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Abstract

Let G be a finite group and let πe(G) be the set of element orders G.
Let k ∈ πe(G) and let mk be the number of elements of order k in G.
Set nse(G):={mk|k ∈ πe(G)}. In this paper, we prove that if G is a
group such that nse(G)=nse(Sn) where n ∈ {3, 4, 5, 6, 7}, then G ∼= Sn.
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1. Introduction
If n is an integer, then we denote by π(n) the set of all prime divisors of n. Let G be a

finite group. Denote by π(G) the set of primes p such that G contains an element of order
p. Also the set of element orders of G is denoted by πe(G). A finite group G is called a
simple Kn−group, if G is a simple group with |π(G)| = n. Set mi = mi(G) = |{g ∈ G|
the order of g is i}| and nse(G):={mi| i ∈ πe(G)}.

Let Lt(G) := {g ∈ G| gt = 1}. Then G1 and G2 are of the same order type if and
only if |Lt(G1)| = |Lt(G2)|, t = 1, 2, .... The idea of this paper springs from Thompson’s
Problem as follows:

Thompson’s Problem. Suppose that G1 and G2 are of the same order type. If G1

is solvable, is it true that G2 is also necessarily solvable?
Unfortunately, as so far, no one can prove it completely, or even give a counterexample.

However, if groups G1 and G2 are of the same order type, we see clearly that |G1 | = |G2|
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and nse(G1) = nse(G2). So it is natural to investigate the Thompson’s Problem by |G|
and nse(G).

In [13], it is proved that all simple K4−groups can be uniquely determined by nse(G)
and |G|. Further, it is claimed that some simple groups could be characterized by exactly
the set nse without considering group order. For instance, in [3, 12], it is proved that
the alternating groups An where n ∈ {4, 5, 6, 7, 8} are uniquely determined by nse(G).
Also in [10], it is proved that L2(q) where q ∈ {7, 8, 11, 13} are uniquely determined by
nse(G). Analogously, for infinite simple groups, there are also some interesting results:
In [1], the author prove that G ∼= PGL2(p) if and only the two conditions hold: (1)
p ∈ π(G) but p2 - |G|; (2) nse(G) = nse(PGL2(p)), where p > 3 is a prime. In [2], the
authors proved that all sporadic groups characterizable by nse(G) and |G|.

In this paper we show that the symmetric group Sn is characterizable by nse(G) for
n ∈ {3, 4, 5, 6, 7}. In fact the main theorem of our paper is as follows:

Main Theorem: Let G be a group such that nse(G)=nse(Sn) where n ∈ {3, 4, 5,
6, 7}. Then G ∼= Sn.

Note that not all groups can be characterized by nse(G) and |G|. For instance, in 1987,
Thompson gave an example as follows: Let G1= (C2 × C2 × C2 × C2) o A7 and G2 =
L3(4)oC2 be the maximal subgroups of M23, where M23 is the Mathieu group of degree
23. Although nse(G1) = nse(G2) and |G1| = |G2|, we still have G1 6∼= G2.

Throughout this paper, we denote by φ the Euler totient function. If G is a finite
group, then we denote by Pq a Sylow q−subgroup of G and nq(G) is the number of Sylow
q−subgroup of G, that is, nq(G) = |Sylq(G)|. All other notations are standard and we
refer to [5], for example.

2. Some lemmas
In this section we collect some preliminary lemmas used in the proof of the main

theorem.
Lemma 2.1. [6] Let G be a finite group and m be a positive integer dividing |G|. If
Lm(G) = {g ∈ G| gm = 1}, then m | |Lm(G)|.

Lemma 2.2. [12] Let G be a group containing more than two elements. Let k ∈ πe(G)
and mk be the number of elements of order k in G. If s = sup{mk| k ∈ πe(G)} is finite,
then G is finite and |G| ≤ s(s2 − 1).

Lemma 2.3. [11] Let G be a finite group and p ∈ π(G) be odd. Suppose that P is
a Sylow p−subgroup of G and n = psm where (p, m) = 1. If P is not cyclic and s > 1,
then the number of elements of order n is always a multiple of ps.

Lemma 2.4. [8] Let G be a finite solvable group and |G| = m ·n, where m = pα1
1 · · ·pαr

r ,
(m,n) = 1. Let π = {p1, ..., pr} and let hm be the number of π−Hall subgroups of G.
Then hm = qβ11 ...qβss satisfies the following conditions for all i ∈ {1, 2, ..., s}:

(1) qβii ≡ 1 (mod pj), for some pj .
(2) The order of some chief factor of G is divisible by qβii .

