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Abstract

Undoubtedly, the single parameter Pareto distribution is one of the
most attractive distribution in statistics; a power law probability dis-
tribution found in a large number of real-world situations inside and
outside the field of economics. Furthermore, it is usually used as a basis
for excess of loss quotations as it gives a pretty good description of the
random behaviour of large losses. In this paper, we introduce a distri-
bution which can be considered as alternative to the single parameter
Pareto distribution. A comprehensive treatment of its mathematical
properties is considered with relevant emphasis on results concerning
insurance. Additionally, estimation by the method of moments and
maximum likelihood is discussed. Then, an analysis of estimation per-
formance is carried out. Finally, the performance of the model is ex-
amined by using two examples of real claims data.
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1. Introduction

The single parameter Pareto distributions ([2] and [1], among others) has been proved
to be useful as predicting tools in different socioeconomic contexts. In this regard, data
related with income and city size (see [12] and references therein) has been modeled with
Pareto-positive stable distribution. In actuarial settings, the single parameter Pareto
distribution has been largely considered over other probability distributions, apart from
its nice properties, for its appropriateness to model the claim size. When modeling
losses, there is widely concern on the frequencies and sizes of large claims, in particular,
the study of the right tail of the distribution. On this subject, the single parameter
Pareto distribution gives a good description of the random behaviour of large losses.
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Perhaps, one of the most important characteristics of the Pareto distribution is that it
produces a better extrapolation from the observed data when pricing high excess layers,
in situations where there is little or no experience. In this regard, its efficacy dealing
with inflation in claims and with the effect of deductibles and excess-of-loss levels for
reinsurance has been demonstrated. It has also been used to handle risky insurance (see
[16] and [14], among other authors for applications of the Pareto model in rating property
excess-of-loss reinsurance).

In the last decades, a lot of attempts have been made to define new families of pro-
bability distributions (discrete or continuous) as alternative to other well-known models
which could provide more flexibility when modelling data in practice. For the Pareto
case, the Stoppa’s generalized Pareto distribution (see [22]) and the Pareto positive sta-
ble distribution (see [20]) are typical examples of generalizations of the classical Pareto
distribution. Nevertheless they has the disadvantage of adding a parameter to the parent
distribution (the Pareto distribution), therefore, complicating the parameter estimation.
In this paper, a distribution that can be considered as alternative to the single parameter
Pareto distribution is introduced. Besides, a comprehensive treatment of its mathemati-
cal properties is provided. In this sense, expressions for the moments, variance, cumula-
tive distribution function, asymptotic ruin function among other properties are derived.
Estimation is carried out by maximum likelihood and moments methods. Closed-form
expressions has been achieved for both estimators. Moreover, an analysis of the estima-
tor performance is completed, being possible, if desired, to obtain unbiased modifications
of these estimators. Finally, the performance of the model is examined by using two
examples of real claims data. As it can be seen later, the new distribution introduced in
this manuscript produces better fit to data than the Pareto distribution in the examples
considered.

The distribution proposed here can be used as a basis for excess of loss quotations.
Furthermore, it can be a good description of the random behaviour of large losses, in a
similar way as the Pareto distribution does. See for example [18]. In addition to this,
another interesting application of this distribution in the setting of credibility theory is
that it is suitable for premiums calculation. In this sense, new credibility expressions
are obtained when the premium charged to a policyholder is computed on the basis of
his/her own past claims and the accumulated past claims of the corresponding portfolio
of policyholders under weighted squared-error loss function.

The remainder of the paper is organized as follows. In Section 2, the new proposed
distribution is shown, including some of its more relevant properties. In the last part of
this section, results connected with insurance are provided. Next, Section 3 deals with
parameter estimation. Two estimation methods are considered in this paper: moments
method and maximum likelihood estimation. Later in this section, an analysis of esti-
mation performance is carried out for the distribution proposed in this manuscript. In
Section 4 numerical applications by using real insurance data are considered. Then, the
obtained results are compared with those obtained for the classical Pareto distribution.
Finally, some conclusions are given in the last section.

2. The proposed distribution
It is not difficult to observe that the expression
0% log(zx + @)
(x4 a)ot+t
where @ = 1 — a, for ¢ > «, a > 0 and € > 0 is a proper probability density function
(pdf). As it can be easily seen, the parameter o marks a lower bound on the possible
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values that (2.1) can take on. This distribution can be considered a particular case of
the log-gamma distribution ( see [7] and [11])
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whenﬂz%and/\:2,assumingxza,ﬁ>0and)\>0.

