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Abstract: When the population is heterogeneous, stratified random sampling is 
generally preferred for estimation the population parameters. There are a lot of 
sample allocation methods in stratified random sampling. However, most of 
sample allocation methods ignore the selection cost or assume the selection cost as 
equal in all strata. Bankier also suggested a power allocation method without 
considering the cost function [1]. However, in real life applications, it is very rare 
to come across such cases. Therefore, it would be more realistic to take the cost 
into account for allocation procedures. In this study, a new power allocation 
method is proposed by taking into account a non-linear cost function constraint in 
Bankier’s method. The Neyman allocation and square root allocation results are 
also obtained by using this new allocation method. The performance of the 
proposed method is examined for different model parameters and their different 
cases using data from 2012 Structural Business Survey of TURKSTAT. 

  

  

Tabakalı Tesadüfi Örneklemede Doğrusal Olmayan Maliyet Kısıtı Altında Yeni bir Güç 
Paylaştırma Yöntemi 

 

 

Anahtar Kelimeler 
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Doğrusal olmayan maliyet 
fonksiyonu, 
Doğrusal olmayan 
programlama 

Özet: Yığın heterojen olduğunda, yığın parametrelerini tahmin etmek için 
genellikle tabakalı tesadüfi örnekleme tercih edilir. Tabakalı tesadüfi örneklemede 
çok sayıda örnek paylaştırma yöntemi bulunmaktadır. Bununla birlikte, örnek 
paylaştırma yöntemlerinin çoğu tabakalardan birim seçme maliyetini ihmal 
etmekte ya da bütün tabakalar için eşit varsaymaktadır. Bankier da maliyet 
fonksiyonunu göz önüne almayan bir güç paylaştırma yöntemi önermiştir [1]. 
Bununla birlikte uygulamalarda, maliyetin olmadığı durumlarla karşılaşmak yok 
denecek kadar azdır. Bu yüzden, paylaştırma işlemi için maliyeti göz önüne almak 
daha gerçekçi bir yaklaşım olacaktır. Bu çalışmada, Bankier’ın modeline doğrusal 
olmayan maliyet kısıtını ekleyen yeni bir güç paylaştırma yöntemi önerilmiştir. 
Önerilen yöntemin performansı, farklı model parametreleri ve parametrelerin 
farklı durumları için 2012 TUİK Yapısal İş İstatistikleri verisi kullanılarak 
incelenmiştir. 

  

 
1. Introduction 
 

The main aim of sampling methods is increasing the 
precision of the estimator using prior information 
about the population. In practice, there exist several 
sampling methods implemented for this purpose. It is 
possible to increase precision with stratified random 
sampling by constituting homogenous strata when 
the population is heterogeneous. Equal, proportional, 
optimum, and Neyman allocation methods are the 
most popular allocation methods in stratified 
sampling [2]. Typically, it is assumed that the cost of 

the unit selection in each stratum is equal or so low 
that it can be ignored. A compromise among two or 
more allocation methods have been proposed 
especially for populations in which strata sizes and 
variances differ excessively. One of the most famous 
compromise strategies used in the design of several 
surveys is power allocation. Power allocation has 
been proposed by Carroll [3] and Felligi [4]. Bankier 
proposed a new power allocation method, which was 
derived from Neyman and equal allocation methods 
[1]. In this model, the selection cost for each stratum 
is assumed equal. Costa et al. proposed another
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allocation in which cost is ignored and equal and 
proportional allocation methods are used [5]. 
Longford studied an allocation method which 
minimizes both variance of the estimation of the 
strata means and variance of the estimation of the 
population mean [6]. Choudry et al. [7] compared the 
performance of their proposed allocation method 
with the Bankier, Costa et al., and Longford methods 
using real life data. Şahin Tekin et. al. [8] are 
proposed a new compromise allocation method with 
non-linear cost constraint using the model given by 
Costa et. al. [5]. 
 
In practice, a case of equal selection cost or ignorable 
cost in strata rarely occurs. For this reason, it would 
be more realistic approach to take the cost into 
consideration to determine the sample sizes of strata. 
Linear cost function in Eq.(1) is generally used if 
strata costs are taken into account.  