Lemma 2.5. [13] Let G be a finite group, P ∈Sylp(G) where p ∈ π(G). Let G have a
normal series K � L�G. If P ≤ L and p - |K|, then the following hold:
(1) NG/K(PK/K) = NG(P )K/K;
(2) |G : NG(P )| = |L : NL(P )|, that is, np(G) = np(L);
(3) |L/K : NL/K(PK/K)|t = |G : NG(P )| = |L : NL(P )|, that is, np(L/K)t =



np(G) = np(L) for some positive integer t, and |NK(P )|t = |K|.

Lemma 2.6. [9] If G is a simple K3− group, then G is isomorphic to one of the
following groups: A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3) or U4(2).

Lemma 2.7. [14] Let G be a simple group of order 2a · 3b · 5 · pc where p /∈ {2, 3,
5} is a prime and abc 6= 0. Then G is isomorphic to one of the following groups: A7,
A8, A9; M11, M12; L2(q), q = 11, 16, 19, 31, 81; L3(4), L4(3), S6(2), U4(3) or U5(2). In
particular, if p = 11, then G ∼= M11, M12, L2(11) or U5(2); if p = 7, then G ∼= A7, A8,
A9, A10, L2(49), L3(4), S4(7), S6(2), U3(5), U4(3), J2, or O+

8 (2).

Let G be a group such that nse(G)=nse(Sn) where n ∈ {3, 4, 5, 6, 7}. By Lemma
2.2, we can assume that G is finite. Let mn be the number of elements of order n. We
note that mn = kφ(n), where k is the number of cyclic subgroups of order n in G. Also
we note that if n > 2, then φ(n) is even. If n | |G|, then by Lemma 2.1 and the above
notation, we have 

φ(n) | mn

(∗)
n |

∑
d|nmd

In the proof of the main theorem, we often apply (∗) and the above comments.

3. Proof of the Main Theorem.
Case 1. Let G be a group such that nse(G)=nse(S3)={1, 2, 3}. First we prove that

π(G) ⊆ {2, 3}. Since 3 ∈nse(G), it follows that by (∗), 2 ∈ π(G) and m2 = 3. Let
2 6= p ∈ π(G). By (∗), p | (1 + mp) and (p − 1) | mp, which implies that p = 3.
Thus π(G) ⊆ {2, 3}. If 3 ∈ π(G) , then m3 = 2. If 6 ∈ πe(G), then by (∗),
m6 = 2 and 6 | (1 + m2 + m3 + m6) = 8, a contradiction. If 2i ∈ πe(G) for some
i ≥ 2, then 2i−1 = φ(2i) | m2i = 2. So i = 2. If 3j ∈ πe(G) for some j ≥ 2, then
2 × 3j−1 = φ(3j) | m3j = 2, a contradiction. Therefore, πe(G) ⊆ {1, 2, 3, 4} and
|G| = 6 + 2k = 2m × 3n where k, m and n are non-negative integers. Now we consider
the following subcases:

Subcase (a). If π(G) = {2}, then πe(G) ⊆ {1, 2, 4}. Since |πe(G)| ≤ 3, |G| = 2m = 6+2k

where k = 0, a contradiction.

Subcase (b). If π(G) = {2, 3}, then since |G| = 6 + 2k = 2m × 3n and |πe(G)| ≤ 4,
0 ≤ k ≤ 1. It easy to check that the only solution of the equation is (k, m, n) = (0, 1,
1). Thus |G| = 6, πe(G) = {1, 2, 3}. Therefore, G ∼= S3.

Case 2. Let G be a group such that nse(G)=nse(S4)={1, 6, 8, 9}. First we prove
that π(G) ⊆ {2, 3}. Since 9 ∈nse(G), it follows that by (∗), 2 ∈ π(G) and m2 = 9. Let
2 6= p ∈ π(G). By (∗), p ∈ {3, 7}. Thus π(G) ⊆ {2, 3, 7}. If 7 ∈ π(G), then m7 = 6.

We prove that 14 /∈ πe(G). If 14 ∈ πe(G), then m14 = 6, by (∗). On the other hand,
14 | (1+m2+ m7 +m14) = 22, a contradiction. Therefore, the group P7 acts fixed point
freely on the set of elements of order 2. Hence |P7| | m2 = 9, a contradiction. Hence
π(G) ⊆ {2, 3}. If 3 ∈ π(G), then by (∗), m3 = 8. It is clear that by (∗), G does not
contain any elements of order 6 and 9.