The particular case ow = 0 appears in [15]. The first derivative of (2.1) is

d (z) = 0%[1 — (1 +0)log(z + @)
dz’ T (z 4+ @)zt?

from which it is simple verified that f(x) increases in (0, zn,) and decreases in (zm, c0),
where 2., = exp((1+ 0)™') — @ is the unique mode of the distribution. Note that the
mode of the simple Pareto distribution with pdf f(z) = xf"/2""!, = > B, is located
always at (.

Figure 1 shows the pdf of (2.1) for selected values of § and o = 0. As it can be
inferred from this chart that the greater is the value of 6, the narrower is the peak and
with thinner tails. On the other hand, for lower values of § a more rounded peak and
fatter tails are obtained.
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Figure 1. Graphs of the probability density function (2.1) for different

values of parameter § and o = 0. From top todown 8 =5,0=4,0=3
and 0 = 2

The distribution with pdf given in (2.1) can be obtained from a monotonic transfor-
mation of the Gamma(2,0) distribution, as it can be seen in the next result.



2.1. Theorem. Let us assume that'Y follows a Gamma(2,0) distribution with pdf
gy)=0"ye’, y>0,

where 8 > 0. Then the random variable

(2.3) X=¢"—-a

1s distributed according to (2.1) forx > a, « >0 and 6 >0 .

Proof. The proof follows after a simple change of variable. Note that (2.3) is a monotonic
function of Y. O

Simple computations provide the cumulative distribution function

1+ 0 log(x + @)

(2.4) Fa)=1- =80

, T2

Consequently, from (2.4) the survival function is easily derived

(2.5) Pla) = TS

and using (2.5) together with (2.1), the failure rate (hazard rate) function r(z) is given
by

(2.6) r(z) =

Figure 2 displays the hazard rate function of (2.1) for selected values of § and o = 0.

From this chart it can be observed that the higher is the value of 6 the higher is the
value of r(x) for a given z > 0.

Now, by using representation (2.3) and the moments of the Gamma distribution, the
expression for the r-th moment about zero of distribution (2.1) is easily obtained,

ui—i(?)(a)f (0—24—]‘)2’ r=1,2,....

j=0

T >«
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In particular we have

2.7) B(X) = (%0) —a 041,
(2.8) BX?) = ¢ {(2_10)2 o 2_@9)2] 6t 041,042

Therefore, from (2.7) and (2.8) the variance is

1 6?
2-0)2 (1—9)4}’

From (2.7) it can be seen that, for a fixed value of a, the mean increases when 6 < 1
and decreases when 6 > 1; similarly it always increases with «. It is also important to
point out that for § = 1 the mean does not exist. In addition to this, second order moment
around the origin and variance do not exist for § = 2. This is a practical limitation of this
distribution. A similar drawback is shown by the single parameter Pareto distribution.

Furthermore, by using the representation given by (2.3) the following result is obtained

Elog"(X+a)=0""T(r+2), r=12,....

var(X):HQ{( 0+£1,0+2.
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Figure 2. Graphs of the hazard rate function (2.6) for different values
of parameter 6§ and o = 0. From top to down § =5, 6 =4, § = 3 and
0=2.

In particular, we have that
2
(2.9) E(log(X +a)) = 7
In the following, we will assume that X; and X5 are two continuous random variables
distributed according to (2.1) with pdfs given by f(-|a,601) and f(-|a, 02), respectively.
Now, we show that the distribution given in(2.1) can be ordered in terms of the likelihood
ratio order when X; and X2 have the same support. The likelihood ratio order is defined
as follows (see Section 1.C of [21]).

2.2. Definition. Let X; and X3 be continuous random variables with densities fi1 and
f2, respectively, such that

f2 (z)

fi(x)
Then X, is said to be smaller than X5 in the likelihood ratio order (denoted by X1 <rr
Xo).

is non-decreasing over the union of the supports of X7 and Xs.

The likelihood ratio order is stronger than the hazard rate order that is defined as
follows (see Section 1.B of [21]).

2.3. Definition. Let X; and X5 be two random variables with hazard rates r1 and ra,
respectively. Then X; is said to be smaller than X5 in the hazard rate order, denoted by
X1 <ur Xa, if ri(x) > ra2(x) for all z.

