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Abstract: Performance evaluation functions as an essential tool for decision 

makers in the field of measuring and assessing the performance under the 

multiple evaluation criteria aspect of the systems such as management, 

economy, and education system. Besides, academic performance evaluation 

is one of the critical issues in higher institution of learning. Even though the 

academic evaluation criteria are inherently dependent, most of the 

traditional evaluation methods take no account of the dependency. 

Currently, the discrete Choquet integral can be proposed as a useful and 

effective aggregation operator due to being capable of considering the 

interactions among the evaluation criteria. In this paper, it is aimed to solve 

an academic performance evaluation problem of students in a university in 

Turkey using the discrete Choquet integral with the complexity-based 

method and the entropy-based method. Moreover, the k-means method, 

which has been widely used for evaluating students’ performance over 50 

years, is used to compare the effectiveness and the success of two different 

frameworks based on discrete Choquet integral in the robustness check. Our 

results indicate that the entropy-based Choquet integral outperforms the 

complexity-based Choquet and k-means method in most of the cases. 

1. INTRODUCTION 

In recent years, performance evaluation plays an important role due to the lack of operational 

tools provided objective information in the managerial, educational, and economic areas. 

Therefore, performance evaluation can be seen as a tool developed for determining whether the 

wide-ranging set of evaluation criteria is met in the associated areas. Conversely, academic 

performance evaluation is one of the critical issues in higher institution of learning. Based on 

this critical issue, many traditional evaluation techniques, which are mainly based on the 

weighted arithmetic mean, have been widely used, but these techniques only consider situations 

where all the evaluation criteria are independent. Contrary to the weighted arithmetic mean, the 

Choquet integral is an appropriate substitute that allows to capture dependency among 

evaluation criteria (Marichal & Roubens, 2000). The Choquet integral introduced by Choquet 
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is an aggregation operator that is extensively employed in quantitative problems such as multi-

criteria and multi-objective optimization problems, economics problems, and multi-regression 

problems, etc. (Choquet 1954; Cui & Li 2008; Angilella et al., 2017). Moreover, the Choquet 

integral provides an indirect method that reflects the relative importance of evaluation criteria, 

dependency among them, and their ordered positions in these problems (Angilella et al., 2015; 

Xu 2010).  

Early 2000s, the data mining techniques have been used in the educational area and Educational 

Data Mining (EDM) has emerged (Baker & Yacef 2009; Peña-Ayala, 2014). In recent years, 

the tools of the EDM are widely used with educational data (Slater et al., 2017). The new 

operational tools that serve accountability policies have emerged (Huber & Skedsmo 2016). 

However, the research in educational data mining have generated the need for rethinking of 

these new operational tools in handling dependent evaluation criteria. Besides, it is established 

that more research is needed to specify educational goals for a valid evaluation of students’ 

skills (Herde et al., 2016). In recent years, Shieh, Wu and Liu (2009) proposed discrete Choquet 

integral with a complexity-based method to evaluate students’ performance where the discrete 

Choquet integral is an adequate aggregation operator which takes the interactions into account. 

Chang, Liu, Tseng and Chang (2009) found out the poor performance of the traditional 

regression models in the evaluation of the students’ performance when there are interactions 

among the attributes with using a real data set from a junior high school; and then showed that 

multiple-mutual information based Choquet integral regression models provide better 

performance while comparing the joint entropy based and complexity based Choquet integral. 

In another study, Wang, Nian, Chu and Shi (2012) used the nonlinear multi-regression based 

on the Choquet integral in order to evaluate the final grade of the students considering previous 

records such as scores of tests, the average score of quizzes, the number of absent class meeting 

and the number of incomplete homework as interactive predictive attributes. Branke, Correnre, 

Greco, Slowinski and Zielniewicz (2016) used Choquet integral as a preference model and 

suggested an interactive multiobjective evolutionary algorithm. 

The discrete Choquet integral has been newly started to be preferred by the researchers due to 

their success in terms of considering the evaluation criteria dependency. The method is an 

important kind of non-additive integrals (Wang & Ha 2008), and nowadays its theory is applied 

by the authors in decision making problems (Grabisch, 1996). Nevertheless, we encountered 

that there is still a limited number of studies in this context. Only the mentioned studies take 

the interaction among criteria into account in the literature of academic performance evaluation. 

Therefore, the purpose of this study is to use various discretization methods and the discrete 

Choquet integral in order to provide realistic evaluation in educational system. More precisely, 

the academic performance of students from a university in Turkey are evaluated employing 

both the entropy-based and the complexity-based discrete Choquet integral and the k-means 

method. Thereafter, the effectiveness and success of the different discretization techniques are 

compared, and the model evaluation of these different methods is carried out. The steps of the 

present analysis are summarized in Figure 1.  

In discretization process, a nonoverlapping partition of a continuous domain is obtained. For 

this aim, first of all continuous attributes are sorted and then the number of intervals are defined. 

For example, if there will be k intervals then there will be k-1 split points. Thus, a researcher 

actually defines intervals by deciding on the place of split points. Thereafter, all continuous 

attributes falling into the same interval are automatically mapped to the same categorical value. 

