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Abstract

The EM algorithm has become a popular efficient iterative procedure
to compute the maximum likelihood (ML) estimate in the presence
of incomplete data. Each iteration of the EM algorithm involves two
steps called expectation step (E-step) and maximization step (M-step).
Complexity of statistical model usually makes the iteration of maxi-
mization step difficult. An identity on which the derivation of the EM
algorithm is based is presented. It is showed that deriving iteration
formula of parameter of hidden binomial trials based on the identity is
much simpler than that in common M-step.
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1. Introduction

The EM (Expectation-Maximization) algorithm has become a popular tool in statis-
tical estimation problems involving incomplete data, or in problems which can be posed
in a similar form, such as mixture estimation [7, 6]. This idea has been around for a
long time. However, the seminal reference that formalized EM and provided a proof of
convergence is the paper by Dempster, Laird, and Rubin [1]. Although, some special
cases of the EM algorithm were investigated long time ago [2], it was proposed formally
by [1]. At present, there are a number of popular and very useful references about the
EM algorithm [6, 10, 8, 9, 5]. In this paper, we first introduce an identity in the EM
algorithm and then show that derivations of the iterative formula for the parameters
estimation in hidden binomial trials based on this identity are simpler and easier than
that in the common procedure.
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First we give a brief introduction to the EM algorithm. Suppose Y are the unobserved
complete data in some statistical trial, Y,5s are the observed incomplete data, Yy,:s are
the missing data. So we can denote Y = (Yois, Yinis). A general idea is to choose Y
so that maximum likelihood becomes trivial for the complete data. Suppose Y has the
probability density f(Y'|0), and 0 is the parameter vector. As mentioned above, each
iteration of the EM algorithm involves two steps: E-step and M-step. In the E-step, we
calculate the conditional expectation

Q(016") = Ellog f(Y |0)|Yobs, 0]

where, 0% denote the current estimate for 0 after the ¢th iteration. In the M-step,
we maximize the Q(0]60Y) with respect to 6, denote the update value as 0V that
is 0D = argmaxy Q(A|0™) be the new parameter estimate, which commonly gives
an iterative formula. Repeat the two steps until convergence occurs. Comprehensive
discussions about the convergence of the EM algorithm can be found in [6, 11]. The
key idea of the EM algorithm is to obtain the point series {#)} which increase the log-
likelihood of the observed data and then view the limit value of the series {#)} as the
estimate of the parameters. It is particularly suited to missing data problems, as the
very fact that there are missing data can sometimes make calculations cumbersome. It
seems that the two steps are easy and clear. However, the M-step sometimes can not be
handled easily. So it is desirable to find some procedures to make the M-step easier. We
introduce an identity first.

2. Methods

2.1. Proposition [4] Suppose the complete data Y possesses a probability density
f(Y']0), where 6 is the unknown parameter vector. Sometimes Y are unobserved and
can be denoted by Y = (Yops, Yimis) , where Yops are observed incomplete data, and Yiis
are missing data. The EM algorithm for estimating the parameter 6 can be formulated

based on the following identity
0 0
(21) 55RO lo—pr = 5510 Yons) lo—pior

where 6 is a any interior point in the parameter space. 1(6|Yops) is the log-likelihood
of the observed data.

Proof. Since Y = (Yobs, Ymis) , we have
f(Y|0) = f(YObS7 Yinis ‘0)
f(YobS|‘9)f(YmiS|YobS7 9)7
Taking the logarithm on both sides of (2.2) and making arrangement, we get

(2.2)

(2.3)  1(0]Yons) = L(O]Y) — 1og f(Yimis|Yovs, 0),

Taking conditional expectation for given Y,5s and 6™ on both sides, we thus obtain
the log-likelihood of the observed data as

(24)  1(0]Yobs) = Q(0]0)) — q(0]0""),
where
Q(016) = E[I(0]Y)[Yors, 0],

9(010") = Ellog f(Yinis|Yobs: 0)| Yos, 0]



According to the Entropy inequality [4], we know that ¢(A|0™) attains its maximum
when 8 = 0 under certain regularity conditions. Thus, the first-order derivative of
q(0]0™) takes value 0 at § = ). Taking derivative with respect to  on both sides of
(2.4), we have the following identity

0

0
%l(embs) lomory = 20 (010 lp—py + 0
0
= % (GIG(”) |9:e(f)‘

proving the Proposition 2.1.