The distribution given in (2.1) can be ordered in the following way

10



2.4. Theorem. Let X; and Xz be two continuous random variables distributed according
to (2.1) with pdfs given by f(:|a,601) and f(-|e, 02), respectively. If 61 > 62 then X1 <pr
Xo.

Proof. Firstly, let us observe that the ratio

f(zl|a,b2) 63

h(z) = —F—F"—F+% = =

= Flo,0) ~ %

is non-decreasing if and only if A’ (x) > 0 for z > a.
Simple calculations show that

03 0y
W (@) = g5 (02— 01) (w + @) =7
1

(x4 a)’r 0%

Now, by having into account that 61 > 62 then A’ (z) > 0 for z > « the result
holds. O

As a consequence of this result, we have

2.5. Corollary. Let Xi and X2 be two continuous random variables distributed according
to (2.1) with pdf given by f(-|a,01) and f(-|e, 02), respectively. If 01 > 02 then ri (x) >
ro (x) for all z > a.

Proof. 1t is well-known (see [21]) that

(2.10) X1 <rtr Xo = X; <ggr Xo.

Then, the result follows by combining (2.10) and Definition 2.3. O
2.1. Insurance applications. The integrated tail distribution (also known as equilib-
rium distribution) is an important probability model that often appears in insurance and
many other applied fields. Let F'(z) be the survival function given in (2.5), then the inte-
grated tail distribution of F'(x) (see for example [24]) is given by F(x) = ﬁ Iy F(y) dy.
For the distribution proposed in this work, as it is proven in the following result, the in-

tegrated tail distribution can be obtained as a closed-form expression.

2.6. Proposition. The integrated tail distribution of the cumulative distribution function
(2.4) is given by

B 1 0pn 1 e _
Fi@) = e [a (20 —1—6(1 - §)loga)
(2.11) — (@+a@) (20 -1-0(1-0) log(x—|—6z))].
Proof. By using (2.5) and (2.7) and after some algebra, the result follows. O

The failure rate of the integrated tail distribution, which is given by v (z) = F(z)/ [ F(y) dy
is also obtained in a closed-form. Furthermore, the reciprocal of () is the mean residual
life, which is given by

e(r) = EX-—z|X>z)= F'(lac) /:0 F(y)dy
_z4+a 0—(1-0)(1+0log(x+a))
(2.12) T (1-0)2 1+ 0log(z + &) '

It is noted that, unlike the classical Pareto distribution this expression is not a linear
function of x.

Under the classical model (see [19] and [24]) and assuming a positive security loading,
p, for the claim size distributions with regularly varying tails we have that, by using



(2.11), it is possible to obtain an approximation of the probability of ruin, ¥(u), when
u — 0o. In this case the asymptotic approximations of the ruin function is given by

Vo~ SR, u—os,

where Fr(u) =1 — Fr(u).

The use of heavy right-tailed distribution is of vital importance in general insurance.
In this regard, Pareto and log-normal distributions have been employed to model losses
in motor third liability insurance, fire insurance or catastrophe insurance. It is already
known that any probability distribution, that is specified through its cumulative distri-
bution function F(z) on the real line, is heavy right-tailed if and only if for every ¢ > 0,
e'”F(z) has an infinite limit as = tends to infinity. On this particular subject, (2.1)
decays to zero slower than any exponential distribution and it is long-tailed since for any
fixed t > 0 (see [18]) it is verified that

F(x+1t)~ F(z), x— oo.
Therefore, as a long-tailed distribution is also heavy right-tailed, the distribution
introduced in this manuscript is also heavy right-tailed.
Another important issue in extreme value theory is the regular variation (see [3] and
[18]). This concept is formalized in the following definition.

2.7. Definition. A distribution function is called regular varying at infinity with index
—gif

lim F_(tx) = tiﬁ,

where the parameter 8 > 0 is called the tail index.

Next theorem establishes that the cumulative distribution function given in (2.4) is a
regular variation Lebesgue measure.

2.8. Theorem. The pdf given in (2.1) is a distribution with regularly varying tails.

Proof. Let us firstly consider the survival function given in (2.5). Then, after simple
computations it is obtained that

F
lim 202) _ -0
T — 00 F(x)
and having into account that § > 0 the theorem hence. O

The pdf given in (2.1) can also be applied in rating excess-of-loss reinsurance as it can
be seen in the next result.