Hence, the key task is finding meaningful intervals in discretization (Kononenko and Kukar 

2007). The equal width interval methods divide the continuous data into the categorical data by 

using user specified number of intervals. In case of “equal threshold” of the equal width interval 

methods, if there are 𝑛𝑥1 vectors consisting of three continuous variables, i.e. X, Y and Z, the 
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data matrix is obtained by assigning the same threshold value to all of them. On the contrary, 

in case of “not equal threshold”, the data matrix was obtained by assigning a different threshold 

for X, Y and Z. Then the entropy and complexity based methods are applied to this matrix. The 

results of these methods are intermingled with the discrete Choquet integral.  

 

 

Figure 1. Overview of the discretization methods 
 

Besides, the k-means method is used to compare the effectiveness and the success of two 

different frameworks based on discrete Choquet integral in the robustness check. Regardless of 

the fact that the method was presented many years ago, it is one of the most widespread 

classification algorithms and widely used for evaluating students’ performance in educational 

data mining (Veeramuthu et al., 2014; Jain, 2010). For this reason, the k-means method is not 

explained technically, but its results in the robustness check is presented. 

In this study, the aim is to provide a sufficient and comprehensible background on the discrete 

Choquet integral method, thus the empirical analysis of the study is exemplified step by step. It 

is believed that a reader who is even unfamiliar to the Choquet integral methodology can redo 

the present analyses following the steps which are explained thoroughly in the main text.  The 

rest of this paper is organized as follows. Section 2, a brief introduction of the the discretization 

techniques, outline of the the fuzzy measure, and the discrete Choquet integrals with entropy-

based and complexity-based constructs are presented. The research findings and the robustness 

check results are presented and discussed in Section 3. Finally, Section 4 concludes the study. 

2. METHOD 

2.1. Discretization 

The evaluation of the academic performance can be considered as a multi-criteria decision 

making (MCDM) problem. In these problem refers to the evolution of a partition matrix of a 

data set, and describing the component of a data set from the most preferred alternatives to the 

least preferred alternatives (Zopounidis & Doumpos, 2002). In many real-life decision making 

problems that have multi criteria, it is important to preprocess data to effectively apply the 

algorithms (Kononenko et al., 2007).  

Preprocessing the data has a number of steps such as data transformation, cleaning, and data 

reduction (Pyle, 1999). Currently, discretization is one of the most popular reduction techniques 

(Garcia et al., 2013). The aim of discretization is to transform continuous attributes which take 

infinitely many values into categorical attributes and which are significantly reduced subset of 

discrete values to make the representation of information easier and to learn from the data more 

accurately and fast (Liu et al., 2002). The discretization methods are summarized in Table 1 

(Dougherty et al.,1995).  
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Entropy-based Choquet integral
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Detailed review on the discretization methods can be found in Garcia et al., (2013) and Liu et 

al., (2002). The main separation between discretization methods is whether the class 

information is employed or not. In the supervised discretization, the class information is 

considered in the classification but not in unsupervised discretization. Another distinction 

between discretization methods is global versus local discretization. Global discretization 

methods use the complete instance space to discretize whereas local discretization methods use 

only a region of the instance space (Chmielewski & Grzymala-Busse 1996).  

The basic unsupervised methods, equal frequency and equal width, do not perform well when 

there are outliers in the data and when continuous attributes do not follow the uniform 

distribution (Tan et al., 2005; Catlett, 1991). To deal with these shortcomings, supervised 

discretization methods have been developed and class information is used to establish the 

appropriate intervals. There are not as many unsupervised methods as supervised methods, that 

may be related to the fact that discretization is usually related with the classification task. 

However, if the class information is not available, only unsupervised methods can be used.  

Table 1. Summary of discretization methods 

 Global Local 

Supervised 

1RD 

Adaptive Quantizers 

Chi Merge (Kerber) 

D-2 (Catlett) 

Fayyad and Irani / Ting 

Supervised MCC 

Predictive Value Max. 

Vector Quantization 

Hierarchical Maximum Entropy 

Fayyad and Irani 

C4.5 

Unsupervised 

Equal width interval 

Equal frequency interval 

Unsupervised MCC 

k-means clustering 

 

The unsupervised discretization methods can be regarded as sorting problems or separating 

problems that distinguish the probability occurrences from a mixing of probability laws 

(Potzelberger & Felsenstein 1993). However, in these methods, the aggregation operators are 

needed for the fusion of several input values into a single output value (Calvo et al., 2002). In 

this respect, the discrete Choquet integral is a suitable aggregation operator by taking into the 

dependency among criteria account (Wen et al., 2016). Besides, the Choquet integral is 

remarkable in terms of modeling specific interactions of such a broad spectrum of topics 

including education, health, living conditions (Kasparian & Rolland 2012).  

2.2. Fuzzy measure and the discrete Choquet integral 

The definitions of fuzzy measures and Choquet integral are as follows (Shieh et al., 2009):  

Definition 1. Let N be a finite set of criteria and 𝑃(𝑁) be the power set of N. A discrete fuzzy 

measure (𝜇) on N is a set function 𝜇: 2𝑁 → [0,1] which satisfies the following axioms. Besides, 

∀𝑆 ⊆ 𝑁, 𝜇(𝑆) can be explained as the weight of the coalition S.  

 

(1)  𝜇(𝜙) = 0, 𝜇(𝑁) = 1 (boundary condition) 

(2)  𝐴 ⊆ 𝐵 ⟹ 𝜇(𝐴) ≤ 𝜇(𝐵), 𝐴, 𝐵 ∈ 𝑃(𝑁) (monotonicity) 

 

Definition 2. Let 𝜇 be a fuzzy measure on 𝑁 = {1, 2, … , 𝑛}. The discrete Choquet integral of x 

in connection with 𝜇 is defined as: 
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𝐶𝑣 = ∑ 𝑥(𝑖)[𝜇(𝐴(𝑖)) − 𝜇(𝐴(𝑖+1))]

𝑛

𝑖=1

, (1) 

 

where (.) implies a permutation on N such that 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛). Additionally,  𝐴(𝑖) =

{(𝑖), (𝑖 + 1), … , (𝑛)} and 𝐴(𝑛+1) = 𝜙.  