If 2i ∈ π(G) for some i ≥ 2, then 2i−1 | m2i where m2i ∈ {6, 8}. So 2 ≤ i ≤ 4.
Also by (∗), m4 = 6, m8 = 8 and m16 = 8. Therefore πe(G) ⊆ {1, 2, 3, 4, 8, 16} and



|G| = 24 + 6k1 + 8k2 = 2m × 3n where k1, k2, m and n are non-negative integers. Now
we consider the following subcases:

Subcase (a). If π(G) = {2}, then since |G| = 24 + 6k1 + 8k2 = 2m and |πe(G)| ≤ 6,
0 ≤ k1 + k2 ≤ 1. It easy to check that the only solution is (k1, k2, m) = (0, 1, 5).
Thus |G| = 25 and πe(G) = {1, 2, 4, 8, 16}. But all groups of order 32 with element
of order 16 are known, in particular, there are only four such non-Abelian groups by [7]
(see, Chapter 5, Theorem 4.4). Since nse of such non-Abelian groups are not equal to
nse(G), it is impossible.

Subcase (b). Suppose that π(G) = {2, 3}. By assumption |G| = 24+6k1+8k2 = 2m×3n.
Since |πe(G)| ≤ 6, 0 ≤ k1 + k2 ≤ 2. Hence 12 + 3k1 + 4k2 = 2m−1 × 3n. Since 3 | k2, it
follows that k2 = 0. It easy to check that the only solutions of equation are (k1, k2, m,
n) = (0, 0, 3, 1) or (2, 0, 2, 2).

If (k1, k2, m, n) = (2, 0, 2, 2), then |G| = 36 and |πe(G)| = 6. On the other hand,
|P2| = 4 so πe(G) = {1, 2, 3, 4}, a contradiction.

Therefore (k1, k2, m, n) = (0, 0, 3, 1), |G| = 24 and πe(G) = {1, 2, 3, 4}, which
implies that G ∼= S4.

Case 3. Let G be a group such that nse(G)=nse(S5)={1, 20, 24, 25, 30}. First we
prove that π(G) ⊆ {2, 3, 5}. Since 25 ∈nse(G), it follows that 2 ∈ π(G) and m2 = 25.
Let 2 6= p ∈ π(G). By (∗), p ∈ {3, 5, 31}.

If p = 31, then m31 = 30. On the other hand, if 62 ∈ πe(G), then m62 = 30 and
62 | 1 +m2 +m31 +m62 = 86, a contradiction. So 62 6∈ πe(G). Then the group P31 acts
fixed point freely on the set of elements of order 2. Thus |P31| | m2, a contradiction.

Therefore, π(G) ⊆ {2, 3, 5}. If 3, 5 ∈ π(G), then m3 = 20 and m5 = 24. It is clear
that by (∗), G does not contain any elements of order 15, 16, 18 or 25. If 4, 16 ∈ πe(G),
then m4 = 30 and m8 = 24. If 2i ∈ πe(G) for some i ≥ 2, then 2i−1 | m2i where
m2i ∈ {20, 24, 30}. Hence 2 ≤ i ≤ 3. If 3j ∈ πe(G) for some j ≥ 2, then 2× 3j−1 | m3j

where m3j ∈ {24, 30}. Thus j = 2. If 5k ∈ πe(G) for some k ≥ 2, then 4 × 5k−1 | m5k

where m5k ∈ {20, 24}. Thus k = 2. Since 25 6∈ πe(G),we get a contradiction.
Therefore πe(G) ⊆ {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 24} and |G| = 100+20k1+24k2+30k3 =

2m × 3n × 5r where k1, k2, k2, m, n and r are non-negative integers. Now we consider
the following subcases:

Subcase (a). Suppose that π(G) = {2}. Then |πe(G)| ≤ 4. Since nse(G) have five
elements and |πe(G)| ≤ 4, we get a contradiction.