2.9. Proposition. Let X be a random variable denoting the individual claim size taking
values only for individual claims greater than d. Let us also assumed that X follows the
pdf (2.1), then the expected cost per claim to the reinsurance layer when the losses excess
of m subject to a maximum of l is given by
1 -
E[min(l,max(0, X —m))] = =0z [(m +d)%20 -1
— (1 —0)log(m+d)) — (I +m+d)'°
(20 —1—6(1 —0)log(l +m+d))] .

X



Proof. The result follows by having into account that

m—+1 _
E[min(l,max(0, X —m))] = / (x —m)f(x)de +1F(m+1),

m

from which we get the result after some algebra. O

The following results show that both, the inverse Gaussian distribution and the gamma
distribution are conjugate with respect to the distribution proposed in this work.

2.10. Proposition. Let X;, i =1,2,..., N independent and identically distributed ran-
dom variables following the pdf (2.1). Let us suppose that 6 follows a prior inverse Gauss-

. T . . —3/2 1(9 ¢
ian distribution m(0) with parameters p and ¢, i.e. w(0) < 07>/% exp [—5 (FG + g)].
Then the posterior distribution of 0 given the sample information (Xu,...,Xn) is a gen-
eralized inverse Gaussian distribution GIG(X*, u*, ¢*), where

1
A" = 2N-—=<
27

1/2
wo= p ¢ ;
¢+ 2u2 Zil log(X; + &)
" = @

Proof. The result follows after some computations by applying Bayes’ Theorem and
arranging parameters. (]

2.11. Proposition. Let X;, i =1,2,..., N independent and identically distributed ran-
dom variables following the pdf (2.1). Let us suppose that 6 follows a prior gamma distri-
bution 7(0) with a shape parameter X and a scale parameter o, i.e. w(0) < 0*~! exp(—c8).
Then the posterior distribution of 0 given the sample information (X1, ..., Xn) is again a
gamma distribution with shape parameter A+ 2N and scale parameter o + Zivzl log(X; +
@).

Proof. Again, the result follows after some algebra by using Bayes’ Theorem and arran-
ging parameters. O

This result can be used in credibility theory, where the premium charged to a poli-
cyholder is computed on the basis of his/her own past claims and the accumulated past
claims of the corresponding portfolio of policyholders. In order to obtain an appropri-
ate expression for this quantity, different approaches within Bayesian statistical decision
theory have been proposed in the actuarial literature. In this sense, the following loss
function is used to calculate an appropriate credibility for the pdf (2.1)

(2.13) L(z,a) = [log(z 4+ @) — a)”.

This is a special case of the weighted squared-error loss function L(z,a) = g(z)(h(z)—
a)? considered by [9]. For a comprehensive study of credibility theory see also [9] and
[10]. Next result shows the risk, collective and Bayes premium under the loss given in
(2.13).

2.12. Proposition. Let us assumed that the claim size follows the pdf (2.1) and that 0
follows a prior gamma distribution 7(0) with a shape parameter A and a scale parameter
o. Let us also suppose that the practitioner compute the risk premium by using the loss



function (2.18) and the collective and Bayes premium by using the net premium principle,
i.e. L(z,a) = (x — a)?, then the risk, collective and Bayes premium are given by

2
PR = 57
(2.14) P = AQfl, A> 1,
o15) . 2 [0+ LN, log(X: + )
. - ’

A+2N -1

respectively.

Proof. The risk premium is obtained in the following way

oo

Pp = arg min/ [log(z 4+ @) — a)’ f(z|e, 0) de,

o

from which it is not difficult to derive that a = Pr = E[log(z + &)] = 2.
Now, the collective premium is computed as

Pg:/ %71(0) do,
0

where 7(0) o« 0*~! exp(—00), then it is directly obtained (2.14). Next, the Bayes pre-
mium is computed by simply replacing the parameter A and ¢ by the updated parameters
A+2N and o + 3N log(X; + @). O

Now, it is proven that the net Bayes premium in (2.15) can be written as a credibility
expression.

2.13. Corollary. The net Bayes premium given in (2.15) is a credibility expression and
can be rewritten as

ZN g(X1, . ,XN) + (1 — ZN)Pc,
where Zn = N/(N + K) is the credibility factor, K = (A —1)/2 and g(X1,...,Xn) =
(1/N) 3L, log(Xi + a).
Proof. After straightforward computations the result is obtained. O

Furthermore, the credibility factor in Corollary 2.13 is similar to the classical formula
given by [6] that has been calculated for different pairs of likelihood-prior distributions.
See for example [8] and [9].

