimator of β is given by

β̂ = Qα̂.(2.6)

We can write the ridge estimator of α̂ as

α̂ridge = (Z′Z + kIp)
−1Z′Y(2.7)

and the ordinary ridge estimator of β is given as

β̂ridge = Q(I − kA−1
k )α̂(2.8)

where Ak = (Λ + kIp).
It is known since Hoerl and Kennard [9] that the value of k which minimizes the

MSE(α̂ridge) is

ki =
σ2

α2
i

(2.9)

where

MSE(α̂ridge) = σ2
p∑
i=1

λi
(λi + k)2

+ k2
p∑
i=1

α2
i

(λi + k)2
.(2.10)

The first part of the above function is the variance function and the second part
is the squared bias function. We know that the variance function is a continuous and
monotonically decreasing function and the squared bias function is a continuous and
monotonically increasing function of k [9].

We obtain MSE(α̂OLS) if we put k = 0 in equation (2.10). Thus

MSE(α̂OLS) = σ2
p∑
i=1

1

λi
.(2.11)

It is obvious from equation (2.10) that k depends on σ2 and α. But we don’t know
σ2 and α in practice. Therefore we use the estimators σ̂2 and α̂ instead of the unknown



parameters σ2 and α respectively such that ki = σ̂2

α̂2
i
where σ̂2 = (Y −Xβ̂)′(Y −Xβ̂)/(n−

p) [9, 10].

2.3. Proposed Ridge Estimators. It is proved that a sufficient condition that
MSE(α̂Ridge) < MSE(α̂OLS) is the following k < kHK = σ̂2

α̂2
max

[9]. In the literature,
some of the parameters are smaller than kHK . However, it is possible to get good
estimators (in the sense of MSE) bigger than kHK . As it can be seen from the figure
given in [9], kHK value makes the first derivative of the function MSE(α̂Ridge) smaller
than zero. Thus, any estimator k satisfying the sufficient condition given in [9] such that
0 < k < kHK makes the derivative smaller than zero as well. However, the intersection
point of the graphs of the variance and the squared bias functions is definitely greater than
kHK . One can also find estimators at which point the first derivative of theMSE(α̂Ridge)
may be greater than zero. There are some estimators greater than kHK , for example see
[3] for the estimators kNAS = max( σ̂

2

α̂2
i

+ 1
λi

) and kAS = kHK + 1
λi
, i = 1, ..., p which are

clearly greater than kHK .
Now, we suggest some estimators which are modifications of kK = 1

p

∑p
i=1

σ̂2

α̂2
i
proposed

in [15] and kAD = 2p
λmax

σ̂2∑p
i=1 α̂

2
i
proposed in [4]. We apply some transformations namely,

taking ith root of the parameter or taking squares or cubes of the parameters, the number
of predictors p and the eigenvalues λi following [3] and [14] in order to obtain some new
estimators greater than kHK and have better performance.

Now, we give some ridge estimators proposed earlier and our new proposed estimators.
We compare the performances of the estimators given below according to the average
MSE values. The descriptions of earlier estimators are presented with indices belonging
to their author’s name.

(1) kHK = σ̂2

α̂2
max

where α̂max is the maximum element of α̂OLS . (Hoerl and Kennard,
1970a)

(2) kNAS = max( σ̂
2

α̂2
i

+ 1
λi

) which is the maximum element of ki = σ̂2

α̂2
i

+ 1
λi

being
greater than kHK . (Alkhamisi and Shukur, pp.543, 2007)

(3) kK = 1
p

∑p
i=1

σ̂2

α̂2
i
which is the arithmetic mean of ki = σ̂2

α̂2
i
. (Kibria, pp.423, 2003)

(4) kAD = 2p
λmax

σ̂2∑p
i=1 α̂

2
i
which is the harmonic mean of ki = 2σ̂2

λmaxα̂
2
i
. (Dorugade,

pp.3, 2013)
(5) kKM8 = max( 1

λmaxα̂
2
i

(n−p)σ̂2+λmaxα̂
2
i

) which is the maximum element of ki = 1
λmaxα̂

2
i

(n−p)σ̂2+λmaxα̂
2
i

.

(Mansson et. al, pp.5, 2010)
(6) kKM12 = median( 1

λmaxα̂
2
i

(n−p)σ̂2+λmaxα̂
2
i

) which is the median of ki = 1
λmaxα̂

2
i

(n−p)σ̂2+λmaxα̂
2
i

.

