A new characterization of symmetric groups for some n

Alireza Khalili Asboei* , Seyed Sadegh Salehi Amiri ${ }^{\dagger}$ and Ali Iranmanesh ${ }^{\ddagger}$

Received 28: 10: 2011 : Accepted 19: 08: 2013

Abstract

Let G be a finite group and let $\pi_{e}(G)$ be the set of element orders G. Let $k \in \pi_{e}(G)$ and let m_{k} be the number of elements of order k in G. Set nse $(G):=\left\{m_{k} \mid k \in \pi_{e}(G)\right\}$. In this paper, we prove that if G is a group such that nse $(G)=\operatorname{nse}\left(S_{n}\right)$ where $n \in\{3,4,5,6,7\}$, then $G \cong S_{n}$.

2000 AMS Classification: 20D60, 20D06
Keywords: Symmetric group, element order, set of the numbers of elements of the same order

1. Introduction

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Denote by $\pi(G)$ the set of primes p such that G contains an element of order p. Also the set of element orders of G is denoted by $\pi_{e}(G)$. A finite group G is called a simple K_{n}-group, if G is a simple group with $|\pi(G)|=n$. Set $m_{i}=m_{i}(G)=\mid\{g \in G \mid$ the order of g is $i\} \mid$ and $\operatorname{nse}(G):=\left\{m_{i} \mid i \in \pi_{e}(G)\right\}$.

Let $L_{t}(G):=\left\{g \in G \mid g^{t}=1\right\}$. Then G_{1} and G_{2} are of the same order type if and only if $\left|L_{t}\left(G_{1}\right)\right|=\left|L_{t}\left(G_{2}\right)\right|, t=1,2, \ldots$. The idea of this paper springs from Thompson's Problem as follows:

Thompson's Problem. Suppose that G_{1} and G_{2} are of the same order type. If G_{1} is solvable, is it true that G_{2} is also necessarily solvable?

Unfortunately, as so far, no one can prove it completely, or even give a counterexample. However, if groups G_{1} and G_{2} are of the same order type, we see clearly that $\left|G_{1}\right|=\left|G_{2}\right|$

[^0]and $\operatorname{nse}\left(G_{1}\right)=\operatorname{nse}\left(G_{2}\right)$. So it is natural to investigate the Thompson's Problem by $|G|$ and nse (G).

In [13], it is proved that all simple K_{4}-groups can be uniquely determined by nse (G) and $|G|$. Further, it is claimed that some simple groups could be characterized by exactly the set nse without considering group order. For instance, in [3, 12], it is proved that the alternating groups A_{n} where $n \in\{4,5,6,7,8\}$ are uniquely determined by nse (G). Also in [10], it is proved that $L_{2}(q)$ where $q \in\{7,8,11,13\}$ are uniquely determined by nse (G). Analogously, for infinite simple groups, there are also some interesting results: In [1], the author prove that $G \cong \mathrm{PGL}_{2}(p)$ if and only the two conditions hold: (1) $p \in \pi(G)$ but $p^{2} \nmid|G| ;(2) \operatorname{nse}(G)=\operatorname{nse}\left(\mathrm{PGL}_{2}(p)\right)$, where $p>3$ is a prime. In [2], the authors proved that all sporadic groups characterizable by nse (G) and $|G|$.

In this paper we show that the symmetric group S_{n} is characterizable by nse (G) for $n \in\{3,4,5,6,7\}$. In fact the main theorem of our paper is as follows:

Main Theorem: Let G be a group such that $\operatorname{nse}(G)=\operatorname{nse}\left(S_{n}\right)$ where $n \in\{3,4,5$, $6,7\}$. Then $G \cong S_{n}$.

Note that not all groups can be characterized by nse (G) and $|G|$. For instance, in 1987, Thompson gave an example as follows: Let $G_{1}=\left(C_{2} \times C_{2} \times C_{2} \times C_{2}\right) \rtimes A_{7}$ and $G_{2}=$ $L_{3}(4) \rtimes C_{2}$ be the maximal subgroups of M_{23}, where M_{23} is the Mathieu group of degree 23. Although nse $\left(G_{1}\right)=\operatorname{nse}\left(G_{2}\right)$ and $\left|G_{1}\right|=\left|G_{2}\right|$, we still have $G_{1} \neq G_{2}$.

Throughout this paper, we denote by ϕ the Euler totient function. If G is a finite group, then we denote by P_{q} a Sylow q-subgroup of G and $n_{q}(G)$ is the number of Sylow q-subgroup of G, that is, $n_{q}(G)=\left|\operatorname{Syl}_{q}(G)\right|$. All other notations are standard and we refer to [5], for example.

2. Some lemmas

In this section we collect some preliminary lemmas used in the proof of the main theorem.
Lemma 2.1. [6] Let G be a finite group and m be a positive integer dividing $|G|$. If $L_{m}(G)=\left\{g \in G \mid g^{m}=1\right\}$, then $m\left|\left|L_{m}(G)\right|\right.$.

Lemma 2.2. [12] Let G be a group containing more than two elements. Let $k \in \pi_{e}(G)$ and m_{k} be the number of elements of order k in G. If $s=\sup \left\{m_{k} \mid k \in \pi_{e}(G)\right\}$ is finite, then G is finite and $|G| \leq s\left(s^{2}-1\right)$.

Lemma 2.3. [11] Let G be a finite group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow p-subgroup of G and $n=p^{s} m$ where $(p, m)=1$. If P is not cyclic and $s>1$, then the number of elements of order n is always a multiple of p^{s}.

Lemma 2.4. [8] Let G be a finite solvable group and $|G|=m \cdot n$, where $m=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$, $(m, n)=1$. Let $\pi=\left\{p_{1}, \ldots, p_{r}\right\}$ and let h_{m} be the number of π-Hall subgroups of G. Then $h_{m}=q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$ satisfies the following conditions for all $i \in\{1,2, \ldots, s\}$:
(1) $q_{i}^{\beta_{i}} \equiv 1\left(\bmod p_{j}\right)$, for some p_{j}.
(2) The order of some chief factor of G is divisible by $q_{i}^{\beta_{i}}$.