2.14. Corollary. It is verified that K = E[var(log(xz + &)|0)]/var[E(log(z + &)|0)], i.e.
the credibility factor is of the same form as the Bihlmann credibility factor.

Proof. The result follows again after some algebra. O

3. Estimation

In the following, we will outline two classical parameter estimation schemes, the mo-
ments method and the maximum likelihood method (ML). For that reason, let us assume

that {z1,22,...,2,} is a random sample obtained from distribution (2.1). Without loss
of generality @ = min{z;}, ¢ = 1,2,...,n, can be assumed to maximize the likelihood
function as x; > « for each i = 1,2,...,n. In other words, the parameter « is chosen to

be equal to the smallest value of z;, i =1,2,...,n.



3.1. Moments method. The moment estimator of § can be obtained by setting equal
the theoretical mean obtained from (2.7) with the corresponding sample mean =
1/n 3% | ;. This simple equation is obtained

(3.1) Qf9r8=%

where & is the estimator of « given by @ = min{z;}, i = 1,2,...,n. From (3.1) two
possible solutions are found corresponding to the values given by

VI+a
Vi+atl

The moment estimator of 6 can be also obtained directly from Table 1, where the
exact value of the mean is displayed for different values of the parameter 6, given that

« is known. Then, a numerical interpolation method can be used to derive, in an exact
form, the estimator of 6.

0=

Table 1. Mean of the distribution for different values of 6

0.6 0.8 2 4 6 8 10
1.254+a 15+a 3.004+a 077+a 044+a 0304+a 023+«

Note also that it could be more convenient to use equation (2.9) to obtain the estimator
of 0 given by

~ I N
2 0= T = — ! i +a),
(32) S = Yl + )

since expression (3.2) is non-negative.

3.2. Maximum likelihood estimation. Parameter estimation by the moments method
is simple; nevertheless, as not the whole set of observations is used, it tends to behave
poorly. Anyhow, the moment estimate can be used as starting value to calculate max-
imum likelihood estimator. For that reason, let us assume that {z1,z2,...,z,} is a
random sample selected from the distribution (2.1). Then, the likelihood function is
given by

~ 6%lo Ti +a
71,”) — H g( )

W, 0< o S min{a}i}, 0> O,

L(a, 0|x1, 2, . ..
i=1
from which the log-likelihood function results

n

2
log L(c, 0|z1, 22, ..., 20n) = ?n — ;log(log(mi +a))
(3.3) — (04 1)log(z; + &).

By setting the derivative of (3.3) equal to zero and, after some algebra, the maximum
likelihood estimator (unique solution) of the parameter 6 is given by
2n
S, log(z: 1 a)
82¢4(9)

> =
o0 0—8

given by (3.4) corresponds to a maximum. From this expression, the asymptotic variance

(3.4) 6=

Besides, the second partial derivative is —%—Z < 0; therefore, the solution

of the maximum likelihood estimator 67, given by ) /v/2n, can be obtained.



3.3. Estimator performance. In this subsection, a simple performance analysis of the
estimator obtained is developed. The following result shows that the estimator of 6 is
positively biased.

3.1. Theorem. The mazimum likelihood estimator 6 of 0 is positively biased.

Proof. Let us assume that 6 = g(T) where g(T) = 2n/T, being T = >_7_, log(a + T5).
Now, observe that T > 0 and ¢"(T) = 4n/T® > 0. Therefore, g(T) is strictly convex.
Thus, by Jensen’s inequality we have that E(g(T")) > g(E(T)). Now

9(B(T)) = g(E(Y_log(a+T))) = g (%’”) —0.

Therefore we have that E(6) > 6 and hence the theorem. d

3.2. Theorem. The unique mazimum likelihood estimator ) of 0 is consistent and
asymptotically normal and therefore

V(@ —6) -4 N(0,6/v/2n).

Proof. The pdf (2.1) satisfies the regularity conditions (see [13], p. 449) under which
the unique maximum likelihood estimator 0 of 0 is consistent and asymptotically normal.
These conditions are simply verified in the following way. Firstly, the parameter space
(0,00) is a subset of the real line and the range of x is independent of . Then, it is

not difficult to observe that E(m%g@)) = 0. Now, since i

502| ~ < 0, the Fisher’s
0=0
information is positive. Finally, by taking M (x) = 4n?/6°, we have that “33(;0# <

M (z), being obviously E(M(zx)) < oco.