The value of Proposition 2.1 is that one can replace the unobserved complete data
likelihood with the observed incomplete data likelihood so that the maximization process
is simplified (as compared with a direct maximization of Q(8|6?)) ). Following this idea,
a similar identity aimed to simplify the M-step in some special cases can be formulated
as follows.

2.2. Proposition [4] Consider a statistical model involving N binomial trials with
success probability 6. Suppose S trials result in success. Let Y,ps denote the observed
incomplete data. Binomial experiments usually involve constant number of trials. Now
the number N is allowed to vary for more generality. Then in the implementation of the
EM algorithm, we have the following identity

(t+1) _ E[S|Yobs, 0]

(2.5) 0 = 7E[N|Yobs,9(t)].

Proof. Obviously, the complete data likelihood can be expressed as

N! S \N=5 _ 1051 _ m\N—5
S!(N—S)!a (1-0) =k0”(1—0)

where k = % is the irrelevant constant. The E-step is to calculate the expected
log-likelihood. Specially, it is to compute

(2.6)  Q(016") = log(k) + log(6) - E[S|Yops, 0] +log(1 — 0) - E[N — S|Yops, 0]

The derivative with respect to 0, is

0

@7 4

1 1
Q016M) = 5E[S|Yob5,9<'f>] — 75 BN = S|Yons, o]
Setting the derivative equal to 0 and solving yields the iterative formula (2.5), which
completes the proof of Proposition 2.2.

In order to examine the relationship between 8T and #), we use Proposition 2.1
to give another specific identity. Specifically, from (2.7) and (2.1), we get

1

(t)
7 EIN = 5|Yos, 6]

(2.8) 10V [Yos) = %E[smbs,e“)} -




. . () (1—p(t)
Multiplying (2.8) by m , we have

g(t)(l _ g(t))
E[N — 5|Yops, 0]
(1 — 0D)E[S|Yops, 0] — 0D E[N — S|V,ps,01]

E[N — 5|Yops,00]
E[S|Yops, 0] — 0 E[N|Yops, 0]

109 Yops)

E[N|Yobs,0(t)]
_ E[S|Yob-97 e(t)} _ 9(1)
E[N[Yops, 00]
_ 9(t+1) _ 9(75)

where the last equality is true because of (2.5). Hence we obtain another identity

g(t)(l _ g(t))

(t+1) _ p(t)
(29) 60 =00+

(09 Yops).

Starting with some initial value of the parameters 9(0>, one cycles between the E and
M-steps until 8% converges to a local maxima. As far as the problem of choosing initial
values is concerned, many methods have been proposed for the reason that the choice
of initial values can heavily influence the speed of convergence of the algorithm and its
ability to locate the global maximum [3]. We argue that the concrete problem need a
concrete analysis. A good way to construct initial guesses for the unknown parameters
depends on the special cases.

3. Results

In this section we make a application of Proposition 2.2 to the twins pairs research
in statistical genetics [4]. Consider random sampling from a twin pairs population, let
y be the number of female pairs,  be the number of male pairs, z be the number of
opposite sex pairs. Suppose that monozygotic twins occur with probability p and dizy-
gotic twins with probability 1 — p. Suppose in monozygotic twins, boys were born with
probability ¢ and girls with probability 1 — g. Suppose there are x1 monozygotic twins
and z2 dizygotic twins in x male pairs (z1 + z2 = x), there are y1 monozygotic twins
and y2 dizygotic twins in y female pairs(y1 + y2 = y) . Because the data x1,x2,y1,y2
are unobserved, we call this problem hidden binomial trials. The goal is to estimate the
parameter 0 = (p, q). Next, we propose two different ways to get the iterate formula for
estimating the parameter.