Lemma 2.5. [13] Let G be a finite group, $P \in \operatorname{Syl}_{p}(G)$ where $p \in \pi(G)$. Let G have a normal series $K \unlhd L \unlhd G$. If $P \leq L$ and $p \nmid|K|$, then the following hold:
(1) $N_{G / K}(P K / K)=N_{G}(P) K / K$;
(2) $\left|G: N_{G}(P)\right|=\left|L: N_{L}(P)\right|$, that is, $n_{p}(G)=n_{p}(L)$;
(3) $\left|L / K: N_{L / K}(P K / K)\right| t=\left|G: N_{G}(P)\right|=\left|L: N_{L}(P)\right|$, that is, $n_{p}(L / K) t=$
$n_{p}(G)=n_{p}(L)$ for some positive integer t, and $\left|N_{K}(P)\right| t=|K|$.
Lemma 2.6. [9] If G is a simple K_{3} - group, then G is isomorphic to one of the following groups: $A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3)$ or $U_{4}(2)$.

Lemma 2.7. [14] Let G be a simple group of order $2^{a} \cdot 3^{b} \cdot 5 \cdot p^{c}$ where $p \notin\{2,3$, $5\}$ is a prime and $a b c \neq 0$. Then G is isomorphic to one of the following groups: A_{7}, $A_{8}, A_{9} ; M_{11}, M_{12} ; L_{2}(q), q=11,16,19,31,81 ; L_{3}(4), L_{4}(3), S_{6}(2), U_{4}(3)$ or $U_{5}(2)$. In particular, if $p=11$, then $G \cong M_{11}, M_{12}, L_{2}(11)$ or $U_{5}(2)$; if $p=7$, then $G \cong A_{7}, A_{8}$, $A_{9}, A_{10}, L_{2}(49), L_{3}(4), S_{4}(7), S_{6}(2), U_{3}(5), U_{4}(3), J_{2}$, or $O_{8}^{+}(2)$.

Let G be a group such that nse $(G)=\operatorname{nse}\left(S_{n}\right)$ where $n \in\{3,4,5,6,7\}$. By Lemma 2.2 , we can assume that G is finite. Let m_{n} be the number of elements of order n. We note that $m_{n}=k \phi(n)$, where k is the number of cyclic subgroups of order n in G. Also we note that if $n>2$, then $\phi(n)$ is even. If $n||G|$, then by Lemma 2.1 and the above notation, we have

$$
\left\{\begin{array}{l}
\phi(n) \mid m_{n} \tag{*}\\
n \mid \sum_{d \mid n} m_{d}
\end{array}\right.
$$

In the proof of the main theorem, we often apply $(*)$ and the above comments.

3. Proof of the Main Theorem.

Case 1. Let G be a group such that nse $(G)=\mathrm{nse}\left(S_{3}\right)=\{1,2,3\}$. First we prove that $\pi(G) \subseteq\{2,3\}$. Since $3 \in \operatorname{nse}(G)$, it follows that by $(*), 2 \in \pi(G)$ and $m_{2}=3$. Let $2 \neq p \in \pi(G)$. By $(*), p \mid\left(1+m_{p}\right)$ and $(p-1) \mid m_{p}$, which implies that $p=3$. Thus $\pi(G) \subseteq\{2,3\}$. If $3 \in \pi(G)$, then $m_{3}=2$. If $6 \in \pi_{e}(G)$, then by $(*)$, $m_{6}=2$ and $6 \mid\left(1+m_{2}+m_{3}+m_{6}\right)=8$, a contradiction. If $2^{i} \in \pi_{e}(G)$ for some $i \geq 2$, then $2^{i-1}=\phi\left(2^{i}\right) \mid m_{2^{i}}=2$. So $i=2$. If $3^{j} \in \pi_{e}(G)$ for some $j \geq 2$, then $2 \times 3^{j-1}=\phi\left(3^{j}\right) \mid m_{3^{j}}=2$, a contradiction. Therefore, $\pi_{e}(G) \subseteq\{1,2,3,4\}$ and $|G|=6+2 k=2^{m} \times 3^{n}$ where k, m and n are non-negative integers. Now we consider the following subcases:

Subcase (a). If $\pi(G)=\{2\}$, then $\pi_{e}(G) \subseteq\{1,2,4\}$. Since $\left|\pi_{e}(G)\right| \leq 3,|G|=2^{m}=6+2 k$ $\overline{\text { where } k=0}$, a contradiction.

Subcase (b). If $\pi(G)=\{2,3\}$, then since $|G|=6+2 k=2^{m} \times 3^{n}$ and $\left|\pi_{e}(G)\right| \leq 4$, $\overline{0 \leq k \leq 1}$. It easy to check that the only solution of the equation is $(k, m, n)=(0,1$, $1)$. Thus $|G|=6, \pi_{e}(G)=\{1,2,3\}$. Therefore, $G \cong S_{3}$.

Case 2. Let G be a group such that nse $(G)=\operatorname{nse}\left(S_{4}\right)=\{1,6,8,9\}$. First we prove that $\pi(G) \subseteq\{2,3\}$. Since $9 \in$ nse (G), it follows that by $(*), 2 \in \pi(G)$ and $m_{2}=9$. Let $2 \neq p \in \pi(G)$. By $(*), p \in\{3,7\}$. Thus $\pi(G) \subseteq\{2,3,7\}$. If $7 \in \pi(G)$, then $m_{7}=6$.

We prove that $14 \notin \pi_{e}(G)$. If $14 \in \pi_{e}(G)$, then $m_{14}=6$, by $(*)$. On the other hand, $14 \mid\left(1+m_{2}+m_{7}+m_{14}\right)=22$, a contradiction. Therefore, the group P_{7} acts fixed point freely on the set of elements of order 2. Hence $\left|P_{7}\right| \mid m_{2}=9$, a contradiction. Hence $\pi(G) \subseteq\{2,3\}$. If $3 \in \pi(G)$, then by $(*), m_{3}=8$. It is clear that by $(*), G$ does not contain any elements of order 6 and 9 .