 

0

1

L

h h

h

t t t n


   (1) 

 
Here, t is defined as total cost for survey, t0 is fixed 
cost, th is selection cost for one unit from stratum h, 
and nh is the sample size of the stratum h (h=1,2,…,L).  
It is very easy to determine the sample size nh when 
the cost function is linear as in Eq.(1). This function is 
appropriate when the selection cost for one unit from 
stratum h is not significantly different. However, the 
selection of one unit from stratum h may not result in 
one unit increase in the cost function. For instance, in 
a rural area survey study, after the cost of 
transportation is disbursed, more than one unit can 
be observed without an additional cost. In this case, 
the selection cost of one sampling unit from stratum 
h would result in less than one unit increase in the 
cost function. In contrary, the selection cost of one 
sampling unit in stratum h may also result in more 
than one unit increase in the cost function. In such 
cases, cost function is in a non-linear form. Cochran 
[2], Bretthauer et al. [9], and Chernyak [10] have 
defined the non-linear cost function as given below:  
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   (2) 

 
Here, α indicates the effect on the cost function for 
the selection of one sampling unit from stratum h. If α 
is smaller than 1, the selection of one sampling unit 
from the strata affects the cost function less than one 
unit and if α is larger than 1, the selection of one 
sampling unit from the strata affects the cost function 
greater than one unit. Eqs.(1) and (2) have the same 
results when α is equal to 1. α is a positive value 
determined by the researcher. Since the selection 
cost of one unit differs between strata, it is suggested 
to use the cost function in Eq.(2). 
 

In this study, a new power allocation model is 
proposed, which takes into account the non-linear 
cost function. This model using a non-linear cost 
constraint is a modified version of Bankier’s power 
allocation method. The proposed power allocation 
method is obtained and presented in Section 2. By 
applying the proposed model to 2012 Structural 
Business Survey (SBS) data of TURKSTAT, the results 
for different parameters and their different levels are 
discussed in Section 3. Finally, a summary concludes 
the paper in Section 4.  
 
2. A New Power Allocation Method 
 
Stratified random sampling is frequently used in 
surveys. Providing that target population is separated 
into L homogenous strata; for stratum h, stratum size, 
and weight as well as sample size selected in the 
strata are defined by Nh, Wh=Nh/N, and nh (h=1,2,…,L), 
respectively. Population mean 

h hh
Y W Y  is 

estimated via weighted sample mean 
st h hh

y W y . 

In stratified random sampling, when the strata sizes 
are considerably different, standard allocation 
methods may lead to some problems. For instance, 

Neyman allocation minimizes the variance of sty
 

under the constraint of 
hh

n n . However, it may 

cause some strata estimators to have large coefficient 
of variations ( ( ) /h h hCV y C n ). On the other hand, 

equal allocation (nh=n/L) is efficient for the 
estimation of strata means. Nevertheless, its CV is 

larger than Neyman allocation for sty  estimator. 

 
Bankier proposed a power allocation method 
utilizing Neyman and equal allocation methods [1]. 
Let /h h hC S Y  

be the coefficient of variation of hth 

stratum. The loss function, 
 

 
2

( )q

h hh
F X CV y  

(3) 

 

is minimized subject to the constraint  


L

h hnn
1

and Bankier’s power allocation method is given 
below: 
 

, 1,2,...,
q

B h h
h q

h hh

C X
n n h L

C X
 


 (4) 

 
Here, q is a constant in the range of 0 1q   as 

determined by the researcher, Xh is some measure of 
size or importance of stratum h. As seen in Eq.(4), 
Bankier’s power allocation does not take the cost into 
account. Therefore, the new power allocation method 
is obtained by minimizing the loss function in Eq.(3) 

with 
0

1

L

h h

i

t t t n



   constraint. 
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Theorem: In stratified random sampling with the 

non-linear cost function 
0

1

L

h h

i

t t t n



  , 0  , the 

loss function given in Eq.(4) is minimum for a 
specified cost t when  
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Proof: 
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with respect to F subject to 
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Take λ as the Lagrangian multiplier and minimize  
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for chosen nh. 
 
Hence, to minimize the loss function F for fixed t, we 
have 
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dividing nh by n, we obtain Eq.(5). 
 