Subcase (b). Suppose that π(G) = {2, 5}. Then |G| = 100+20k1+24k2+30k3 = 2m×5n

and by |πe(G)| ≤ 6, we have 0 ≤ k1 + k2 + k3 ≤ 1. Hence 5 | k2, which implies that
k2 = 0, and so 50 + 10k1 + 15k3 = 2m−1 × 5n. Hence 2 | k3, which implies that k3 = 0.
It is easy to check that the only solution of the equation is (k1, k2, k3, m, n) = (0, 0, 0,
2, 2). Thus |G| = 22 × 52. It is clear that πe(G) = {1, 2, 4, 5, 10}, and so exp(P2) = 4.
Then P2 is cyclic. Thus n2 = m4/φ(4) = 15. Since every cyclic Sylow 2-subgroup has
one element of order 2, m2 ≤ 15, a contradiction.

Subcase (c). Suppose that π(G) = {2, 3}. Since 27 /∈ πe(G), exp(P3) = 3 or 9. If
exp(P3) = 3, then πe(G) ⊆ {1, 2, 3, 4, 6, 8, 12, 24}. By Lemma 2.1, |P3| | (1+m3) = 21.
Hence |P3| = 3. Therefore, 100+20k1+24k2+30k3 = 2m×3 = |G| and 0 ≤ k1+k2+k3 ≤



3. It is clear that 100 ≤ 2m × 3 ≤ 190. Hence m = 6 and 20k1 + 24k2 + 30k3 = 92. It is
easy to check that the equation has no solution.

If exp(P3) = 9, then since m9 = 24, |P3| | (1 + m3 + m9) = 45. Hence |P3| = 9
and n3 = m9/φ(9) = 4. Since a cyclic group of order 9 have two elements of order 3,
m3 ≤ 4× 2 = 8, a contradiction.

Subcase (d). Suppose that π(G) = {2, 3, 5}. Since G has no element of order 15, the
group P5 acts fixed point freely on the set of elements of order 3. Thus |P5| | m3 = 20,
which implies that r = 1. Similarly, the group P3 acts fixed point freely on the set of
elements of order 5. Thus |P3| | m5 = 24, which implies that n = 1.

We will show 10 6∈ πe(G). Suppose that 10 ∈ πe(G). We know that if P and Q are
Sylow 5−subgroups of G, then P and Q are conjugate, which implies that CG(P ) and
CG(Q) are conjugate. Therefore m10 = φ(10) · n5 · k, where k is the number of cyclic
subgroups of order 2 in CG(P5). Since n5 = m5/φ(5) = 6, 24 | m10. Hence m10 = 24.
By Lemma 2.1, 10 | (1+ m2 +m5 +m10) = 74, a contradiction.

Therefore the group P2 acts fixed point freely on the set of elements of order 5. Then
|P2| | m5 = 24, which implies that |P2| | 8. Thus 100+ 20k1 +24k2 +30k3 = 2m × 3× 5,
where 0 ≤ k1 + k2 + k3 ≤ 4 and m ≤ 3. It is clear that 100 ≤ 2m × 3 × 5 ≤ 190, hence
m = 3. It is easy to check that the only solution of the equation is (k1, k2, k3) = (1, 0,
0). Thus |G| = 23×3×5, πe(G) = {1, 2, 3, 4, 5, 6}, and by the main result of [4], G ∼= S5.

Case 4. Let G be a group such that nse(G)=nse(S6)={1, 75, 80, 180, 144, 240}. First
we prove that π(G) ⊆ {2, 3, 5}. Since 75 ∈nse(G), it follows that 2 ∈ π(G) and m2 = 75.
Let 2 6= p ∈ π(G). By (∗), p ∈ {3, 5, 181, 241}. If 181 ∈ π(G), then by (∗), m181 = 180.
If 282 ∈ πe(G), then we conclude that m282 = 180, but by (∗), we get a contradiction.
Therefore 282 6∈ πe(G).

Since 282 6∈ πe(G), the group P181 acts fixed point freely on the set of elements of order
2. Then |P181| | m2, a contradiction. Similarly, if 241 ∈ π(G), we get a contradiction.
Hence π(G) ⊆ {2, 3, 5}.

If 3, 5 ∈ πe(G), then m3 = 80 and m5 = 144, by (∗). If 2i ∈ πe(G) for some
i ≥ 2, then 2i−1 = φ(2i) | m2i . Thus 2 ≤ i ≤ 5. If 3j ∈ πe(G) for some j ≥ 2,
then 2 × 3j−1 = φ(3j) | m3j . Then 2 ≤ j ≤ 3. If 5k ∈ πe(G) for some k ≥ 2, then
4 × 5k−1 | m5k and so k = 2. If 2a × 3b ∈ πe(G) for some a, b > 0, then 1 ≤ a ≤ 4 and
1 ≤ b ≤ 3. If 2a × 5b ∈ πe(G) for some a, b > 0, then 1 ≤ a ≤ 5 and 1 ≤ b ≤ 2. If
3a× 5b ∈ πe(G) for some a, b > 0, then 1 ≤ a ≤ 2 and 1 ≤ b ≤ 2. If 2a× 3b× 5c ∈ πe(G)
for some a, b, c > 0, then 1 ≤ a ≤ 3, 1 ≤ b ≤ 2 and 1 ≤ c ≤ 2.