(Mansson et. al, pp.5, 2010)

Our proposed estimators are as follows:

(1) kAY 1 = p2

λ2
max

σ̂2∑p
i=1 α̂

2
i

(2) kAY 2 = p3

λ3
max

σ̂2∑p
i=1 α̂

2
i

(3) kAY 3 = p

λ
1/3
max

σ̂2∑p
i=1 α̂

2
i

(4) kAY 4 = p

(
∑p
i=1

√
λi)

1/3

σ̂2∑p
i=1 α̂

2
i

(5) kAY 5 = 2p√
λmax

σ̂2∑p
i=1 α̂

2
i



Since the matrix X ′X is in the correlation form, we have
∑p
i=1 λi = p. So p > λmax.

Thus, all of the new proposed estimators are clearly greater than kHK . We will show
in the next section that our estimators have better performance than the given early
proposed estimators especially when there is severe multicollinearity.

3. Application: A Monte Carlo Simulation
This section is related to the Monte Carlo simulation. In conducting the simulation

we compare the performances of the estimators. For a valuable Monte Carlo simula-
tion two criteria are used in design. One criterion is to determine the effective factors
affecting the properties of the estimators. The other one is to specify the criteria of
judgment. We choose the sample size n, the number of predictors p, the correlation coef-
ficient ρ and the variances between the error terms σ2 as effective factors. Also the mean
squared error (MSE) is chosen to be the criteria for comparison of the performances.
However, in literature, we realized that the average MSE is used to compare the per-
formances of the estimators. Thus we computed the average MSE (AMSE) values of all
estimators with respect to different effective factors. There are many ridge estimators
proposed in papers and we have simulated many of them, but we give six of them that
are kHK , kNAS , kK , kAD, kKM8 and kKM12 in this study. Additionally, we suggest five
new ridge parameters that are kAY 1, kAY 2, kAY 3, kAY 4 and kAY 5.

The general regression model (1.1) is considered with independent error terms, that
is IID − ε ∼ N(0, σ2I). If β is chosen to be the eigenvector of the largest eigenvalue of
the matrix X ′X such that β′β = 1, then the minimized value of MSE is obtained [22].

In order to generate the explanatory variables, the following common device is used:

xij = (1− ρ2)1/2zij + ρzip(3.1)

where i = 1, 2, ..., n, j = 1, 2, ..., p, ρ2 represents the correlation between the explanatory
variables and zij ’s are independent random numbers obtained from standard normal
distribution. We can generate the dependent variable Y with the following equation:

Yi = β0 + β1xi1 + β2xi2 + ...+ βpxip, i = 1, 2, ..., n(3.2)

where εi’s are independent and identically normal distributed pseudorandom numbers
with zero mean and variance σ2 and β0 = 0.

In the simulation, we consider different cases of effective factors on estimators: n =
50, 100, 150, ρ2 = 0.95, 0.99, 0.999, p = 4, 6 and σ2 = 0.1, 0.5, 1.0. For the given values of
ρ2 = 0.95, 0.99, 0.999, we consider the following condition numbers of the generated data
sets, respectively, κ ≈ 15,κ ≈ 30,κ ≈ 90 for p = 4, and κ ≈ 25, κ ≈ 45, κ ≈ 120 for p = 6.

First we generated the matrix of explanatory variables X and the vector of dependent
variable Y , and then we standardized both X and Y in such a way that X ′X and X ′Y are
in the correlation form. For different values of n, p, ρ and σ2, the iteration was performed
5.000 times by generating the error terms of the general linear regression equation (1.1).

We computed average mean squared errors of the estimators via the following equation,
AMSE(α̂) = 1

5000

∑5000
r=1 (α̂− α)′(α̂− α) where α̂ is α̂OLS and α̂Ridge.

The biasedness plays secondary important role in comparing the performances of the
estimators and thus we created the squared bias tables. All the results are given in tables.
To comprehend the tables, we illustrated the results in graphs. All tables and figures are
given in Appendix.