 

There is a need for fuzzy measure to calculate the discrete Choquet integral. In this paper, the 

complexity based and the entropy based fuzzy measure are qualified to be fuzzy measures. The 

detailed definition of the measures which needs to gratify the fuzzy measure axioms, is given 

below:  

 

Definition 3. The complexity C of a discrete random variable N is defined as the function which 

counts the number of different forms in N. 𝐶1, is defined as equation (2). ∀𝑆 ⊆ 𝑁, to calculate 

the complexity of the subsets of criteria of N. Clearly, 𝐶1(𝜙) = 0 and if 𝐴 ⊆ 𝐵 ⟹ 𝐶1(𝐴) ≤
𝐶1(𝐵), 𝐴, 𝐵 ∈ 𝑁. That is 𝐶1, is a fuzzy measure. 

 

𝐶1(𝑆) =
𝐶(𝑆)

𝐶(𝑁)
, (2) 

 

Definition 4. Let A be a discrete random variable and 𝑝𝐴 be the probability of A, then the entropy 

of A is defined as: 

 

ℎ(𝐴) = − ∑ 𝑝𝐴 𝑙𝑜𝑔2 𝑝𝐴 , 𝑝𝐴 > 0. (3) 

 

Let B be a discrete random vector which contains at least two discrete random variables, 𝑝𝐵 be 

the joint probability and h(B) the joint entropy. By using the idea of the joint entropy to calculate 

the entropy of the subsets of criteria of N, the fuzzy measure (𝜇1) is defined as: 

 

𝜇1(𝑆) =
ℎ(𝑆)

ℎ(𝑁)
, ∀𝑆 ⊆ 𝑁. (4) 

 

2.3. Evaluation the performance of the models 

Usually practical applications that used the entropy-based and the complexity-based discrete 

Choquet integral evaluate the performance of the models with a metric called as “accuracy”. 

Furthermore, in the applications of k-means method, the cluster evaluations can be done with 

the measures of cluster cohesion and cluster separation (Tan et al., 2005). However, when 

different discretization techniques and their different model evaluation methods are compared, 

the mean square error (MSE) criteria would be more suitable to choose the best performing one 

among them (Greene, 2016). In this study, MSE was employed to evaluate alternative models 

performances. While comparing the models, as MSE gets smaller, the model does better 

performance. Thus, the model with the smallest MSE value is preferred. Let 𝜃 be a parameter 

and 𝜃 an estimator of this parameter, the mean square error of an estimator is defined as below: 

 

𝑀𝑆𝐸 [𝜃|𝜃] = 𝐸 [(𝜃 − 𝜃)
2

]. (5) 

 

 

 



Int. J. Asst. Tools in Educ., Vol. 6, No. 1, (2019) pp. 138-153 

 143 

3. EMPIRICAL STUDY and RESULTS 

The raw data set shown in Table 2 is composed of 33 students’ course scores from Econometrics 

Department at Gazi University. The courses are chosen as follows: Introduction to Statistics 

and Probability-II (𝐷1), Microeconomics (𝐷2), Macroeconomics (𝐷3), Mathematics-II (𝐷4),  
and Econometrics-I (𝐸𝐾𝑂𝑁).  

The 𝐸𝐾𝑂𝑁 scores of the students are set as control group in the analysis because Econometrics-

I is a discipline that requires comprehensive knowledge of the other four courses. Besides, the 

minimum and maximum score for each course are 1 and 100, respectively.  

In the empirical study of this paper, it is aimed to estimate the Econometrics scores of the 

students with using the students’ scores of Introduction to Statistics and Probability-II, 

Microeconomics, Macroeconomics and Mathematics-II courses. For this aim, the discrete 

Choquet integral was used as an aggregation and estimation operator because of the fact that 

there are interactions among these four courses. Thereafter, to measure the success of the 

estimation based on the Choquet integral, the mean square error was computed by using the 

students’ raw scores of Econometrics-I (see Table 2), and the estimation scores (see Table 7).  

Table 2. Raw data scores of the students 

Student 𝐷1 𝐷2 𝐷3 𝐷4 𝐸𝐾𝑂𝑁 Student 𝐷1 𝐷2 𝐷3 𝐷4 𝐸𝐾𝑂𝑁 

1 55.8 42 52 76 30 18 62.6 66.2 66 90 65.2 

2 42 63.8 49 94 38 19 66 28.8 45 78 49.4 

3 39.6 45 52 50.2 68 20 68 45 73 100 38.8 

4 40.4 42 51 94 61.4 21 60 47.2 51 100 48 

5 61.6 54.6 56 86 77.8 22 66 41.8 47 92 44 

6 67.8 45 77 100 57 23 79.2 58.2 71 100 66.2 

7 36.8 47.2 46 90 36.8 24 29.4 41.8 61 73 37.6 

8 52 57 54 87 37.2 25 68.4 50.4 79 92 51.6 

9 44.8 45 59 100 59.8 26 53.8 34.8 59 93 51.8 

10 32.6 44.8 45 86 32.6 27 74 47.8 74 100 73.2 

11 62.2 48 50.4 94 43.2 28 46.2 49.8 47 74 19.8 

12 67.4 57.8 55 100 39.2 29 68.2 47.8 59 100 60.6 

13 64 52.2 45 49 67.8 30 76.8 72 94 100 83.6 

14 54 13.2 62 78 2.8 31 56 31.6 47 90 33.6 

15 50.4 22.4 47 74 41.8 32 76.8 55.6 78 96 72 

16 67.6 53.6 57 94 50 33 72.8 20.2 53 56.6 75.2 

17 63.4 42 45 97 51       

 