Moreover, by using Corollary 3.11 in [13], p. 450, it may be concluded that the
maximum likelihood estimate 8 of 0 is asymptotically efficient.

In addition to this, as a consequence of Theorem 3.2, we have that the large-sample
100(1 — a)% confidence interval for 6 is given by 0+ Za/gé\/\/%7 where 2z, is the 1 —a/2
percentile of the standard normal distribution.

We also observe that T follows a gamma distribution with parameters 2n and 6.
Therefore, it is obtained that

~ 2n6
E(0) =1’
22
var(6) An’0

(2n —1)2(2n —2)°
Then, the bias of the estimator 0 is given by 6/(2n — 1) as it can be easily seen.

Furthermore, the estimate 0= % = 272’;15 is unbiased and it satisfies that var(g)\) =
92

2n—2

< var(@). Thus, 0 is a better estimator of the parameter 6 than 0.

In Table 2, the variance of the two estimators 9 and @ for different values of 6 and
sample size n is compared.



Table 2. Comparison of the variance of 9 and 0 and bias of 6

n wvar(f) Bias var(6) n wvar(f) Bias var(0)

5 0.1543 0.1111 0.1250 5 0.6170 0.2222 0.5000
10 0.0616 0.0526 0.0555 10 0.2460 0.1053 0.2222
15 0.0382 0.0344 0.0357 15 0.1529 0.0690 0.1429
20 0.0277 0.0256 0.0263 20 0.1107 0.0513 0.1053
25 0.0217 0.0204 0.0208 25 0.0868 0.0408 0.0833
50 0.0104 0.0101 0.0102 50 0.0416 0.0202 0.0408
100 0.0051 0.0050 0.0050 100 0.0204 0.0100 0.0202

0=3 0=4

~ ~
-~ = ~ =~

n wvar(f) Bias var(6) n wvar(f) Bias var(0)

5 1.3890 0.3333 1.1250 5 2.4700 0.4444 2.0000
10 0.5540 0.1579 0.5000 10 0.9850 0.2105 0.8890
15 0.3440 0.1034 0.3214 15 0.6120 0.1379 0.5710
20 0.2490 0.0769 0.2368 20 0.4430 0.1026 0.4211
25 0.1952 0.0612 0.1875 25 0.3470 0.0816 0.3333
50 0.0937 0.0303 0.0918 50 0.1666 0.0404 0.1633
100 0.0459 0.0150 0.0454 100 0.0816 0.0201 0.0808

4. Numerical experiments

In this section, the versatility of (2.1), as compared with the classical Pareto distri-
bution, is tested by analyzing two different sets of continuous actuarial data. Later, the
distribution introduced in this article is used together with other eight continuous pro-
bability distributions with positive support to fit a third set of loss data. At the view
of the obtained results, the distribution introduced in this manuscript outperforms the
performance of the classical Pareto distribution in the three examples considered.

The first set of data describes losses due to wind-related catastrophes that occurred in
1977. The losses were recorded to the nearest $1,000,000; data also include 40 rounded
loss amounts of $2,000,000 or more. The data set appears in Table 6 in the Appendix
section. These data have been taken from [11] (p.64), where they are discussed in detail.
They have also been considered by [4], [5] and [17].

As [5] and [17] have pointed out, although these data are assumed to arise from a
continuous distribution, they were discretized by grouping. Then, by using the method
proposed by [5] and [17], they are de-grouped in the following way

k k
=(1—= _ =1,2,...
Tk ( m+1)a+m+1b’ k J2,...,m,

where (a,b) contains m groups sample observations.

The second set of data analyzed in this section comes from the statistics of the French
insurance union (see [25]). It displays all business interruption claims due to fire that are
greater than $1,600. Data comprise the year 1988 and claims are located in France. All
the claims are valued in French francs. This set of data is shown in Table 7.

We have fitted the new distribution given in (2.1) and the classical Pareto distribution
to the two data sets. Parameters have been estimated by the method of maximum likeli-
hood. Table 3 provides parameter estimates together with standard errors (in brackets)
computed by inverting the approximations of the observed information matrices. The



maximum of the log-likelihood (£mae) and Akaike’s Information Criteria (AIC) have been
firstly considered as measures of goodness-of-fit. From the results obtained, for the first
set of data (Data set 1) the new distribution (New) gives a better fit to data based on
these measures. The threshold considered has been 1.5, i.e. [ = 1.5 for the Pareto

distribution and o = 1.5 for the new distribution. The estimator 8 described above is
1.259 with a corresponding AIC value of 252.534, higher than the one obtained via the
maximum likelihood estimator. Again, for the second set of data (Data set 2) the new
model yields better fit with a lower AIC value.