4. Results and Discussion
In Table. 1, AMSE values of the estimators are presented for fixed n, p, ρ and different

σ2’s. There are 18 sub-tables in the arrangement of n, p, ρ trio. All of the proposed



estimators have better performance than kHK and OLS estimator having the largest
AMSE values. One can see from tables that when the error variance σ2 increases, AMSE
values increases for all estimators. For the case p = 4, ρ = 0.95, kAY 2 has the least AMSE
value and other new proposed estimators except for kAY 3 have better performance than
the ones chosen from the literature. When we increase the correlation, kAY 5 and kAD
have less AMSE values than other estimators for ρ = 0.99 and ρ = 0.999. If we compare
the estimators for the case p = 6, one can see that all of the new proposed estimators
except for kAY 3 are quite better than the others, especially kAY 4 is the best among them
for ρ = 0.95 and ρ = 0.99. However, kAY 5 and kAD perform almost equally for ρ = 0.999.
These results can easily be seen from Figure 7.1 as well.

All comparison graphs have been plotted using earlier estimators kNAS , kK , kAD and
new estimators kAY 2, kAY 3 selected randomly. Since the values of OLS and kHK estima-
tors are larger than the others as a scale, they are not included in the graphs. We know
that multicollinearity becomes severe when the correlation increases. However, there is
an interesting result that AMSE values of new proposed estimators decrease, when the
correlation increases. In other words, new proposed estimators are robust to the corre-
lation. This feature is also observed for kAD and presented in Figure. 7.3. Although
MSE is used as a comparison criterion, the bias of an estimator is another indicator of
good performance. Thus, we have provided the squared bias values of the estimators in
Table. 2. In most of the cases, kHK has the least bias value (Figure. 7.4(a)). If we
increase the correlation, our new estimators have less bias as it is observed from Figure.
7.5. When ρ = 0.999, kK becomes the estimator having least bias. Also kAY 1, kAY 2 and
kAY 4 have quite less biases for this situation as well. If the biasses are compared to the
error variance, one can see that when the error variance increases, AMSE values of all
estimators except for kKM8 and kKM12 increases monotonically when ρ = 0.95 and p = 4.
Figure. 7.5, obviously, shows us the performances of the bias values between earlier and
new parameters.

5. Summary and Conclusion
In this paper, we studied ridge regression and ridge estimators. We reviewed six

old estimators and proposed five new estimators. We compared all of the estimators
according to mean squared error and the squared bias criteria. We have conducted
a Monte Carlo simulation to compare the results by generating random numbers for
dependent and independent variables and pseudo-random numbers for the error terms
from the standard normal distribution. We created tables consisting of AMSE values
according to different values of the sample size n, the correlation coefficient between the
explanatory variables ρ, the number of predictors p and the variance of error terms σ2.
We plotted some graphs for selected situations. According to tables and figures, we may
say that our new suggested ridge estimators are better than the older ones proposed
in [3, 4, 9, 10, 15, 20, 21]. We concluded that our new estimators are functional for
solving multicollinearity problem. Finally, among our estimators, kAY 1 and kAY 2 are the
best ones as a performance of AMSE and the bias. The superiority of new estimators
changes according to the situation. Although kAY 2 has the best performance in the
sense of AMSE, kHK gives better results in the sense of bias. However, in applying
a ridge estimator to a real data, just one estimator is not enough to get rid of the
collinearity problem. One should notice that every data set is different and each has its
own statistical characteristics, and each of the proposed estimators has its own superiority
too. Therefore, we advise researchers that one should apply many estimators until getting
a better solution to encounter this problem.
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Table 1. AMSE values of the estimators fixed n, p, ρ and different σ2‘s

A: n = 50, p = 4, ρ = 0.95

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 2.4842 0.8896 0.6768 0.3321 0.8602 0.7360 0.3106 0.3097 0.3509 0.3136 0.3303 8.7159
0.5 12.0972 0.8991 1.1215 0.4413 0.8547 0.7054 0.4194 0.4176 0.4631 0.4248 0.4392 45.0968
1.0 20.5269 0.8892 1.3803 0.5346 0.8480 0.7002 0.5234 0.5203 0.5531 0.5326 0.5324 78.8936

B: n = 50, p = 4, ρ = 0.99

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 9.0286 0.9681 0.9821 0.2140 0.9329 0.8075 0.2372 0.2359 0.2236 0.2398 0.2139 33.8276
0.5 46.3548 0.9649 0.9760 0.3110 0.9369 0.8055 0.2989 0.2984 0.3300 0.2999 0.3107 171.7628
1.0 80.5670 0.9653 1.0929 0.4210 0.9293 0.7887 0.4105 0.4099 0.4391 0.4117 0.4207 311.1999