First of all, the descriptive statistics and the normality of the data were checked out. As 

presented in the Table 3, the average of 𝐸𝐾𝑂𝑁 is 50.46 while the averages of 𝐷1 and 𝐷3 are 

around 60, the average of 𝐷2 is almost 46. The mathematics course has the highest average, 

almost 88. Since 𝑛 = 33, Kolmogorov-Smirnov test and Jarque Bera test are appropriate for 

testing normality. With respect to the Jarque Bera test, the null hypothesis of normality for the 

distribution of returns is rejected at the significance level of 5% and all variables are not 

normally distributed. Furthermore, according to Kolmogorov-Smirnov test, 𝐷2, 𝐷3 and 𝐷4 

variables are not normally distributed; 𝐷1 and 𝐸𝐾𝑂𝑁 variables are normally distributed 

(Asymptotic Significance > 0.05). 
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Table 3. Results of one-sample Kolmogorov-Smirnov test and Jarque Bera 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 𝑬𝑲𝑶𝑵 

Normal Parameters 
Mean 58.38 45.90 57.77 87.39 50.46 

Std. Deviation 13.38 12.67 12.38 14.30 17.87 

Most Extreme Differences 
Positive 0.08 0.08 0.16 0.19 0.08 

Negative -0.14 -0.191 -0.15 -0.21 -0.07 

Test Statistic 0.14 0.191 0.16 0.21 0.08 

Asymptotic Significance (2-tailed) 0.09 0.00 0.04 0.00 0.20 

Skewness -0.54 -0.58 1.16 -1.44 -0.32 

Kurtosis -0.59 0.86 0.84 1.536 0.21 

Jarque Bera 19.32 8.13 13.77 14.40 11.26 

 

Before applying the complexity-based and entropy-based methods, the number of the level of 

score (𝑚) which transforms the continuous raw data into the categorical level of the score 

should be decided on. This level of score can be defined by the users or can be stated in terms 

of the interval width for the equal width interval method.  

Table 4. Categorical data scores of the students (𝑚 = 3) 

Student 𝐷1 𝐷2 𝐷3 𝐷4 𝐸𝐾𝑂𝑁 Student 𝐷1 𝐷2 𝐷3 𝐷4 𝐸𝐾𝑂𝑁 

1 2 2 1 2 2 18 3 3 2 3 3 

2 1 3 1 3 2 19 3 1 1 2 2 

3 1 2 1 1 3 20 3 2 2 3 2 

4 1 2 1 3 3 21 2 2 1 3 2 

5 2 3 1 3 3 22 3 2 1 3 2 

6 3 2 2 3 3 23 3 3 2 3 3 

7 1 2 1 3 2 24 1 2 1 2 2 

8 2 3 1 3 2 25 3 2 3 3 2 

9 1 2 1 3 3 26 2 2 1 3 2 

10 1 2 1 3 2 27 3 2 2 3 3 

11 2 2 1 3 2 28 2 2 1 2 1 

12 3 3 1 3 2 29 3 2 1 3 3 

13 3 2 1 1 3 30 3 3 3 3 3 

14 2 1 2 2 1 31 2 1 1 3 2 

15 2 1 1 2 2 32 3 3 3 3 3 

16 3 3 1 3 2 33 3 1 1 1 3 

17 3 2 1 3 2       

 

First of all, equal thresholds approach of the equal width interval method was used. The equal 

width interval method coverts the continuous data into the categorical data by employing user 

specified number of intervals. Here the number of intervals as 𝑚 = 2, 3, 4, 5, 6, 7, 8, and 9 were 

specified.   Thereafter, the raw data in Table 2 was transformed by using “hist.m” program of 

Matlab for 𝐷1, 𝐷2, 𝐷3, 𝐷4 and 𝐸𝐾𝑂𝑁 variables when 𝑚 = 2, 3, 4, 5, 6, 7, 8, and 9. Later, the 

complexity-based and entropy-based fuzzy measure were computed at each level of score (𝑚 =
 2, 3, 4, 5, 6, 7, 8, and 9) with applying the equations (1), (2), and (3) to determine the 

dependency of the evaluation criteria.  Final identified fuzzy measures for each subset were 

computed by Matlab and showed in Table 5. Before presenting the Table 5, in order to make 

clear that how the final values are obtained m=3 case was provided as an example. Here, how 

each of the steps was followed when m=3 was employed is summarized in the preceding 
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paragraph. Firstly, continuous raw data scores (in Table 2) were converted into categorical data. 

When m=3 is employed, the categorical data score for each course for each student can be 1, 2 

or 3. Table 4 shows the categorical data scores for each criterion transformed from the raw data 

scores by using “hist.m” program of Matlab.  