The new power allocation model in Eq.(5) is a 
modification of Bankier’s power allocation method 
since it utilizes a non-linear cost constraint. When 

1  , the cost function in Eq.(2) would be in linear 

form. If 1q  , 1  , and
h h hX N Y , then Eq.(5) 

turns into the optimum allocation method. 

h h h

h

h h hh

N S t
n n

N S t



 (6) 

 

If 0q  , 1  , and hC C  for each stratum, then 

Eq.(5) turns into the square root allocation method as 
shown below: 
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1

h

h

hh

t
n n
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3. Real Data Example 
 
In this section, we discuss how the proposed 
allocation model works for sample size allocation. 
Moreover, the performance of the model was 
analyzed for different cases. For this purpose, a 
subset of 2012 SBS data were used. For analyzing the 
performance of the proposed model, pre-defined 
strata and population values of some parameters 
were needed. Therefore, enterprises in 
manufacturing sector with more than 20 employees 
from SBS were included as enumeration. By this way, 
we assumed this part as population and defined the 
size groups as strata. Turnover of these enterprises 
specified as target variable (Y) and used in the 
analysis. Strata sizes (Nh), strata population means (

hY ), strata standard deviations (Sh), and strata CVs 

(Ch) are given in Table 1 for five size groups. Besides, 
in Table 1, each size group indicates each stratum. 
For the proposed model implementation, cost 
function th values were needed. However, they are not 
included in 2012 SBS. Therefore, th values were 
produced hypothetically.  
 
Table 1. Population values for SBS 

Size 
Groups hN  hY  hS  

hC  
ht  

20-49 17427 5,510,399 10,200,503 1.85 0.96 
50-99 4752 14,836,096 48,390,547 3.26 0.30 

100-249 3315 36,550,161 55,473,303 1.52 1.21 
250-499 986 99,548,400 116,525,154 1.17 0.98 

500-999 371 253,470,468 359,408,319 1.42 0.94 
Turkey 26851     

 
The proposed model in Eq.(5) allocates the pre-
determined sample size n to strata. By the help of this 
model, it would be possible to estimate average 
turnover for both Turkey and specified strata levels 

approaching to target ( )stCV y
 and ( )hCV y

 values. 

Since th values are taken into consideration, we can 
make efficient estimations as far as cost function 
permitted.  The Non-Linear Programming (NLP) 
model, proposed by Choudry et al. [7], was used to 
decide the sample size. This model is given in Eq.(8).  
 

1

: min
L

h

h

f n
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 
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with respect to f subject to 
 

( )h ohCV y CV   

 

( )
( )

st

st o

V y
CV y CV

Y
    1 h hn N  , 

1,2,...,h L . 

 

 
Using Eq.(8) and 2012 SBS parameter values in Table 
1, we obtain the model in Eq.(9), which determines 
the sample size. For the proposed model allocation, 
our target values for CVs were specified as

( ) 0.15hCV y   for the strata means �̅�ℎ  and 

( ) 0.06stCV y   
for the weighted sample mean �̅�𝑠𝑡. As 

a result of Eq.(8), the following was obtained: 
 

 nmin  1 2 3 4 5min n n n n n     (9) 

 
𝑛1 ≥ 150.96, 𝑛2 ≥430.72, 𝑛3 ≥ 99.31, 

𝑛4 ≥57.32,  𝑛5 ≥72.07 
 

 

1 2 3 4 5

0.1372 0.2296 0.1468 0.0573 0.0772
0.00397

n n n n n
    

 

 

 

11 17427n  , 21 4752n  , 31 3315n  , 

41 986n  , 
51 371n  . 

 

 

Minimum sample size n=902 was obtained using the 
NLP allocation satisfying the specified CV values. This 
sample size calculated by iterative methods using 
MATLAB 2017a. Using the proposed allocation model, 
overall sample size n=902 was allocated to strata, and 
then ( )hCV y , ( )stCV y  values were evaluated. The 

new allocation method was analyzed whether 

( )hCV y  and ( )stCV y  indicators provide the target 

values. For the analysis, some combination of α and q 
variables were used as follows: 
 
q=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1 and   0, 0.25, 0.5, 0.75, 
1, 1.25, 1.5, 2  

where 0 1q   and 0  . Results are given in 

Tables 2-8. 
 
Tables 2-8 in Appendix A. 
 

When 0q , strata size ( hN , h  1, 2, …,5), and strata 

mean ( hY , h  1, 2, …,5) have no effect on the 

determination of the sample size. For this reason, the 

coefficient of variation ( hC , h  1, 2, …,5) and costs of 

strata ( ht , h  1, 2, …,5) are important factors on 

sample size calculation. However, the coefficient of 

variation ( hC ) is more effective than strata costs( ht ). 