Therefore πe(G) ⊆ { 1, 2, 22, 23, 24, 25, 3, 32, 32, 33, 5, 52}
⋃
{2a × 3b | 1 ≤ a ≤ 4,

1 ≤ b ≤ 3 }
⋃
{2a × 5b | 1 ≤ a ≤ 3, 1 ≤ b ≤ 2 }

⋃
{ 3a × 5b | 1 ≤ a ≤ 2, 1 ≤ b ≤ 2}

⋃
{ 2a × 3b × 5c | 1 ≤ a ≤ 3, 1 ≤ b ≤ 2, 1 ≤ c ≤ 2}.

Hence |G| = 2m × 3n × 5r = 720+ 80k1 + 144k2 + 180k3 + 240k4 where k1, k2, k2, m,
n and r are non-negative integers. Now we consider the following subcases:

Subcase (a). Suppose that π(G) = {2}. Then 360+ 40k1 +72k2 +90k3 +120k4 = 2m−1.
Since |πe(G)| ≤ 6, k1+k2+k3+k4 = 0. It is easy to see that this equation has no solution.

Subcase (b). Suppose that π(G) = {2, 5}. Since 53 6∈ πe(G), exp(P5) = 5 or 25. Let
exp(P5) = 5, then by Lemma 2.1, |P5| | (1 +m5) = 145. Hence |P5| = 5. On the other
hand, |πe(G)| ≤ 10. Therefore 720 + 80k1 + 144k2 + 180k3 + 240k4 = 2m × 5, where
0 ≤ k1 + k2 + k3 + k4 ≤ 4. Hence 5 | k2, then k2 = 0. It is easy to see that this equation
has no solution.



If exp(P5) = 25, then by Lemma 2.1, |P5| | (1 +m5 +m25). Hence |P5| = 25 and P5 is
cyclic. Thus n5 = m25/φ(25). Since m25 ∈ {80, 180}, n5 = 4 or 9, a contradiction.

Subcase (c). Suppose that π(G) = {2, 3}. Since 34 6∈ πe(G), exp(P3) = 3, 9 or 27.
Let exp(P3) = 3. Then |P3| | (1 + m3) = 81, by Lemma 2.1. If |P3| = 3, then
n3 = m3/φ(3) = 40 | |G|, we get a contradiction by 5 /∈ π(G).

If |P3| = 9, then |G| = 720 + 80k1 + 144k2 + 180k3 + 240k4 = 2m × 9. Since πe(G)
⊆ { 1, 2, 22, 23, 24, 25, 3, 3 × 2, 3 × 22, 3 × 23, 3 × 24}, 0 ≤ k1 + k2 + k3 + k4 ≤ 5. As
720 ≤ 2m × 9 ≤ 1920, m = 7. Therefore, 432 = 80k1 + 144k2 + 180k3 + 240k4. The only
solution of this equation is (k1, k2, k3, k4) = (0, 3, 0, 0). Then |πe(G)| = 9, it is clear
that exp(P2) = 16 or 32.

If exp(P2) = 16, then πe(G) = {1, 2, 3, 4, 6, 8, 12, 16, 24}. Since 48 6∈ πe(G), the
group P3 acts fixed point freely on the set of elements of order 16. Hence |P3| | m16. We
have m16 ∈ {144, 240}. If m16 = 240, we get a contradiction by |P3| | m16. If m16 = 144,
then by (∗), m24 = 240. If m8 = 144, then m4 = 180 and if m8 = 180, then m4 = 144.
By Lemma 2.1, |P2| | (1 +m2 +m4 +m8 +m16) = 544. Because |P2| = 27, we get a
contradiction.