Furthermore, the histograms of the 𝐷1, 𝐷2, 𝐷3, 𝐷4 and 𝐸𝐾𝑂𝑁 courses when the number of the 

level score is equal to three, m=3, can be seen in Figure 2. For example, for Microeconomics 

(𝐷2) course, students with grade in the interval of [0, 32.8) constitute the first category and 

each observation in this group takes categorical value “1”, students with grade in the interval 

of [32.8, 52.4) constitute the second category, and each observation in this group takes 

categorical value “2” and students with grade in the interval of [52.4, 72) constitute the third 

category and each observation in this group takes categorical value “3”. 

 

 

Figure 2. Histograms of the courses for 𝑚 = 3 

 

For instance, in Table 2, the first student’s grade for 𝐷2 is 42, so this student belongs to second 

category and in Table 4 in the column of 𝐷2 this observation takes value “2”. For each course 

raw data of grades are converted into categorical data in the same manner. For each histogram 

of the courses, the first column shows how many times “1” value is repeated, second column 

shows how many times “2” value is repeated, and the third column shows how many times “3” 

value is repeated. Besides, the numbers at which intervals correspond to these values are shown 

below the columns. Now, to obtain entropy based fuzzy measure, ℎ(𝑁) was computed. When 

the transformed data scores of the students are considered, there are 19 different joint pattern 

in Table 4 these are: (2,2,1,2), (1,3,1,3), (1,2,1,1), (1,2,1,3), (2,3,1,3), (3,2,2,3), (2,2,1,3), 

(3,3,1,3), (3,2,1,1), (2,1,2,2), (2,1,1,2), (3,2,1,3), (3,3,2,3), (3,1,1,2), (1,2,1,2), (3,2,3,3), 

(3,3,3,3), (2,1,1,3), and (3,1,1,1). Besides, how many times the patterns are repeated are given 

respectively 2, 1, 1, 4, 2, 3, 2, 2,1, 1, 1, 3, 3, 1, 1, 1, 2, 1, and 1. It means that in Table 4 (2,2,1,2) 

is repeated twice, (1,3,1,3) is repeated once, and so on. Thus, the joint probabilities are defined 

and then the entropy of the finite set of criteria (N) employing equation 3 could be calculated 

as:  

ℎ(𝑁) = − ∑ 𝑝 𝑙𝑜𝑔2 𝑝 

= −0.06 ∗ 𝑙𝑜𝑔2(0.06)  − 0.03 ∗ 𝑙𝑜𝑔2(0.03) − 0.03 ∗ 𝑙𝑜𝑔2(0.03) − 0.12 ∗ 𝑙𝑜𝑔2(0.12) − 0.06 ∗ 𝑙𝑜𝑔2(0.06) − 0.09 ∗
     𝑙𝑜𝑔2(0.09) − 0.06 ∗ 𝑙𝑜𝑔2(0.06) − 0.06 ∗ 𝑙𝑜𝑔2(0.06) − 0.03 ∗ 𝑙𝑜𝑔2(0.03) − 0.03 ∗ 𝑙𝑜𝑔2(0.03) − 0.03 ∗
     𝑙𝑜𝑔2(0.03) − 0.03 ∗ 𝑙𝑜𝑔2(0.03) − 0.09 ∗ 𝑙𝑜𝑔2(0.09) − 0.09 ∗ 𝑙𝑜𝑔2(0.09) − 0.03 ∗ 𝑙𝑜𝑔2(0.03) − 0.03 ∗
     𝑙𝑜𝑔2(0.03) − 0.03 ∗ 𝑙𝑜𝑔2(0.03) − 0.06 ∗ 𝑙𝑜𝑔2(0.06) − 0.03 ∗ 𝑙𝑜𝑔2(0.03) − 0.03 ∗ 𝑙𝑜𝑔2(0.03)  

= 4.07 
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Now the subsets of criteria of N which are ∀𝑆 ⊆ 𝑁 was introduced: empty set, {D1}, {D2}, 

{D3}, {D4}, {D1, D2}, {D1, D3}, {D1, D4}, {D2, D3}, {D2, D4}, {D3, D4}, {D1, D2, D3}, {D1, 

D2, D4}, {D1, D3, D4}, {D2, D3, D4}, and {D1, D2, D3, D4}. These subsets were symbolized as 

respectively: (0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,0,0), (1,0,1,0), (1,0,0,1), 

(0,1,1,0), (0,1,0,1), (0,0,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1), and (1,1,1,1) as shown in 

Table 5. For example, the effect of the only {D1} course is known, that situation is symbolized 

as (1,0,0,0); when the effect of the {D1, D2} courses is known, that situation is symbolized as 

(1,1,0,0). Then the entropy of the subsets of criteria of N, i.e. ℎ(𝑆) is calculated using equation 

3. For example in order to calculate ℎ(𝐷1) Table 4 is considered and the column of 𝐷1 is 

observed to see how many times “1”, “2” and “3” categories are repeated; “1” is repeated 7 

times, “2” is repeated 10 times, and “3” is repeated 16 times. ℎ(𝐷1) is calculated as follow: 

 

ℎ(𝐷1) = −
7

33
∗ 𝑙𝑜𝑔2 (

7

33
) −

10

33
∗ 𝑙𝑜𝑔2 (

10

33
) −

16

33
∗ 𝑙𝑜𝑔2 (

16

33
) = 1.50 

 

 For instance, if ℎ(𝐷1, 𝐷2) is considered, 𝐷1 and 𝐷2 columns are simultaneously examined and 

it is seen that “2, 2” case appears five times, “1, 3” once, “1, 2” six times and so on, thus: 