As seen in Table 2, when 0  , the maximum 
sample size is obtained from the 2nd stratum with the 
largest hC , and the minimum sample size appears in 

the 4th stratum with the smallest hC . However, as   

increases, the sample size of the 2nd stratum 
decreases and the sizes of other strata increase. In 
other words, the sample size differences between 
strata reduce. As   increases, the target value for the 
population, which is 06.0)( styCV , would be ensured. 

Besides that, when 0.75  , target values for strata 
15.0)( hyCV  are not ensured for the strata with hC

values closer with each other. For the 2nd stratum, all 
cases provide the target values except 2  . As seen 
in Table 2, all target values are ensured for 
1 1.5   
 
As q  increases, strata sizes and strata means also 

affect the sample sizes. As q increases, a more proper 
allocation giving more weight to the size of strata and 
mean of strata would be attained. For the same   
value, all )( hyCV  values of the strata decrease, except 

the 2nd stratum, and approach the target value 0.15 as 
q  increases. For example, in Table 3, while 2.0q  
and 25.0 , )( hyCV  is 0.18, and, in Table 6, while 

6.0q  and 25.0 , )( hyCV  is 0.15 for the 3rd 

stratum. Thus, for the same   value, )( hyCV  values 

reduce as q  increases in all strata other than the 2nd 

stratum, which belongs to the largest hC  

Furthermore, as q  increases, )( styCV  values reduce 

for the same   value. Besides, as q  increases, the 

range between strata sample sizes decrease for the 
same   value. 
 
For fixed q , as   increases, )( hyCV  values reduce in 

all strata except for the 2nd stratum. For example, in 
Table 3.5, while 5.0q  

and 0 , the target value is 

19.0)( hyCV , and while 5.0q  and 75.0 , the 

target value is 12.0)( hyCV
 for the 4th stratum. 

Moreover, as   increases, )( styCV  values decrease 

and provide the target value. 
 
As seen in the results provided in Tables 2-8, for 

175.0  , all values of q  provide the target value 

06.0)( styCV . Moreover, the target value for strata 

15.0)( hyCV  is also provided for all cases except for 

some cases of the 2nd stratum. As the coefficient of 
variation for the 2nd stratum is greater than other 
strata, we obtain different results for this stratum 
compared to the others. 
 
4. Discussion and Conclusion 
 
Coefficients of variations (CV) for target variables are 
used as quality indicators regarding accuracy and 
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reliability in most of the EU commission regulations 
about quality of statistics. For this reason, satisfying 
the specified CV values becomes an important issue. 
Traditional allocation methods in stratified random 
sampling have some difficulties to cover the needs 
related to CV, especially for official statistics. Bankier 
[1], Costa et al. [5], and Longford [6] have proposed 
some compromise models that can be used to 
overcome these difficulties. Choudry et al. [7] utilized 
non-linear programming in satisfying specified 
reliability requirements. However, none of these 
models used the cost function. Therefore, a new 
allocation model is proposed in the present study 
satisfying the specified CV values which takes into 
account the non-linear cost function.  
 

In this newly proposed model, as q value increases 
for the same α value, )( hyCV  and )( styCV decrease 

and then approach to target values when strata 
coefficient of variation values are close to each other. 
For fixed q, as α value increases, )( hyCV and )( styCV  
indicators decrease and then approach to target 
values. For fixed  , as q value increases, the survey 
cost decreases. For the same q value, the survey cost 
increases as α increases.  
 

According to the results of the application data, when 

a hC  of stratum is substantially larger than others, for 

the same α value, )( hyCV increases as q increases. For 

fixed q, )( hyCV also increases as α increases. As seen 

in the results, the most important advantage of this 
model is the flexibility of the researchers in assigning 
the α and q values based on their needs. Besides, 
when Ch values are closer with each other, the 
proposed model is effective in ensuring the target 
values. Proposed model make more productive the 
survey studies compared to classical allocation 
methods not using the cost function, since it handles 
the allocation issue in more realistic way by using the 
cost. This model can also be improved for 
multivariate stratified random sampling. 
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Appendices 
 
Appendix A. Tables 2-8. 
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