If exp(P2) = 32, then πe(G) = {1, 2, 3, 4, 6, 8, 12, 16, 32}. Since 24, 48, 96 6∈ πe(G),
then the group P3 acts fixed point freely on the set of elements of order 8, 16 or 32.
Hence |P3| | m8, m16 or m32. We know that m8 ∈ {144, 180, 240}, if m8 = 144, then
by (∗), m4 = 180. Therefore m16 or m32 6= 144. Since |P3| | m16 or m32, we get a
contradiction. If m8 = 180, then m4 = 144. Thus m16 or m32 6= 144. Since |P3| | m16 or
m32, a contradiction. Similarly, if m8 = 240, we get a contradiction by |P3| | m8.

Suppose that |P3| = 27. Then |G| = 720 + 80k1 + 144k2 + 180k3 + 240k4 = 2m × 27
where 0 ≤ k1 + k2 + k3 + k4 ≤ 5. Hence 720 ≤ 2m × 27 ≤ 1920. Thus m = 5 or 6.

If m = 5, then 144 = 80k1+144k2+180k3+240k4. The only solution of this equation
is (k1, k2, k3, k4) = (0, 1, 0, 0). Thus |πe(G)| = 7, it is clear that exp(P2) = 8, 16 or 32.

If exp(P2) = 8, then πe(G) = {1, 2, 3, 4, 6, 8, 12}. Since 24 6∈ πe(G), the group P3

acts fixed point freely on the set of elements of order 8. Hence |P3| | m8, by m8 ∈ {144,
180, 240}, we get a contradiction.

If exp(P2) = 16, then πe(G) = {1, 2, 3, 4, 6, 8, 16}. Since 12 6∈ πe(G), the group P3

acts fixed point freely on the set of elements of order 4. Hence |P3| | m4. By m4 ∈ {144,
80, 240}, we get a contradiction.

If exp(P2) = 32, then πe(G) = {1, 2, 3, 4, 8, 16, 32}. Since 6 6∈ πe(G), the group
P3 acts fixed point freely on the set of elements of order 2. Hence |P3| | m2. This is a
contradiction because |P3| = 9.

If m = 6, then by arguing as above we can rule out this case. Also by arguing as
above we can rule out the case |P3| = 81.

Suppose that exp(P3) = 9. By (∗), m9 ∈ {144, 180}. Then |P3| | (1+m3+m9) = 225
or 261. Hence |P3| = 9 and n3 = m9/φ(9) ∈ {24, 30}, a contradiction.

If exp(P3) = 27, then by (∗), m27 ∈ {144, 180}. If P3 be a cyclic group, then since
exp(P3) = 27, n3 = m27/φ(27) ∈ {8, 10}. If n3 = 8, then we get a contradiction by
Sylow theorem and if n3 = 10, then since a cyclic group of order 27 have two elements of
order 3, m3 ≤ 10 × 2 = 20, a contradiction. Therefore P3 is not cyclic. By Lemma 2.3,
27 | m27, a contradiction.

Subcase (d). Suppose that π(G) = {2, 3, 5}. We know that exp(P5) = 5 and |P5| = 5.
Suppose that 15 ∈ πe(G), then m15 = φ(15) · n5 · k, where k is the number of cyclic
subgroups of order 3 in CG(P5). Since n5 = m5/φ(5) = 36, 288 | m15, a contradiction.
Thus 15 6∈ πe(G). Similarly, 10 6∈ πe(G).



Since 15 6∈ πe(G), the group P3 acts fixed point freely on the set of elements of order
5. Hence |P3| | m5 = 144. Then |P3| = 3 or 9. Since 10 6∈ πe(G), the group P2 acts fixed
point freely on the set of elements of order 5. Hence |P2| | m5 = 144. Then |P2| = 2m,
where 1 ≤ m ≤ 4. Therefore |G| = 720 + 80k1 + 144k2 + 180k3 + 240k4 = 2m × 3n × 5
where 1 ≤ m ≤ 4 and 1 ≤ n ≤ 2. The only solution of this equation is (k1, k2, k3, k4, m,
n) = (0, 0, 0, 0, 4, 2). Thus πe(G) = {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 8}, {1, 2, 3, 4, 5, 9}
or {1, 2, 3, 5, 6, 9}.

If πe(G) = {1, 2, 3, 4, 5, 9} or {1, 2, 3, 5, 6, 9}, then exp(P3) = 9 and |P3| = 9.
Because m9 ∈ {144, 180}, n3 = m9/φ(9) ∈ {24, 30}, we get a contradiction.

If πe(G) = {1, 2, 3, 4, 5, 8}, then 6 /∈ πe(G). Thus the group P3 acts fixed point
freely on the set of elements of order 2. So, |P3| | m2 = 75. Since |P3| = 9, we get a
contradiction.