 

ℎ(𝐷1, 𝐷2) = −
5

33
∗ 𝑙𝑜𝑔2 (

5

33
) −

1

33
∗ 𝑙𝑜𝑔2 (

1

33
) −

6

33
∗ 𝑙𝑜𝑔2 (

6

33
) −

2

33
∗ 𝑙𝑜𝑔2 (

2

33
) −

8

33

∗ 𝑙𝑜𝑔2 (
8

33
) −

7

33
∗ 𝑙𝑜𝑔2 (

7

33
) −

3

33
∗ 𝑙𝑜𝑔2 (

3

33
) −

2

33
∗ 𝑙𝑜𝑔2 (

2

33
) 

                 = 2.76 

 

Thus, the entropies of the selected subsets as an example are calculated as follow: 

 
ℎ(𝐷1) = 1.50 

ℎ(𝐷1, 𝐷2) = 2.76 

ℎ(𝐷1, 𝐷2, 𝐷3) = 3.50 

ℎ(𝐷1, 𝐷2, 𝐷3, 𝐷4) = 4.07 

 

Now, the fuzzy measures can be obtained by employing equation 4 as 𝜇1(𝑆) =
ℎ(𝑆)

ℎ(𝑁)
, (∀𝑆 ⊆ 𝑁). 

As shown in Table 5 for m=3, the entropy based fuzzy measures for the selected subsets as an 

example are defined as follows. Besides, the entropy based fuzzy measure of the empty set is 

always equal to 0. 

 

𝜇1(𝐷1) =
ℎ(𝐷1)

ℎ(𝑁)
=

1.50

4.07
= 0.37 

𝜇1(𝐷1, 𝐷2) =
ℎ(𝐷1,𝐷2)

ℎ(𝑁)
=

2.76

4.07
= 0.68 

𝜇1(𝐷1, 𝐷2, 𝐷3) =
ℎ(𝐷1,𝐷2,𝐷3)

ℎ(𝑁)
=

3.50

4.07
= 0.86 

𝜇1(𝐷1, 𝐷2, 𝐷3, 𝐷4) =
ℎ(𝐷1,𝐷2,𝐷3,𝐷4)

ℎ(𝑁)
=

4.07

4.07
= 1 

 

The entropy based fuzzy measures for m=3 is obtained, and then the complexity based fuzz 

measures is obtained. Firstly, the complexity of the discrete random variable, i.e. 𝐶(𝑁) is 

needed to be computed in equation 2. When the transformed data scores of the students were 

considered, there was 19 different joint pattern i.e., (2,2,1,2), (1,3,1,3), (1,2,1,1), (1,2,1,3), 

(2,3,1,3), (3,2,2,3), (2,2,1,3), (3,3,1,3), (3,2,1,1), (2,1,2,2), (2,1,1,2), (3,2,1,3), (3,3,2,3), 

(3,1,1,2), (1,2,1,2), (3,2,3,3), (3,3,3,3), (2113), and (3,1,1,1) (see Table 4).  Thus, through the 

complexity counts the number of different pattern is 𝐶(𝑁) = 19. 
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Thereafter, the complexity of the subsets of criteria of N, i.e. 𝐶(𝑆) is calculated. For instance, 

there are three features in 𝐷1: 1,2,3; there are three features in 𝐷2: 1,2,3;  there are three features 

in 𝐷3: 1,2,3; thus, the complexities of the selected subsets as an example are calculated as 

follow:  

 

𝐶(𝐷1) = 3 

𝐶(𝐷1, 𝐷2) = 8 

𝐶(𝐷1, 𝐷2, 𝐷3) = 13 

𝐶(𝐷1, 𝐷2, 𝐷3, 𝐷4) = 19 
 

Similarly, after the complexity for each subset of N is calculated, the complexity based fuzzy 

measures can be obtained by employing equation 2 as 𝐶1(𝑆) =
𝐶(𝑆)

𝐶(𝑁)
, (∀𝑆 ⊆ 𝑁). The 

complexity based fuzzy measures for the selected subsets as an example are computed for m=3 

as follows and the results are given in Table 5.  Besides, the complexity based fuzzy measure 

of the empty set is always equal to 0.  

 

𝐶1(𝐷1) =
𝐶(𝐷1)

𝐶(𝑁)
=

3

19
= 0.16 

𝐶1(𝐷1, 𝐷2) =
𝐶(𝐷1,𝐷2)

𝐶(𝑁)
=

8

19
= 0.42 

𝐶1(𝐷1, 𝐷2, 𝐷3) =
𝐶(𝐷1,𝐷2,𝐷3)

𝐶(𝑁)
=

13

19
= 0.68 

𝐶1(𝐷1, 𝐷2, 𝐷3, 𝐷4) =
𝐶(𝐷1,𝐷2,𝐷3,𝐷4)

𝐶(𝑁)
=

19

19
=1 

 

Up to now, how the entropy and complexity based fuzzy measures are achieved for m=3 have 

been explained. These values are computed for each level of score (𝑚 =2, 3, 4, 5, 6, 7, 8, and 

9) in the same manner. Finally, the identified fuzzy measures for each subset are obtained. For 

m=3, the fuzzy measures are summarized in Table 5. 