If $2^{i} \in \pi(G)$ for some $i \geq 2$, then $2^{i-1} \mid m_{2^{i}}$ where $m_{2^{i}} \in\{6,8\}$. So $2 \leq i \leq 4$. Also by $(*), m_{4}=6, m_{8}=8$ and $m_{16}=8$. Therefore $\pi_{e}(G) \subseteq\{1,2,3,4,8,16\}$ and
$|G|=24+6 k_{1}+8 k_{2}=2^{m} \times 3^{n}$ where k_{1}, k_{2}, m and n are non-negative integers. Now we consider the following subcases:

Subcase (a). If $\pi(G)=\{2\}$, then since $|G|=24+6 k_{1}+8 k_{2}=2^{m}$ and $\left|\pi_{e}(G)\right| \leq 6$, $\overline{0 \leq k_{1}+k_{2}} \leq 1$. It easy to check that the only solution is $\left(k_{1}, k_{2}, m\right)=(0,1,5)$. Thus $|G|=2^{5}$ and $\pi_{e}(G)=\{1,2,4,8,16\}$. But all groups of order 32 with element of order 16 are known, in particular, there are only four such non-Abelian groups by [7] (see, Chapter 5, Theorem 4.4). Since nse of such non-Abelian groups are not equal to nse (G), it is impossible.

Subcase (b). Suppose that $\pi(G)=\{2,3\}$. By assumption $|G|=24+6 k_{1}+8 k_{2}=2^{m} \times 3^{n}$. $\overline{\text { Since } \mid \pi_{e}(G)} \mid \leq 6,0 \leq k_{1}+k_{2} \leq 2$. Hence $12+3 k_{1}+4 k_{2}=2^{m-1} \times 3^{n}$. Since $3 \mid k_{2}$, it follows that $k_{2}=0$. It easy to check that the only solutions of equation are $\left(k_{1}, k_{2}, m\right.$, $n)=(0,0,3,1)$ or $(2,0,2,2)$.

If $\left(k_{1}, k_{2}, m, n\right)=(2,0,2,2)$, then $|G|=36$ and $\left|\pi_{e}(G)\right|=6$. On the other hand, $\left|P_{2}\right|=4$ so $\pi_{e}(G)=\{1,2,3,4\}$, a contradiction.

Therefore $\left(k_{1}, k_{2}, m, n\right)=(0,0,3,1),|G|=24$ and $\pi_{e}(G)=\{1,2,3,4\}$, which implies that $G \cong S_{4}$.

Case 3. Let G be a group such that nse $(G)=\operatorname{nse}\left(S_{5}\right)=\{1,20,24,25,30\}$. First we prove that $\pi(G) \subseteq\{2,3,5\}$. Since $25 \in$ nse (G), it follows that $2 \in \pi(G)$ and $m_{2}=25$. Let $2 \neq p \in \pi(G)$. $\mathrm{By}(*), p \in\{3,5,31\}$.

If $p=31$, then $m_{31}=30$. On the other hand, if $62 \in \pi_{e}(G)$, then $m_{62}=30$ and $62 \mid 1+m_{2}+m_{31}+m_{62}=86$, a contradiction. So $62 \notin \pi_{e}(G)$. Then the group P_{31} acts fixed point freely on the set of elements of order 2 . Thus $\left|P_{31}\right| \mid m_{2}$, a contradiction.

Therefore, $\pi(G) \subseteq\{2,3,5\}$. If $3,5 \in \pi(G)$, then $m_{3}=20$ and $m_{5}=24$. It is clear that by $(*), G$ does not contain any elements of order $15,16,18$ or 25 . If $4,16 \in \pi_{e}(G)$, then $m_{4}=30$ and $m_{8}=24$. If $2^{i} \in \pi_{e}(G)$ for some $i \geq 2$, then $2^{i-1} \mid m_{2^{i}}$ where $m_{2^{i}} \in\{20,24,30\}$. Hence $2 \leq i \leq 3$. If $3^{j} \in \pi_{e}(G)$ for some $j \geq 2$, then $2 \times 3^{2^{j-1}} \mid m_{3^{j}}$ where $m_{3^{j}} \in\{24,30\}$. Thus $j=2$. If $5^{k} \in \pi_{e}(G)$ for some $k \geq 2$, then $4 \times 5^{k-1} \mid m_{5^{k}}$ where $m_{5^{k}} \in\{20,24\}$. Thus $k=2$. Since $25 \notin \pi_{e}(G)$, we get a contradiction.

Therefore $\pi_{e}(G) \subseteq\{1,2,3,4,5,6,8,9,10,12,24\}$ and $|G|=100+20 k_{1}+24 k_{2}+30 k_{3}=$ $2^{m} \times 3^{n} \times 5^{r}$ where $k_{1}, k_{2}, k_{2}, m, n$ and r are non-negative integers. Now we consider the following subcases:

Subcase (a). Suppose that $\pi(G)=\{2\}$. Then $\left|\pi_{e}(G)\right| \leq 4$. Since nse (G) have five elements and $\left|\pi_{e}(G)\right| \leq 4$, we get a contradiction.

Subcase (b). Suppose that $\pi(G)=\{2,5\}$. Then $|G|=100+20 k_{1}+24 k_{2}+30 k_{3}=2^{m} \times 5^{n}$ and by $\left|\pi_{e}(G)\right| \leq 6$, we have $0 \leq k_{1}+k_{2}+k_{3} \leq 1$. Hence $5 \mid k_{2}$, which implies that $k_{2}=0$, and so $50+10 k_{1}+15 k_{3}=2^{m-1} \times 5^{n}$. Hence $2 \mid k_{3}$, which implies that $k_{3}=0$. It is easy to check that the only solution of the equation is $\left(k_{1}, k_{2}, k_{3}, m, n\right)=(0,0,0$, 2,2). Thus $|G|=2^{2} \times 5^{2}$. It is clear that $\pi_{e}(G)=\{1,2,4,5,10\}$, and so $\exp \left(P_{2}\right)=4$. Then P_{2} is cyclic. Thus $n_{2}=m_{4} / \phi(4)=15$. Since every cyclic Sylow 2 -subgroup has one element of order $2, m_{2} \leq 15$, a contradiction.