Therefore πe(G) = {1, 2, 3, 4, 5, 6}. Now by the main result of [4], G ∼= S6.

Case 5. Let G be a group such that nse(G)=nse(S7)={1, 231, 350, 420, 504, 720, 840,
1470}. First we prove that π(G) ⊆ {2, 3, 5, 7}. Since 231 ∈nse(G), it follows that
2 ∈ π(G) and m2 = 231. Let 2 6= p ∈ π(G). By (∗), p ∈ {3, 5, 29, 421, 1471}. If
29 ∈ π(G), then m29 = 840. If 58 ∈ πe(G), then m58 ∈ {504, 420, 840}, but by (∗), we
get a contradiction. Thus 58 6∈ πe(G).

Since 58 6∈ πe(G), the group P29 acts fixed point freely on the set of elements of order
2. Then |P29| | m2 and this is a contradiction. Similarly, if 421 and 1471 ∈ π(G), we get
a contradiction. Hence π(G) ⊆ {2, 3, 5, 7}. If 3, 5, 7 ∈ πe(G), then m3 = 350, m5 = 504
and m7 = 720. It is clear that G does not contain any elements of order 64, 81, 125 and
343.

Let 25 ∈ πe(G). Thenm25 = 420 or 720 by (∗). By Lemma 2.1, |P5| | (1+m5+m25) =
920 or 1225. Hence |P5| = 25 and n5 = m25/φ(25) = 21 or 36. Since in a cyclic group of
order 25, there are four elements of order 5, so m5 ≤ 21× 4 = 84 or m5 ≤ 36× 4 = 144,
a contradiction. Therefore 25 /∈ πe(G).

Let 49 ∈ πe(G). Then m49 = 504. By Lemma 2.1, |P7| | (1+m7+m49) = 1225. Then
|P7| = 49, and so n7 = m49/φ(49) = 12. By Sylow’s theorem n7 = 1 + 7k for some k, as
n7 = 12, we get a contradiction. So 49 /∈ πe(G).

Therefore if 5, 7 ∈ π(G), then exp(P5) = 5 and exp(P7) = 7, and by Lemma 2.1,
|P5| = 5 and |P7| = 7. Hence n5 = m5/φ(5) = 2× 9× 7 and n7 = m7/φ(7) = 8× 3× 5.
We conclude that if 5 ∈ π(G), then 3, 7 ∈ π(G), and if 7 ∈ πe(G), then 3, 5 ∈ πe(G). In
follows, we show that π(G) could not be the sets {2}, {2, 3}, and so π(G) must be equal
to {2, 3, 5, 7}. Now we consider the following subcases:

Subcase (a). Suppose that π(G) = {2}. Since 64 /∈ πe(G), πe(G) ⊆ {1, 2, 4, 8, 16,
32}. Therefore |G| = 2m = 4536+350k1+504k2+420k3+720k4+840k5+1470k6 where
k1 + k2 + k3 + k4 + k5 + k6 = 0. It is easy to see that this equation has no solution.

Subcase (b). Suppose that π(G) = {2, 3}. Since 81 /∈ πe(G), exp(P3) = 3, 9 or 27.
Let exp(P3) = 3. Then |P3| | (1+m3) = 351, by Lemma 2.1. Hence |P3| | 27. If |P3| = 3,
then n3 = m3/φ(3) = 175 | |G|, because 5 /∈ π(G), we get a contradiction.

If |P3| = 9, then since exp(P3) = 3 and 64, 96 /∈ πe(G), |πe(G)| ≤ 11. Therefore
|G| = 2m × 9 = 4536 + 350k1 + 504k2 + 420k3 + 720k4 + 840k5 + 1470k6, where k1, k2,
k3, k4, k5, k6 and m are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 + k6 ≤ 3.

We know that 4536 ≤ 2m × 9 ≤ 4536 + 1470 × 3, so m = 10. Then 4680 = 4536 +
350k1+504k2+420k3+720k4+840k5+1470k6 where 0 ≤ k1+k2+k3+k4+k5+k6 ≤ 3.
By an easy computer calculation, it is easy to see this equation has no solution.

Similarly, we can rule out the case |P3| = 27.



Let exp(P3) = 9. By (∗), m9 ∈ {504, 720}. Hence by Lemma 2.1, |P3| = 9. Therefore
n3 = m9/φ(9) ∈ {84,120}. Because 5, 7 /∈ π(G), we get a contradiction.