After all fuzzy measures are identified, and it can be said that the entropy based fuzzy measures 

are relatively larger than the complexity based fuzzy measures. Furthermore, “not equal 

thresholds approach” in which the variables can have different thresholds is used. As explained 

in the methodology section, “histogram function”† in Matlab is used as bin width optimization 

method. When “histogram function” is employed, the threshold numbers of 𝐷1, 𝐷2, 𝐷3, and 𝐷4  

courses were found as 6, 7, 6 and 3, respectively. (For 𝐸𝐾𝑂𝑁 course, the threshold number was 

equal to 9). It is observed that the entropy based fuzzy measures are relatively larger than the 

complexity based fuzzy measures as seen in Table 6. 

 

 

 

 

 

 

 

                                                           
† The function selects the optimal bin size of a histograms by using automatic binning algorithm such as auto, 

scott, freedman-diaconis, sturges. These algorithms return bins with a uniform width by showing the underlying 

shape of the distribution.   
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Table 5. Identified fuzzy measure for  𝑚 = 3 (Equal thresholds) 

𝐷1 𝐷2 𝐷3 𝐷4 Entropy based fuzzy measure Complexity based fuzzy measure 

0 0 0 0 0 0 

1 0 0 0 0.37 0.16 

0 1 0 0 0.34 0.16 

0 0 1 0 0.27 0.16 

0 0 0 1 0.27 0.16 

1 1 0 0 0.68 0.42 

1 0 1 0 0.58 0.32 

1 0 0 1 0.60 0.42 

0 1 1 0 0.61 0.42 

0 1 0 1 0.55 0.37 

0 0 1 1 0.53 0.32 

1 1 1 0 0.86 0.68 

1 1 0 1 0.83 0.74 

1 0 1 1 0.73 0.58 

0 1 1 1 0.79 0.63 

1 1 1 1 1 1 

 

 

Table 6. Identified fuzzy measure (Not equal thresholds) 

𝐷1 𝐷2 𝐷3 𝐷4 Entropy based fuzzy measure 
Complexity based fuzzy 

measure 

0 0 0 0 0.00 0.00 

1 0 0 0 0.51 0.21 

0 1 0 0 0.51 0.24 

0 0 1 0 0.42 0.21 

0 0 0 1 0.23 0.10 

1 1 0 0 0.86 0.72 

1 0 1 0 0.83 0.62 

1 0 0 1 0.68 0.45 

0 1 1 0 0.80 0.62 

0 1 0 1 0.66 0.41 

0 0 1 1 0.60 0.34 

1 1 1 0 0.99 0.97 

1 1 0 1 0.91 0.83 

1 0 1 1 0.90 0.76 

0 1 1 1 0.90 0.79 

1 1 1 1 1 1 

 

After the fuzzy measures are identified, the results are intermingled with the discrete Choquet 

integral through equation (1). By this way the scores of students’ academic performances for 

both the entropy based Choquet integral method and the complexity based Choquet integral 

method was obtained. When equal thresholds are used, these obtained scores are transformed 

according to m level (m = 2, 3, 4, 5, 6, 7, 8, and 9) for each entropy based Choquet integral 

method and complexity based Choquet integral method.  

Now, let’s consider equal threshold approach. For example, the number of the level of score is 

equal to 3 (i.e. m=3), and the fuzzy measure is entropy based fuzzy measure. The raw scores of 

the first student are 55.8, 42, 52, 76 (see Table 2). First of all, the scores should be ranked from 

the smallest to the largest, i.e., 42, 52, 55.8, 76. Then, the estimation score is computed by the 

discrete Choquet integral as follow:  
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𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒
= 42 ∗ 𝜇1(𝐷2, 𝐷3, 𝐷1, 𝐷4) + (52 − 42) ∗ 𝜇1(𝐷3, 𝐷1, 𝐷4) + (55.8 − 52) ∗ 𝜇1(𝐷1, 𝐷4) 

                             +(76 − 55.8) ∗ 𝜇1(𝐷4) 

                          = 42 ∗ 1.00 + (52 − 42) ∗ 0.73 + (55.8 − 82) ∗ 0.60 + (76 − 55.8) ∗ 0.27 

                          = 57.03 

 

After all estimation scores of the students’ academic performances is computed, the estimation 

scores are transformed to the categorical data by using “hist.m” program of Matlab. Finally, 

both the estimation scores and the transformed scores are showed in Table 7 for each students. 

Table 7. Estimation score and the transformed scores of the students for 𝑚 = 3 

Student Estimation score Transformed score Student Estimation score Transformed score 

1 57.03 1 18 71.81 2 

2 63.78 2 19 57.33 1 

3 47.11 1 20 71.81 2 

4 58.02 1 21 66.12 2 

5 66.37 2 22 63.93 2 

6 72.81 2 23 78.08 3 

7 56.26 1 24 52.61 1 

8 63.31 2 25 72.73 2 

9 63.43 2 26 60.66 2 

10 52.71 1 27 74.03 3 

11 65.35 2 28 54.89 1 

12 71.82 2 29 70.06 2 

13 54.83 1 30 86.26 3 

14 51.70 1 31 57.42 1 

15 50.21 1 32 76.64 3 

16 69.71 2 33 52.40 1 

17 69.17 2    

 

When the complexity based fuzzy measure is used, final transformed scores can be obtained 

similarly with using the discrete Choquet integral. Now, the evaluation of the performances of 

each models is required. As explained in section 2.4, mean square errors are used to compare 

the alternative models performances. In the present study, the 𝐸𝐾𝑂𝑁 scores of the students are 

used as control group, actually these scores are the parameters (𝜃 values) and the obtained 

results by using the alternative methods are the estimators (𝜃 values). The mean of the squared 

difference between the parameter and the estimator gives the mean squared error value. The 

mean square errors are calculated for each method for ∀𝑚 = 2, 3, 4, 5, 6, 7, 8, 9, and the results 

are shown in Table 8.  