Subcase (c). Suppose that $\pi(G)=\{2,3\}$. Since $27 \notin \pi_{e}(G), \exp \left(P_{3}\right)=3$ or 9 . If $\overline{\exp \left(P_{3}\right)=3}$, then $\pi_{e}(G) \subseteq\{1,2,3,4,6,8,12,24\}$. By Lemma 2.1, $\left|P_{3}\right| \mid\left(1+m_{3}\right)=21$. Hence $\left|P_{3}\right|=3$. Therefore, $100+20 k_{1}+24 k_{2}+30 k_{3}=2^{m} \times 3=|G|$ and $0 \leq k_{1}+k_{2}+k_{3} \leq$
3. It is clear that $100 \leq 2^{m} \times 3 \leq 190$. Hence $m=6$ and $20 k_{1}+24 k_{2}+30 k_{3}=92$. It is easy to check that the equation has no solution.

If $\exp \left(P_{3}\right)=9$, then since $m_{9}=24,\left|P_{3}\right| \mid\left(1+m_{3}+m_{9}\right)=45$. Hence $\left|P_{3}\right|=9$ and $n_{3}=m_{9} / \phi(9)=4$. Since a cyclic group of order 9 have two elements of order 3, $m_{3} \leq 4 \times 2=8$, a contradiction.

Subcase (d). Suppose that $\pi(G)=\{2,3,5\}$. Since G has no element of order 15 , the group P_{5} acts fixed point freely on the set of elements of order 3. Thus $\left|P_{5}\right| \mid m_{3}=20$, which implies that $r=1$. Similarly, the group P_{3} acts fixed point freely on the set of elements of order 5. Thus $\left|P_{3}\right| \mid m_{5}=24$, which implies that $n=1$.

We will show $10 \notin \pi_{e}(G)$. Suppose that $10 \in \pi_{e}(G)$. We know that if P and Q are Sylow 5-subgroups of G, then P and Q are conjugate, which implies that $C_{G}(P)$ and $C_{G}(Q)$ are conjugate. Therefore $m_{10}=\phi(10) \cdot n_{5} \cdot k$, where k is the number of cyclic subgroups of order 2 in $C_{G}\left(P_{5}\right)$. Since $n_{5}=m_{5} / \phi(5)=6,24 \mid m_{10}$. Hence $m_{10}=24$. By Lemma 2.1, $10 \mid\left(1+m_{2}+m_{5}+m_{10}\right)=74$, a contradiction.

Therefore the group P_{2} acts fixed point freely on the set of elements of order 5. Then $\left|P_{2}\right| \mid m_{5}=24$, which implies that $\left|P_{2}\right| \mid 8$. Thus $100+20 k_{1}+24 k_{2}+30 k_{3}=2^{m} \times 3 \times 5$, where $0 \leq k_{1}+k_{2}+k_{3} \leq 4$ and $m \leq 3$. It is clear that $100 \leq 2^{m} \times 3 \times 5 \leq 190$, hence $m=3$. It is easy to check that the only solution of the equation is $\left(k_{1}, k_{2}, k_{3}\right)=(1,0$, 0). Thus $|G|=2^{3} \times 3 \times 5, \pi_{e}(G)=\{1,2,3,4,5,6\}$, and by the main result of [4], $G \cong S_{5}$.

Case 4. Let G be a group such that $\operatorname{nse}(G)=\operatorname{nse}\left(S_{6}\right)=\{1,75,80,180,144,240\}$. First we prove that $\pi(G) \subseteq\{2,3,5\}$. Since $75 \in$ nse (G), it follows that $2 \in \pi(G)$ and $m_{2}=75$. Let $2 \neq p \in \pi(G)$. By $(*), p \in\{3,5,181,241\}$. If $181 \in \pi(G)$, then by $(*), m_{181}=180$. If $282 \in \pi_{e}(G)$, then we conclude that $m_{282}=180$, but by $(*)$, we get a contradiction. Therefore $282 \notin \pi_{e}(G)$.

Since $282 \notin \pi_{e}(G)$, the group P_{181} acts fixed point freely on the set of elements of order 2. Then $\left|P_{181}\right| \mid m_{2}$, a contradiction. Similarly, if $241 \in \pi(G)$, we get a contradiction. Hence $\pi(G) \subseteq\{2,3,5\}$.

If $3,5 \in \pi_{e}(G)$, then $m_{3}=80$ and $m_{5}=144$, by $(*)$. If $2^{i} \in \pi_{e}(G)$ for some $i \geq 2$, then $2^{i-1}=\phi\left(2^{i}\right) \mid m_{2^{i}}$. Thus $2 \leq i \leq 5$. If $3^{j} \in \pi_{e}(G)$ for some $j \geq 2$, then $2 \times 3^{j-1}=\phi\left(3^{j}\right) \mid m_{3^{j}}$. Then $2 \leq j \leq 3$. If $5^{k} \in \pi_{e}(G)$ for some $k \geq 2$, then $4 \times 5^{k-1} \mid m_{5^{k}}$ and so $k=2$. If $2^{a} \times 3^{b} \in \pi_{e}(G)$ for some $a, b>0$, then $1 \leq a \leq 4$ and $1 \leq b \leq 3$. If $2^{a} \times 5^{b} \in \pi_{e}(G)$ for some $a, b>0$, then $1 \leq a \leq 5$ and $1 \leq b \leq 2$. If $3^{a} \times 5^{b} \in \pi_{e}(G)$ for some $a, b>0$, then $1 \leq a \leq 2$ and $1 \leq b \leq 2$. If $2^{a} \times 3^{b} \times 5^{c} \in \pi_{e}(G)$ for some $a, b, c>0$, then $1 \leq a \leq 3,1 \leq b \leq 2$ and $1 \leq c \leq 2$.