C: n = 50, p = 4, ρ = 0.999

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 84.0152 0.9968 0.6063 0.0905 0.9887 0.9358 0.1022 0.1022 0.0951 0.1024 0.0905 331.5741
0.5 446.4061 0.9967 0.3491 0.2279 0.9900 0.9372 0.1981 0.1981 0.2453 0.1980 0.2279 1729.6702
1.0 996.2741 0.9967 0.4311 0.3490 0.9904 0.9418 0.3189 0.3190 0.3659 0.3189 0.3490 3715.5852

D: n = 50, p = 6, ρ = 0.95

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 2.5995 0.8731 0.4942 0.4906 0.8005 0.5462 0.4058 0.4161 0.5640 0.3873 0.4839 10.4329
0.5 15.7874 0.8617 1.3840 0.4689 0.8200 0.5287 0.4107 0.4130 0.5393 0.4082 0.4653 62.2329
1.0 25.5628 0.8650 1.6620 0.5650 0.7982 0.5071 0.5097 0.5133 0.6300 0.5070 0.5600 106.6135

E: n = 50, p = 6, ρ = 0.99

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 11.0756 0.9673 1.0008 0.2799 0.9226 0.6596 0.2508 0.2506 0.3328 0.2514 0.2790 49.2345
0.5 72.1513 0.9660 1.6474 0.3038 0.9385 0.7002 0.2788 0.2784 0.3600 0.2796 0.3033 293.2311
1.0 145.7039 0.9662 1.7144 0.3841 0.9388 0.7014 0.3548 0.3545 0.4421 0.3554 0.3835 594.9463

F: n = 50, p = 6, ρ = 0.999

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 114.8290 0.9956 1.3833 0.1018 0.9905 0.9121 0.1139 0.1138 0.1176 0.1141 0.1018 474.1472
0.5 481.0077 0.9956 0.8418 0.1966 0.9887 0.8942 0.1727 0.1727 0.2382 0.1727 0.1966 2076.1783
1.0 1388.6341 0.9955 0.5608 0.2817 0.9922 0.9291 0.2458 0.2458 0.3286 0.2457 0.2816 5357.3082

G: n = 100, p = 4, ρ = 0.95

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 2.1653 0.8868 0.5850 0.3674 0.8885 0.8160 0.3296 0.3305 0.3889 0.3295 0.3647 7.8563
0.5 10.4590 0.8815 1.0933 0.4407 0.8850 0.8041 0.4159 0.4145 0.4628 0.4207 0.4385 39.3817
1.0 18.6198 0.8803 1.3710 0.5459 0.8804 0.8001 0.5348 0.5314 0.5636 0.5456 0.5434 71.2297

H: n = 100, p = 4, ρ = 0.99

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 9.0049 0.9644 0.9785 0.1939 0.9446 0.8615 0.2189 0.2177 0.2028 0.2214 0.1938 33.3718
0.5 45.8357 0.9651 0.9566 0.3079 0.9459 0.8598 0.2934 0.2929 0.3274 0.2943 0.3076 170.3914
1.0 86.2032 0.9675 1.0202 0.4195 0.9430 0.8512 0.4021 0.4017 0.4390 0.4029 0.4191 332.3339

I: n = 100, p = 4, ρ = 0.999

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 94.3318 0.9968 0.4769 0.0794 0.9904 0.9516 0.0852 0.0851 0.0844 0.0853 0.0794 361.6911
0.5 515.7422 0.9966 0.3070 0.2212 0.9914 0.9557 0.1922 0.1922 0.2376 0.1921 0.2212 1909.1391
1.0 882.1237 0.9966 0.4494 0.3515 0.9899 0.9475 0.3215 0.3215 0.3686 0.3214 0.3514 3402.4834

J: n = 100, p = 6, ρ = 0.95

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 2.8249 0.8647 0.5239 0.4654 0.8385 0.6705 0.3832 0.3909 0.5390 0.3692 0.4601 11.1193
0.5 14.2895 0.8642 1.2808 0.4982 0.8394 0.6493 0.4326 0.4364 0.5700 0.4273 0.4938 57.8058
1.0 27.6500 0.8619 1.5735 0.5491 0.8376 0.6499 0.4880 0.4912 0.6176 0.4842 0.5450 113.1446