If exp(P3) = 27, then m27 ∈ {504, 720}. If P3 be a cyclic group, then since exp(P3) =
27, n3 = m27/φ(27) ∈ {28, 40}. Because 5, 7 /∈ π(G), we get a contradiction. Thus P3 is
not cyclic. By Lemma 2.3, 27 | m27, a contradiction.
Therefore π(G) = {2, 3, 5, 7}. We prove that 21 /∈ πe(G). Suppose that 21 ∈ πe(G).
Then m21 = φ(21) · n7 · k, where k is the number of cyclic subgroups of order 3 in
CG(P7). Since n7 = m7/φ(7) = 120, 720 | m21, a contradiction. Thus 21 6∈ πe(G).
Similarly, 14 /∈ πe(G).

Since 21 /∈ πe(G), the group P3 acts fixed point freely on the set of elements of order
7. Hence |P3| | m7 = 720. Then |P3| = 3 or 9. Also since 14 /∈ πe(G), the group P2

acts fixed point freely on the set of elements of order 7. Hence |P2| | m7 = 720. Then
|P2| | 16. On the other hand, 4536 ≤ |G|, thus |G| = 24 × 32 × 5× 7 = |S7|.

Now we claim thatG is non-solvable group. Suppose thatG is solvable. Since n7 = 120
by Lemma 2.4, 3 ≡ 1 (mod 7), a contradiction. Hence G is non-solvable group and p‖|G|,
where p ∈ {5, 7}. Therefore G has a normal series

1 E N E H E G

such that N is a maximal solvable normal subgroup of G and H/N is an non-solvable
minimal normal subgroup of G/N . Then H/N is a non-Abelian simple K3−group or
simple K4−group. If H/N be simple K3− group, then by Lemma 2.6, H/N is isomorphic
to one of the groups: A5 , A6, L2(7) or L2(8).

Suppose that H/N ∼= A5. If P5 ∈Syl5(G), then P5N/N ∈Syl5(H/N), n5(H/N)t =
n5(G) for some positive integer t and 5 - t, by Lemma 2.5. Since n5(A5) = 6, n5(G) = 6t.
Thus m5 = n5(G)× 4 = 24t = 504 and so t = 21. By Lemma 2.5, 21× |NN (P5)| = |N |.
Since |N | | 23 × 3× 7, then n7(N) = 1or 8. So m7 = 6 or 48, a contradiction.

Suppose that H/N ∼= A6. If P5 ∈Syl5(G), then P5N/N ∈Syl5(H/N), n5(H/N)t =
n5(G) for some positive integer t and 5 - t, by Lemma 2.5. Since n5(A6) = 36, n5(G) =
36t and m5 = n5(G)× 4 = 144t = 504, a contradiction.

Suppose that H/N ∼= L2(7). If P7 ∈Syl7(G), then P7N/N ∈Syl7(H/N), n7(H/N)t =
n7(G) for some positive integer t and 7 - t, by Lemma 2.5. Since n7(L2(7)) = 8, n7(G) =
8t and m7 = n7(G)×6 = 48t = 720. Hence t = 15. By Lemma 2.5, 15×|NN (P7)| = |N |.
Since |N | | 2× 32 × 5, n5(N) = 1 or 6. So m5 = 4 or 24, a contradiction.

Similarly, if H/N ∼= L2(8), we get a contradiction. Hence H/N is simple K4−group.
Then by Lemma 2.7, H/N is isomorphic to A7. Now set H := H/N ∼= A7 and G := G/N .
We have

A7
∼= H ∼= HCG(H)/CG(H) ≤ G/CG(H) = NG(H)/CG(H) ≤Aut(H).

LetK = {x ∈ G | xN ∈ CG(H)}, thenG/K ∼= G/CG(H). HenceA7 ≤ G/K ≤Aut(A7).
Then G/K ∼= A7 or G/K ∼= S7. If G/K ∼= A7, then |K| = 2. We have N ≤ K and N is
a maximal solvable normal subgroup of G, then N = K. Now we know that G/N ∼= A7

where |N | = 2, so G has a normal subgroup G of order 2, generated by a central in-
volution z. Let x be an element of order 7 in G. Since xz = zx and (o(x), o(z)) = 1,
o(xz) = 14.

Hence 14 ∈ πe(G). We know 14 /∈ πe(G), a contradiction.
If G/K ∼= S7, then |K| = 1 and G ∼= S7. Now the proof of the main theorem is

complete.
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