3.1. Theorem The iterate formulae for estimating p and g can be expressed by the
following two identities

1) v =2y
T+y+z

83 = o 1 2n—a) + -
: q 2@+ 2(z —2®) +y® +2(y —y®) + 22



where
(t) ,(t)

(€ B ) ()Y P "4q
T = E(ZZl'ZL‘,p s q ) - p(t)q(t) +(1 _p(t))(q(t))za
(t) (t)
yp (1 —gq
(3.3) v = Ely.p",q") ( )

T PO = q®) (- p) (1 - M)
We shall give two proofs for the Theorem 3.1. Proof 1 is based on the common E-step
and M-step, while Proof 2 is based on the proposition 2.2.

Proof 1. According to the genetics laws, the probability of x male pairs with x;
monozygotic twins and x2 dizygotic twins is

(3.4)  L(p,qlx1,z2) = ﬁ;!(m)zl [(1—p)g°]™.

Similarly, the probability of y male pairs with y; monozygotic twins and y» dizygotic
twins is

(35 alpal i) = (1= (1= p)(1 - 0"

The probability for z opposite sex pairs is

(3.6)  Is(p,qlz) = [(1 —p)2¢(1 — )"
Thus we can get the likelihood of the complete data

(3.7 L qlzr,22,y1,y2,2) = %h(nqlmm)la(p,quhyz)l3(p,q|2)~
Hence,
I = log L(p,qlz1,x2,y1, Y2, 2)
= log % + a1 [logp + log g] + w2 [log(1 — p) +log(q”)]
+y:1[log p + log(1 — )] + y2[log(1 — p) + log(1 — )]
(3.8) +z[log(1 — p) + log2¢(1 — q)].

Applying the common E-step and M-step [1] to the complete data log-likelihood (3.8),
we shall get the iterative formula (3.1) and (3.2).

Proof 2.  Since p denotes the probability of monozygotic twins, there are x1 + 1
monozygotic twins in the total = + y + z twins pairs, we can argue that N =z + y + 2,
S =1+ y1, Yobs = (z,y) in (2.5). So we get

D ElSIYon, 0]
E[N|Yobs7 o(t)]

Elz1 4 y1|Yops, 0]

E[z + y + 2|Yops, 0]

(3.9) _ B(zilz,p", ") + E(yily, p“, ¢")
. B r+y+z ’
While by the properties of the binomial distribution, (3.3) is obvious given the data and

current estimate z, y, p*), ¢*. Thus, (3.9) is just (3.1).




Similarly, since ¢ denotes the probability of boys being chosen in monozygotic twins
pairs, and there are x1 male monozygotic twins pairs, x2 = x — x1 male dizygotic twins
pairs, z opposite sex pairs, so totally the number of boys are x1+2(z—x1)+ 2z, the number
of girls are y1 +2(y — y1) + z, the total number is z1 +2(zx —z1)+2z4+y1 +2(y—y1) + 2 =
21+2(x—x1)+y1+2(y—y1)+2z. We can argue that N = z1+2(z—z1)+y1+2(y—y1)+22,
S=z1+4+2(x—x1)+ 2, Yobs = (2,9, 2) in (2.5). Then we shall have

M) E[S|Yops,01)]
E[N|Yops,0®)]
Elz1 4 2(z — 21) + 2[Yors, p', ¢V
Elzy 4+ 2(z — 21) + 31 + 2(y — y1) + 22[Yops, p®), 0]
Again according to (3.3), we find that (3.10) is just (3.2).

(3.10)

4. Conclusion and Discussion

According to the two proofs for the Theorem 3.1 shown above, we can draw a con-
clusion that deriving iteration formula of parameters of hidden binomial trials based on
Proposition 2.2 is simpler than that in the common M-step. Whether the iteration for-
mula in Proposition 2.2 can be extended to other expositional families such as hidden
Poisson or exponential trials requires further research.
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