K: n = 100, p = 6, ρ = 0.99

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 12.6430 0.9665 1.0644 0.2600 0.9363 0.7490 0.2352 0.2350 0.3094 0.2359 0.2594 54.2543
0.5 69.3508 0.9657 1.5355 0.3113 0.9418 0.7584 0.2810 0.2808 0.3681 0.2814 0.3107 284.3854
1.0 133.7324 0.9650 1.6167 0.3825 0.9397 0.7572 0.3481 0.3480 0.4423 0.3484 0.3819 551.2684

L: n = 100, p = 6, ρ = 0.999

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 106.5513 0.9955 1.1515 0.1038 0.9905 0.9214 0.1073 0.1072 0.1225 0.1074 0.1038 447.8673
0.5 552.2347 0.9954 0.7148 0.1864 0.9907 0.9224 0.1640 0.1640 0.2246 0.1640 0.1863 2268.7474
1.0 1108.7436 0.9956 0.6246 0.2960 0.9906 0.9245 0.2567 0.2567 0.3462 0.2566 0.2959 4628.2175

M: n = 150, p = 4, ρ = 0.95

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 2.1744 0.8751 0.6332 0.3407 0.9082 0.8613 0.3105 0.3104 0.3615 0.3120 0.3387 7.7457
0.5 8.7842 0.8620 1.0892 0.4620 0.9025 0.8540 0.4332 0.4320 0.4844 0.4382 0.4592 32.7942
1.0 18.7026 0.8720 1.3276 0.5320 0.9050 0.8534 0.5155 0.5131 0.5512 0.5233 0.5297 71.8151

N: n = 150, p = 4, ρ = 0.99

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 9.0232 0.9622 1.0105 0.1907 0.9521 0.8913 0.2164 0.2153 0.1990 0.2186 0.1906 32.8662
0.5 41.1732 0.9637 0.9941 0.3143 0.9499 0.8815 0.3012 0.3006 0.3340 0.3025 0.3138 156.7651
1.0 75.3489 0.9643 1.0904 0.4411 0.9474 0.8782 0.4257 0.4251 0.4603 0.4270 0.4406 291.9112

O: n = 150, p = 4, ρ = 0.999

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 86.9109 0.9967 0.5220 0.0886 0.9906 0.9547 0.0958 0.0957 0.0936 0.0959 0.0886 338.6129
0.5 478.9288 0.9966 0.3001 0.2150 0.9915 0.9594 0.1842 0.1843 0.2323 0.1842 0.2149 1831.0742
1.0 896.9235 0.9966 0.4209 0.3458 0.9909 0.9561 0.3157 0.3157 0.3628 0.3156 0.3457 3471.8863

P: n = 150, p = 6, ρ = 0.95

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 2.8426 0.8588 0.5603 0.4486 0.8590 0.7396 0.3698 0.3763 0.5215 0.3584 0.4439 10.9617
0.5 14.3225 0.8524 1.3054 0.4855 0.8606 0.7260 0.4214 0.4247 0.5570 0.4168 0.4815 57.1206
1.0 24.6180 0.8573 1.5599 0.5806 0.8555 0.7277 0.5204 0.5247 0.6460 0.5154 0.5757 101.3096

Q: n = 150, p = 6, ρ = 0.99

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 12.2021 0.9651 1.1453 0.2550 0.9396 0.7921 0.2346 0.2343 0.3014 0.2355 0.2545 51.3831
0.5 64.4840 0.9645 1.5561 0.2996 0.9428 0.7912 0.2710 0.2708 0.3567 0.2716 0.2990 272.0730
1.0 132.2975 0.9648 1.6828 0.3974 0.9422 0.7895 0.3639 0.3638 0.4566 0.3643 0.3967 545.3588

R: n = 150, p = 6, ρ = 0.999

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5 OLS

0.1 106.2218 0.9954 1.1887 0.1045 0.9904 0.9269 0.1086 0.1085 0.1235 0.1087 0.1045 444.5699
0.5 527.4235 0.9954 0.6478 0.1903 0.9905 0.9297 0.1638 0.1638 0.2312 0.1637 0.1903 2227.5910
1.0 1061.1549 0.9954 0.6507 0.2898 0.9903 0.9275 0.2544 0.2545 0.3377 0.2544 0.2898 4423.6314