Table 8. MSE results (Equal threshold) 

m Complexity based Choquet Entropy based Choquet 

m=2 0.36 0.39 

m=3 0.91 0.85 

m=4 1.64 1.06 

m=5 2.33 2.52 

m=6 3.33 2.03 

m=7 5.06 3.15 

m=8 6.03 4.27 

m=9 8.00 5.48 
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Finally, the MSE results of the methods are summarized in Table 8. Obviously as shown in 

table, the complexity-based and the entropy-based Choquet integral have the minimum MSE 

results while the number of the level of score (𝑚) is two. However, a binary transformation is 

not generally preferred in the higher institution of learning. By using the idea of this, it can be 

seen that the complexity-based Choquet integral while 𝑚 = 3, 4, 5, and the entropy-based 

Choquet integral while 𝑚 = 3, 4, 5, 6 have relatively small MSE. Thus,  𝑚 = 3, 4, 5 can be 

regarded as possible candidates that should be used in this part of the study.  Namely, it can be 

said that the obtained MSE results by using both entropy and complexity based methods are 

closer to the scores of control group when the number of the level of score is equal to 3, 4 or 5.  

It is seen that using “equal threshold” Choquet integral both entropy and complexity based 

provide better results than “not equal threshold” cases in most of the times. The “not equal 

thresholds” MSE results for the entropy and the complexity based Choquet integral are 

respectively 2.94 and 1.91. 

Robustness Check. The k-means is one of the most well-known statistical methods for 

determining new structure when investigating data sets (Flynt and Dean 2016). The method is 

widely used for evaluating students’ performances (Veeramuthu et al. 2014). Now, robustness 

check was provided by comparing k-means performance with Choquet integral applications. 

Here the intermediate steps of k-means algorithm were not provided. (However, if requested, 

corresponding author can provide the all steps of robustness check using k-means method).  

 
Figure 3. The MSE results of the methods 

 

The MSE results of k-means method are respectively 0.33, 1.03, 1.45, 3.21, 5.48, 7.21, 12.18, 

and 16.19 for c = 2, 3, 4, 5, 6, 7, 8, and 9. k-means results can be compared with only “equal 

threshold” approach results. As the number of the cluster increases, it is seen that the MSE value 

increases. Besides, it can be seen that as the number of the level of score increases, MSE value 

increases. Nevertheless, if “equal threshold” method is used, this increase is less than it is ifk-

means method is used. By using the idea of the model with the smallest MSE value, the results 

of the robustness analysis indicate that both entropy and complexity based discrete Choquet 

integral provides better results than k-means method in most of the cases as shown in Figure 3. 
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4. CONCLUSIONS and REMARKS 

Evaluation of the academic performance, that takes a wide variety of methods, is an integral 

part of educational system. That evaluation depends on many criteria that can be seen as a 

MCDM problem. These problem refers to the analysis and judgment process of selecting an 

optimal solution from two or more feasible schemes with multiple indicators in order to achieve 

a certain goal. As for the Choquet integral operator of fuzzy measure, since Schmeidler (1989) 

first applied it to related MCDM analysis, it has been widely used in decision-making fields for 

performance evaluation such as engineering, economy and management areaas (Xu, 2010; Sun 

et al., 2015; Han & Wei, 2017; Liu et al., 2018). 

At the present time, most of the traditional evaluation techniques take no account of the 

interactions among criteria. In this regard, the Choquet integral is an effective and appropriate 

method drawing strong attention to inherently dependent evaluation criteria. In this study, an 

extensive comparison of several discretization techniques is mapped out for objectively 

evaluating academic performance of the students. In detail, the discrete Choquet integral is used 

with the ultimate aim of evaluating the students’ success at a university in Turkey. Even though, 

a specific framework is provided, the method can also be used in any educational assessment 

such as teacher competency in higher institution of learning and universities perform according 

to different educational indicators. Thus, the method can be seen as a tool that attracts a good 

deal of attention in educational assessment. 

In this study, the entropy-based and the complexity-based discrete Choquet integral and the k-

means method is used. For the ex-post evaluation, the mean square error method is used in our 

study. Previous works on the evaluation of students’ performance by using the discrete Choquet 

integral such as Shieh et al., and Chang et al., (2009) did not consider whether the data matrix 

was normally distributed. However, this study showed that if the data matrix is not normally 

distributed, entropy-based Choquet integral provides much better results. On the other hand, 

complexity-based Choquet integral generally presents optimal results if the data is close to 

being normally distributed. Besides, the other previous studies can show a good performance 

and a good accuracy results when the sample size is large, but it cannot be possible to deal with 

the problems when the size is small. Another important aspect of our evaluation is that the paper 

presents the k-means method as a robustness analysis to compare the effectiveness of the 

discrete Choquet integral based methods. The most remarkable property of k-means is its 

efficiency in large sample size. However, the obtained mean square error results of the k-means 

method indicate that both entropy and complexity based Choquet integral method provides 

better results than the k-means method in most of the cases. In conclusion, this study’s findings 

point out that the discrete Choquet integral method provides a major support to educational 

system in evaluating students’ performance.  
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