Therefore $\pi_{e}(G) \subseteq\left\{1,2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 3,3^{2}, 3^{2}, 3^{3}, 5,5^{2}\right\} \cup\left\{2^{a} \times 3^{b} \mid 1 \leq a \leq 4\right.$, $1 \leq b \leq 3\} \cup\left\{2^{a} \times 5^{b} \mid 1 \leq a \leq 3,1 \leq b \leq 2\right\} \cup\left\{3^{a} \times 5^{b} \mid 1 \leq a \leq 2,1 \leq b \leq 2\right\} \cup$ $\left\{2^{a} \times 3^{b} \times 5^{c} \mid 1 \leq a \leq 3,1 \leq b \leq 2,1 \leq c \leq 2\right\}$.

Hence $|G|=2^{m} \times 3^{n} \times 5^{r}=720+80 k_{1}+144 k_{2}+180 k_{3}+240 k_{4}$ where k_{1}, k_{2}, k_{2}, m, n and r are non-negative integers. Now we consider the following subcases:

Subcase (a). Suppose that $\pi(G)=\{2\}$. Then $360+40 k_{1}+72 k_{2}+90 k_{3}+120 k_{4}=2^{m-1}$. $\overline{\text { Since }\left|\pi_{e}(G)\right|} \leq 6, k_{1}+k_{2}+k_{3}+k_{4}=0$. It is easy to see that this equation has no solution.

Subcase (b). Suppose that $\pi(G)=\{2,5\}$. Since $5^{3} \notin \pi_{e}(G), \exp \left(P_{5}\right)=5$ or 25 . Let $\overline{\exp \left(P_{5}\right)=5}$, then by Lemma 2.1, $\left|P_{5}\right| \mid\left(1+m_{5}\right)=145$. Hence $\left|P_{5}\right|=5$. On the other hand, $\left|\pi_{e}(G)\right| \leq 10$. Therefore $720+80 k_{1}+144 k_{2}+180 k_{3}+240 k_{4}=2^{m} \times 5$, where $0 \leq k_{1}+k_{2}+k_{3}+k_{4} \leq 4$. Hence $5 \mid k_{2}$, then $k_{2}=0$. It is easy to see that this equation has no solution.

If $\exp \left(P_{5}\right)=25$, then by Lemma 2.1, $\left|P_{5}\right| \mid\left(1+m_{5}+m_{25}\right)$. Hence $\left|P_{5}\right|=25$ and P_{5} is cyclic. Thus $n_{5}=m_{25} / \phi(25)$. Since $m_{25} \in\{80,180\}, n_{5}=4$ or 9 , a contradiction.

Subcase (c). Suppose that $\pi(G)=\{2,3\}$. Since $3^{4} \notin \pi_{e}(G), \exp \left(P_{3}\right)=3,9$ or 27 . Let $\exp \left(P_{3}\right)=3$. Then $\left|P_{3}\right| \mid\left(1+m_{3}\right)=81$, by Lemma 2.1. If $\left|P_{3}\right|=3$, then $n_{3}=m_{3} / \phi(3)=40| | G \mid$, we get a contradiction by $5 \notin \pi(G)$.

If $\left|P_{3}\right|=9$, then $|G|=720+80 k_{1}+144 k_{2}+180 k_{3}+240 k_{4}=2^{m} \times 9$. Since $\pi_{e}(G)$ $\subseteq\left\{1,2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 3,3 \times 2,3 \times 2^{2}, 3 \times 2^{3}, 3 \times 2^{4}\right\}, 0 \leq k_{1}+k_{2}+k_{3}+k_{4} \leq 5$. As $720 \leq 2^{m} \times 9 \leq 1920, m=7$. Therefore, $432=80 k_{1}+144 k_{2}+180 k_{3}+240 k_{4}$. The only solution of this equation is $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(0,3,0,0)$. Then $\left|\pi_{e}(G)\right|=9$, it is clear that $\exp \left(P_{2}\right)=16$ or 32 .

If $\exp \left(P_{2}\right)=16$, then $\pi_{e}(G)=\{1,2,3,4,6,8,12,16,24\}$. Since $48 \notin \pi_{e}(G)$, the group P_{3} acts fixed point freely on the set of elements of order 16. Hence $\left|P_{3}\right| \mid m_{16}$. We have $m_{16} \in\{144,240\}$. If $m_{16}=240$, we get a contradiction by $\left|P_{3}\right| \mid m_{16}$. If $m_{16}=144$, then by $(*), m_{24}=240$. If $m_{8}=144$, then $m_{4}=180$ and if $m_{8}=180$, then $m_{4}=144$. By Lemma 2.1, $\left|P_{2}\right| \mid\left(1+m_{2}+m_{4}+m_{8}+m_{16}\right)=544$. Because $\left|P_{2}\right|=2^{7}$, we get a contradiction.

If $\exp \left(P_{2}\right)=32$, then $\pi_{e}(G)=\{1,2,3,4,6,8,12,16,32\}$. Since 24, 48, $96 \notin \pi_{e}(G)$, then the group P_{3} acts fixed point freely on the set of elements of order 8,16 or 32 . Hence $\left|P_{3}\right| \mid m_{8}, m_{16}$ or m_{32}. We know that $m_{8} \in\{144,180,240\}$, if $m_{8}=144$, then by $(*), m_{4}=180$. Therefore m_{16} or $m_{32} \neq 144$. Since $\left|P_{3}\right| \mid m_{16}$ or m_{32}, we get a contradiction. If $m_{8}=180$, then $m_{4}=144$. Thus m_{16} or $m_{32} \neq 144$. Since $\left|P_{3}\right| \mid m_{16}$ or m_{32}, a contradiction. Similarly, if $m_{8}=240$, we get a contradiction by $\left|P_{3}\right| \mid m_{8}$.