Table 2. Bias values of the estimators for fixed n, p, ρ and different σ2’s

A: n = 50, p = 4, ρ = 0.95

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5

0.1 0.0007 0.8893 0.0367 0.2041 0.8583 0.7345 0.1258 0.1302 0.2346 0.1174 0.2009
0.5 0.0060 0.8986 0.0518 0.2933 0.8508 0.7001 0.1836 0.1901 0.3339 0.1710 0.2889
1.0 0.0036 0.8881 0.0651 0.3592 0.8426 0.6905 0.2328 0.2421 0.4030 0.2149 0.3534

B: n = 150, p = 4, ρ = 0.95

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5

0.1 0.0005 0.8748 0.0396 0.2177 0.9078 0.8611 0.1354 0.1401 0.2495 0.1264 0.2144
0.5 0.0072 0.8610 0.0591 0.3215 0.9017 0.8532 0.2063 0.2149 0.3626 0.1898 0.3159
1.0 0.0076 0.8704 0.0647 0.3603 0.9038 0.8516 0.2334 0.2429 0.4042 0.2151 0.3543

C: n = 100, p = 6, ρ = 0.99

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5

0.1 0.0172 0.9955 0.0022 0.0274 0.9904 0.9198 0.0133 0.0134 0.0457 0.0133 0.0273
0.5 0.1614 0.9954 0.0024 0.0596 0.9907 0.9206 0.0254 0.0254 0.1056 0.0253 0.0596
1.0 0.1643 0.9956 0.0068 0.1173 0.9905 0.9224 0.0555 0.0556 0.1902 0.0553 0.1172

D: n = 100, p = 6, ρ = 0.999

σ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5

0.1 0.0017 0.9665 0.0169 0.1443 0.9354 0.7465 0.0840 0.0851 0.2070 0.0818 0.1434
0.5 0.0136 0.9657 0.0186 0.1759 0.9409 0.7534 0.0988 0.0999 0.2566 0.0968 0.1750
1.0 0.0242 0.9650 0.0190 0.2165 0.9386 0.7503 0.1201 0.1214 0.3129 0.1173 0.2154

Table 3. Bias values of the estimators for fixed p, σ2 and different ρ

A: n = 50, p = 4, σ2 = 0.1

ρ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5

0.95 0.0007 0.8893 0.0367 0.2041 0.8583 0.7345 0.1258 0.1302 0.2346 0.1174 0.2009
0.99 0.0023 0.9681 0.0128 0.0875 0.9316 0.8048 0.0475 0.0480 0.1061 0.0465 0.0871
0.999 0.0004 0.9968 0.0016 0.0188 0.9886 0.9343 0.0083 0.0083 0.0247 0.0082 0.0188

B: n = 50, p = 4, σ2 = 1.0

ρ2 kHK kNAS kK kAD kKM8 kKM12 kAY 1 kAY 2 kAY 3 kAY 4 kAY 5

0.95 0.0036 0.8881 0.0651 0.3592 0.8426 0.6905 0.2328 0.2421 0.4030 0.2149 0.3534
0.99 0.0094 0.9652 0.0221 0.2003 0.9270 0.7805 0.1059 0.1071 0.2410 0.1035 0.1993
0.999 0.9092 0.9967 0.0061 0.1109 0.9902 0.9391 0.0477 0.0478 0.1423 0.0476 0.1109



(a) n=50,ρ=0.95, p=4 (b) n=150,ρ=0.95, p=4

(c) n=50,ρ=0.99, p=4 (d) n=150,ρ=0.99, p=4

(e) n=50,ρ=0.95, p=6 (f) n=150,ρ=0.95, p=6



(g) n=50,ρ=0.999, p=6 (h) n=100,ρ=0.999, p=6

Figure 7.1. Comparison graphs of AMSE Values for selected k’s

Figure 7.2. Bar graphs of different variance values of kAY 2 for differ-
ent p and ρ

(a) n=50, σ2=0.1, p=4 (b) n=50, σ2=1.0, p=4

Figure 7.3. Comparison graphs of bias values with respect to different
correlations for selected k’s



(a) n=100, ρ=0.99, p=6 (b) n=100, ρ=0.999, p=6

Figure 7.4. Comparison graphs of bias values with respect to different
variances for selected k’s

Figure 7.5. Bar graphs of bias values of selected k’s for different p’s
and variances
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