Table 3. Estimates, standard errors, maximum of the likelihood #y,q4
and AIC for Data Set 1 and Data Set 2

Data set 1 Data set 2
Pareto New Pareto New
r 0.764 - 0.465 -
(0.121) (0.003)
0 - 1.275 - 0.783
(0.142) (0.142)

lmar —119.333 —118.779 -96782.70 —-92141.70
AIC  240.665  239.559 193567 184285

In the following three goodness-of-fit measures for individual data based on the empir-
ical distribution function such as the Kolmogorov-Smirnov (KS) test, Cramer von Mises
test and the Anderson-Darling (AD) test (see [5] and [17] for details) have been applied to
both Pareto and New. For that reason, only Data set 1 has been considered. As it can be
observed in Table 6, the three tests support the suitability of the new distribution when
o = 1.5 to explain this set of data with goodness-of-fit values 0.1044 (KS), 0.0933 (CvM)
and 0.7908 (AD). The first two values slightly improved the ones obtained for the Pareto
distribution (with 8 = 1.5), 0.1072 (KS), 0.1107 (CvM) and 0.7336 (AD) respectively.
These results are confirmed by their corresponding p-values. They have been calculated
via Monte Carlo methods using a simulation size of 100000 repetitions.

Similarly, let go = Pr(X < z0) = F(x0), 0 < ¢ < 1, be the values of go given the
corresponding zo. The values of zg, given by zo = F~'(qo), can be easily computed
by having into account that zo = exp (G_l(q0;2, 1/9)) — @&, where G7!(-) represents
the inverse of the cumulative distribution function of the gamma distribution. It is not
possible to obtain a closed-form expression for these quantiles. Nevertheless, by using the
command from the Mathematica package InverseCDF [GammaDistribution[2,1/60,z0],
they can be easily obtained. Then, quantiles for the first example were computed and,
next, those values were used to plot quantile-quantile (Q-Q) plots. This chart consists
of plots of the observed quantiles against theoretical quantiles for each one of the fitted
models. In Figure 3, the Q-Q plots against the new model (righ-hand side) and classical
Pareto distribution (left-hand side) are displayed for the first set of data. As usual,
estimated quantiles are plotted on the vertical axis and ordered observations on the
horizontal axis, where Fﬁl(q) is the estimated ¢-th quantile and ¢ = n%_l with j =
1,...,n. According to this chart, it can be observed that the new model is a better
reasonable choice for the given data.



Table 4. Goodness-of-fist tests and their corresponding p-values for
fitted Pareto and New models in Data set 1

Pareto  New
KS 0.1072 0.1044
p-value 0.7089 0.7388
CvM 0.1107 0.0933
p-value 0.5375 0.6209
AD 0.7336  0.7908
p-value 0.5288 0.4876
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Figure 3. Sample and theoretical quantiles for Pareto and the new
distribution for the first set of data.

Finally, the likelihood ratio test proposed by Vuong (see [23]) will be considered as a
tool for to model diagnostic. The test statistic is

T = (Kf(gl) *%(52)),

1
wy/n

s 1O rai\]” T1es, (1]’
w = — lo e~ — | — lo —_—=
nZ[ g(a(xiwaﬂ [nz g(g(wiwa))]

and f and g represent the probability density function of the new distribution and Pareto
distributions, respectively. Under the null hypotheses, Hy : E[éf(é\l) — ég(gg)] =0,T
is asymptotically normal distributed. It is generally accepted that rejection region for
this test in favor of the alternative hypothesis occurs, at the 5% significance level, when
T > 1.96.