Suppose that $\left|P_{3}\right|=27$. Then $|G|=720+80 k_{1}+144 k_{2}+180 k_{3}+240 k_{4}=2^{m} \times 27$ where $0 \leq k_{1}+k_{2}+k_{3}+k_{4} \leq 5$. Hence $720 \leq 2^{m} \times 27 \leq 1920$. Thus $m=5$ or 6 .

If $m=5$, then $144=80 k_{1}+144 k_{2}+180 k_{3}+240 k_{4}$. The only solution of this equation is $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(0,1,0,0)$. Thus $\left|\pi_{e}(G)\right|=7$, it is clear that $\exp \left(P_{2}\right)=8,16$ or 32 .

If $\exp \left(P_{2}\right)=8$, then $\pi_{e}(G)=\{1,2,3,4,6,8,12\}$. Since $24 \notin \pi_{e}(G)$, the group P_{3} acts fixed point freely on the set of elements of order 8 . Hence $\left|P_{3}\right| \mid m_{8}$, by $m_{8} \in\{144$, $180,240\}$, we get a contradiction.

If $\exp \left(P_{2}\right)=16$, then $\pi_{e}(G)=\{1,2,3,4,6,8,16\}$. Since $12 \notin \pi_{e}(G)$, the group P_{3} acts fixed point freely on the set of elements of order 4 . Hence $\left|P_{3}\right| \mid m_{4}$. By $m_{4} \in\{144$, $80,240\}$, we get a contradiction.

If $\exp \left(P_{2}\right)=32$, then $\pi_{e}(G)=\{1,2,3,4,8,16,32\}$. Since $6 \notin \pi_{e}(G)$, the group P_{3} acts fixed point freely on the set of elements of order 2. Hence $\left|P_{3}\right| \mid m_{2}$. This is a contradiction because $\left|P_{3}\right|=9$.

If $m=6$, then by arguing as above we can rule out this case. Also by arguing as above we can rule out the case $\left|P_{3}\right|=81$.

Suppose that $\exp \left(P_{3}\right)=9$. By $(*), m_{9} \in\{144,180\}$. Then $\left|P_{3}\right| \mid\left(1+m_{3}+m_{9}\right)=225$ or 261. Hence $\left|P_{3}\right|=9$ and $n_{3}=m_{9} / \phi(9) \in\{24,30\}$, a contradiction.

If $\exp \left(P_{3}\right)=27$, then by $(*), m_{27} \in\{144,180\}$. If P_{3} be a cyclic group, then since $\exp \left(P_{3}\right)=27, n_{3}=m_{27} / \phi(27) \in\{8,10\}$. If $n_{3}=8$, then we get a contradiction by Sylow theorem and if $n_{3}=10$, then since a cyclic group of order 27 have two elements of order $3, m_{3} \leq 10 \times 2=20$, a contradiction. Therefore P_{3} is not cyclic. By Lemma 2.3, $27 \mid m_{27}$, a contradiction.

Subcase (d). Suppose that $\pi(G)=\{2,3,5\}$. We know that $\exp \left(P_{5}\right)=5$ and $\left|P_{5}\right|=5$. Suppose that $15 \in \pi_{e}(G)$, then $m_{15}=\phi(15) \cdot n_{5} \cdot k$, where k is the number of cyclic subgroups of order 3 in $C_{G}\left(P_{5}\right)$. Since $n_{5}=m_{5} / \phi(5)=36,288 \mid m_{15}$, a contradiction. Thus $15 \notin \pi_{e}(G)$. Similarly, $10 \notin \pi_{e}(G)$.

Since $15 \notin \pi_{e}(G)$, the group P_{3} acts fixed point freely on the set of elements of order 5. Hence $\left|P_{3}\right| \mid m_{5}=144$. Then $\left|P_{3}\right|=3$ or 9 . Since $10 \notin \pi_{e}(G)$, the group P_{2} acts fixed point freely on the set of elements of order 5. Hence $\left|P_{2}\right| \mid m_{5}=144$. Then $\left|P_{2}\right|=2^{m}$, where $1 \leq m \leq 4$. Therefore $|G|=720+80 k_{1}+144 k_{2}+180 k_{3}+240 k_{4}=2^{m} \times 3^{n} \times 5$ where $1 \leq m \leq 4$ and $1 \leq n \leq 2$. The only solution of this equation is $\left(k_{1}, k_{2}, k_{3}, k_{4}, m\right.$, $n)=(0,0,0,0,4,2)$. Thus $\pi_{e}(G)=\{1,2,3,4,5,6\},\{1,2,3,4,5,8\},\{1,2,3,4,5,9\}$ or $\{1,2,3,5,6,9\}$.

If $\pi_{e}(G)=\{1,2,3,4,5,9\}$ or $\{1,2,3,5,6,9\}$, then $\exp \left(P_{3}\right)=9$ and $\left|P_{3}\right|=9$. Because $m_{9} \in\{144,180\}, n_{3}=m_{9} / \phi(9) \in\{24,30\}$, we get a contradiction.

If $\pi_{e}(G)=\{1,2,3,4,5,8\}$, then $6 \notin \pi_{e}(G)$. Thus the group P_{3} acts fixed point freely on the set of elements of order 2. So, $\left|P_{3}\right| \mid m_{2}=75$. Since $\left|P_{3}\right|=9$, we get a contradiction.

Therefore $\pi_{e}(G)=\{1,2,3,4,5,6\}$. Now by the main result of [4], $G \cong S_{6}$.
Case 5. Let G be a group such that nse $(G)=\operatorname{nse}\left(S_{7}\right)=\{1,231,350,420,504,720,840$, $1470\}$. First we prove that $\pi(G) \subseteq\{2,3,5,7\}$. Since $231 \in$ nse (G), it follows that $2 \in \pi(G)$ and $m_{2}=231$. Let $2 \neq p \in \pi(G)$. By $(*), p \in\{3,5,29,421,1471\}$. If $29 \in \pi(G)$, then $m_{29}=840$. If $58 \in \pi_{e}(G)$, then $m_{58} \in\{504,420,840\}$, but by (*), we get a contradiction. Thus $58 \notin \pi_{e}(G)$.