For Data set 1 the value of the statistic T is 0.247, and therefore, no difference between
the two model exists, whereas for Data set 2, as T' = 496.951 > 1.96, the null hypothesis
is rejected, and hence the new model is preferable.

where



Now, the log-gamma distribution given in (2.2) is used to model Data set 1. The
likelihood function is maximized at 3 = 0.964 and A = 1.626. We are interested, by
means of the likelihood ratio test for nested models, in determining whether the new
model introduced in this manuscript is suitable for the population that produced this
set of data. In this regard, we could formulate the following test of hypothesis Hy :
XA =2vs. Hy : XA # 2 The test statistic is T = 2 (£}, — {24s) Where £' and £2
represent the maximum of the log-likelihood function for the log-gamma and new model
respectively. This statistic follows a chi-square distribution with degrees of freedom equal
to the number of free parameters under the alternative hypothesis. For the example
considered the test statistic is T' = 2 (—118.2344-118.776) = 1.084, it follows a chi-square
distribution with 1 degree of freedom. Then, at the 5% significance level, as 1.084 < 3.841
the null hypothesis is not rejected and the smaller model (New) is preferable at this
significance level, the result is confirmed by the p-value (0.2978).

In the following, a final example (Data set 3) is considered to illustrate the value of the
new distribution introduced in this manuscript. It deals with the set of Danish data on
2,492 fire insurance losses in Danish kroner (DKr) from the years 1980 to 1990, inclusive
and adjusted to reflect 1985 values. This data set may be found in the “SMPracticals"
add-on package for R, available from the CRAN website http://cran.r-project.org/.
In order to explain the claim amount distribution given in this example, several proba-
bility laws have been used to model this set of data. They are listed in Table 5. For
each distribution it is provided parameter estimates together with their corresponding
standard errors (S.E.). Parameter estimation for the models considered was completed
by the method of maximum likelihood. Two of the previously considered measures of
goodness-of-fit have been used in this example, the maximum of the log-likelihood (€maz)
and the AIC. It is important to point out that the latter measure adjusts for the num-
ber of parameters in the distribution and it allows models with different numbers of
parameters to be more fairly compared. The £,4, and AIC results show that the new
model introduced here provides a better fit to data than do the Pareto, log-normal, In-
verse Gaussian, Weibull, Gamma and Lomax distribution. However, as expected, the
log-gamma distribution outperforms the new distribution. This result is confirmed by
the p-value (< 0.0001) associated with the likelihood ratio test.

5. Concluding remarks

In this paper, a continuous probability distribution function with positive support
suitable for fitting insurance data has been introduced. The distribution, that arises
from a monotonic transformation of the classical Gamma distribution, can be considered
a particular case of the log-gamma distribution. This new development, which has a
promising approach for data modeling in actuarial field, may be very useful for prac-
titioners who handles large claims. For that reason, it can be deemed as alternative
to the classical Pareto distribution. Besides, an extensive analysis of its mathematical
properties has been provided. In this regard, this new approach allows to compute new
credibility expressions when the premium charged to a policyholder is computed on the
basis of past claims and the accumulated past claims of the corresponding portfolio of
policyholders under weighted squared-error loss function.
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Table 5. Esimated values of fitted values, standard errors, maximum
of the log-likelihood and AIC for the Danish Fire Claims Data (Data
set 3).

Distribution Parameter MLEs | S.E. lmaz AIC
Pareto r = 0.546 0.011 | —=5675.11 | 11352.2
New 0=1.971 0.028 | —4425.78 | 8853.57
Log-normal u=0.672 0.015 | -4433.89 | 8871.78
o =0.732 0.010
Inverse Gaussian u=3.063 0.058 | —4516.31 | 9036.61
o =3.417 0.097
Weibull = 0.948 0.011 | —5270.47 | 10544.9
o =2.953 0.066
Gamma = 1.258 0.032 | —=5243.03 | 10490.1
o =2435 0.076
Lomax a = 5.169 0.423 | —=5051.91 | 10107.8
X = 11.900 1.127
Log-gamma A =3.917 0.177 | —4173.79 | 8351.57
B =0.259 0.006
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Appendix

Table 6. Data set 1. Losses due to wind-related catastrophes in the
U.S. (millions of dollars) recorded in 1977. (See [11])

2 2 2 2 2 2 2 2 2 2
2 2 3 3 3 3 4 4 4 5
5 5 5 6 6 6 6 8 8 9
15 17 22 23 24 24 25 27 32 43

Table 7. Data set 2. 1988 size distribution data (in millions of francs)
for French firms. (See [25])

Size Average Number of
classes sizes firms insured
Less than 4 n.a. 2612
4-7 5.7 6783
7-12 9.4 5854
12-25 17.3 5063
25-50 34.7 2273
50-100 70.6 1094
100-200 138.2 514
200-500 304.6 311
500-1000 708.3 100
1000-2000 1216.4 49
2000-5000 3085.3 34

Over 5000 10561 16