Since $58 \notin \pi_{e}(G)$, the group P_{29} acts fixed point freely on the set of elements of order 2. Then $\left|P_{29}\right| \mid m_{2}$ and this is a contradiction. Similarly, if 421 and $1471 \in \pi(G)$, we get a contradiction. Hence $\pi(G) \subseteq\{2,3,5,7\}$. If $3,5,7 \in \pi_{e}(G)$, then $m_{3}=350, m_{5}=504$ and $m_{7}=720$. It is clear that G does not contain any elements of order $64,81,125$ and 343.

Let $25 \in \pi_{e}(G)$. Then $m_{25}=420$ or 720 by $(*)$. By Lemma 2.1, $\left|P_{5}\right| \mid\left(1+m_{5}+m_{25}\right)=$ 920 or 1225 . Hence $\left|P_{5}\right|=25$ and $n_{5}=m_{25} / \phi(25)=21$ or 36 . Since in a cyclic group of order 25 , there are four elements of order 5 , so $m_{5} \leq 21 \times 4=84$ or $m_{5} \leq 36 \times 4=144$, a contradiction. Therefore $25 \notin \pi_{e}(G)$.

Let $49 \in \pi_{e}(G)$. Then $m_{49}=504$. By Lemma 2.1, $\left|P_{7}\right| \mid\left(1+m_{7}+m_{49}\right)=1225$. Then $\left|P_{7}\right|=49$, and so $n_{7}=m_{49} / \phi(49)=12$. By Sylow's theorem $n_{7}=1+7 k$ for some k, as $n_{7}=12$, we get a contradiction. So $49 \notin \pi_{e}(G)$.

Therefore if $5,7 \in \pi(G)$, then $\exp \left(P_{5}\right)=5$ and $\exp \left(P_{7}\right)=7$, and by Lemma 2.1, $\left|P_{5}\right|=5$ and $\left|P_{7}\right|=7$. Hence $n_{5}=m_{5} / \phi(5)=2 \times 9 \times 7$ and $n_{7}=m_{7} / \phi(7)=8 \times 3 \times 5$. We conclude that if $5 \in \pi(G)$, then $3,7 \in \pi(G)$, and if $7 \in \pi_{e}(G)$, then $3,5 \in \pi_{e}(G)$. In follows, we show that $\pi(G)$ could not be the sets $\{2\},\{2,3\}$, and so $\pi(G)$ must be equal to $\{2,3,5,7\}$. Now we consider the following subcases:

Subcase (a). Suppose that $\pi(G)=\{2\}$. Since $64 \notin \pi_{e}(G), \pi_{e}(G) \subseteq\{1,2,4,8,16$, $\overline{32\}}$. Therefore $|G|=2^{m}=4536+350 k_{1}+504 k_{2}+420 k_{3}+720 k_{4}+840 k_{5}+1470 k_{6}$ where $k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}=0$. It is easy to see that this equation has no solution.

Subcase (b). Suppose that $\pi(G)=\{2,3\}$. Since $81 \notin \pi_{e}(G), \exp \left(P_{3}\right)=3,9$ or 27 . $\overline{\text { Let } \exp \left(P_{3}\right)}=3$. Then $\left|P_{3}\right| \mid\left(1+m_{3}\right)=351$, by Lemma 2.1. Hence $\left|P_{3}\right| \mid 27$. If $\left|P_{3}\right|=3$, then $n_{3}=m_{3} / \phi(3)=175| | G \mid$, because $5 \notin \pi(G)$, we get a contradiction.

If $\left|P_{3}\right|=9$, then since $\exp \left(P_{3}\right)=3$ and $64,96 \notin \pi_{e}(G),\left|\pi_{e}(G)\right| \leq 11$. Therefore $|G|=2^{m} \times 9=4536+350 k_{1}+504 k_{2}+420 k_{3}+720 k_{4}+840 k_{5}+1470 k_{6}$, where k_{1}, k_{2}, $k_{3}, k_{4}, k_{5}, k_{6}$ and m are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6} \leq 3$.

We know that $4536 \leq 2^{m} \times 9 \leq 4536+1470 \times 3$, so $m=10$. Then $4680=4536+$ $350 k_{1}+504 k_{2}+420 k_{3}+720 k_{4}+840 k_{5}+1470 k_{6}$ where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6} \leq 3$. By an easy computer calculation, it is easy to see this equation has no solution.

Similarly, we can rule out the case $\left|P_{3}\right|=27$.

Let $\exp \left(P_{3}\right)=9$. By $(*), m_{9} \in\{504,720\}$. Hence by Lemma 2.1, $\left|P_{3}\right|=9$. Therefore $n_{3}=m_{9} / \phi(9) \in\{84,120\}$. Because $5,7 \notin \pi(G)$, we get a contradiction.

If $\exp \left(P_{3}\right)=27$, then $m_{27} \in\{504,720\}$. If P_{3} be a cyclic group, then since $\exp \left(P_{3}\right)=$ $27, n_{3}=m_{27} / \phi(27) \in\{28,40\}$. Because $5,7 \notin \pi(G)$, we get a contradiction. Thus P_{3} is not cyclic. By Lemma 2.3, 27| m_{27}, a contradiction.
Therefore $\pi(G)=\{2,3,5,7\}$. We prove that $21 \notin \pi_{e}(G)$. Suppose that $21 \in \pi_{e}(G)$. Then $m_{21}=\phi(21) \cdot n_{7} \cdot k$, where k is the number of cyclic subgroups of order 3 in $C_{G}\left(P_{7}\right)$. Since $n_{7}=m_{7} / \phi(7)=120,720 \mid m_{21}$, a contradiction. Thus $21 \notin \pi_{e}(G)$. Similarly, $14 \notin \pi_{e}(G)$.

Since $21 \notin \pi_{e}(G)$, the group P_{3} acts fixed point freely on the set of elements of order 7. Hence $\left|P_{3}\right| \mid m_{7}=720$. Then $\left|P_{3}\right|=3$ or 9 . Also since $14 \notin \pi_{e}(G)$, the group P_{2} acts fixed point freely on the set of elements of order 7. Hence $\left|P_{2}\right| \mid m_{7}=720$. Then $\left|P_{2}\right| \mid 16$. On the other hand, $4536 \leq|G|$, thus $|G|=2^{4} \times 3^{2} \times 5 \times 7=\left|S_{7}\right|$.

Now we claim that G is non-solvable group. Suppose that G is solvable. Since $n_{7}=120$ by Lemma $2.4,3 \equiv 1(\bmod 7)$, a contradiction. Hence G is non-solvable group and $p \||G|$, where $p \in\{5,7\}$. Therefore G has a normal series

$$
1 \unlhd N \unlhd H \unlhd G
$$

such that N is a maximal solvable normal subgroup of G and H / N is an non-solvable minimal normal subgroup of G / N. Then H / N is a non-Abelian simple K_{3}-group or simple K_{4} - group. If H / N be simple K_{3} - group, then by Lemma $2.6, H / N$ is isomorphic to one of the groups: $A_{5}, A_{6}, L_{2}(7)$ or $L_{2}(8)$.

Suppose that $H / N \cong A_{5}$. If $P_{5} \in \operatorname{Syl}_{5}(G)$, then $P_{5} N / N \in \operatorname{Syl}_{5}(H / N), n_{5}(H / N) t=$ $n_{5}(G)$ for some positive integer t and $5 \nmid t$, by Lemma 2.5. Since $n_{5}\left(A_{5}\right)=6, n_{5}(G)=6 t$. Thus $m_{5}=n_{5}(G) \times 4=24 t=504$ and so $t=21$. By Lemma 2.5, $21 \times\left|N_{N}\left(P_{5}\right)\right|=|N|$. Since $|N| \mid 2^{3} \times 3 \times 7$, then $n_{7}(N)=1$ or 8 . So $m_{7}=6$ or 48 , a contradiction.

Suppose that $H / N \cong A_{6}$. If $P_{5} \in \operatorname{Syl}_{5}(G)$, then $P_{5} N / N \in \operatorname{Syl}_{5}(H / N), n_{5}(H / N) t=$ $n_{5}(G)$ for some positive integer t and $5 \nmid t$, by Lemma 2.5. Since $n_{5}\left(A_{6}\right)=36, n_{5}(G)=$ $36 t$ and $m_{5}=n_{5}(G) \times 4=144 t=504$, a contradiction.

Suppose that $H / N \cong L_{2}(7)$. If $P_{7} \in \operatorname{Syl}_{7}(G)$, then $P_{7} N / N \in \operatorname{Syl}_{7}(H / N), n_{7}(H / N) t=$ $n_{7}(G)$ for some positive integer t and $7 \nmid t$, by Lemma 2.5. Since $n_{7}\left(L_{2}(7)\right)=8, n_{7}(G)=$ $8 t$ and $m_{7}=n_{7}(G) \times 6=48 t=720$. Hence $t=15$. By Lemma 2.5, $15 \times\left|N_{N}\left(P_{7}\right)\right|=|N|$. Since $|N| \mid 2 \times 3^{2} \times 5, n_{5}(N)=1$ or 6 . So $m_{5}=4$ or 24 , a contradiction.

Similarly, if $H / N \cong L_{2}(8)$, we get a contradiction. Hence H / N is simple K_{4}-group. Then by Lemma 2.7, H / N is isomorphic to A_{7}. Now set $\bar{H}:=H / N \cong A_{7}$ and $\bar{G}:=G / N$. We have

$$
A_{7} \cong \bar{H} \cong \bar{H} C_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq \bar{G} / C_{\bar{G}}(\bar{H})=N_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq \operatorname{Aut}(\bar{H})
$$

Let $K=\left\{x \in G \mid x N \in C_{\bar{G}}(\bar{H})\right\}$, then $G / K \cong \bar{G} / C_{\bar{G}}(\bar{H})$. Hence $A_{7} \leq G / K \leq \operatorname{Aut}\left(A_{7}\right)$. Then $G / K \cong A_{7}$ or $G / K \cong S_{7}$. If $G / K \cong A_{7}$, then $|K|=2$. We have $N \leq K$ and N is a maximal solvable normal subgroup of G, then $N=K$. Now we know that $G / N \cong A_{7}$ where $|N|=2$, so G has a normal subgroup G of order 2 , generated by a central involution z. Let x be an element of order 7 in G. Since $x z=z x$ and $(o(x), o(z))=1$, $o(x z)=14$.

Hence $14 \in \pi_{e}(G)$. We know $14 \notin \pi_{e}(G)$, a contradiction.
If $G / K \cong S_{7}$, then $|K|=1$ and $G \cong S_{7}$. Now the proof of the main theorem is complete.

4. Acknowledgment

The authors would like to thank the referees for valuable comments. Partial support by the Center of Excellence of Algebraic Hyper structures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledge by the third author (AI).

References

[1] A.K. Asboei, A new characterization of $P G L_{2}(p)$, J. Algebra Appl. 12 (2013), no.7, DOI: 10.1142/S0219498813500400.
[2] A.K. Asboei, S.S. Amiri, A. Iranmanesh, A. Tehranian, A new characterization of sporadic simple groups by NSE and order, J. Algebra Appl. 12 (2013), no.2, DOI: 10.1142/S0219498812501587.
[3] A.K. Asboei, S.S. Amiri, A. Iranmanesh, A. Tehranian, A new characterization of A_{7} and A_{8}, An. Stint. Univ. Ovidius Constanta Ser. Mat., vol. 21 (2013), 43-50.
[4] R. Brandl, W.J. Shi, Finite group whose element orders are consecutive, J. Algebra, 142 (1991), no.2, 388-400.
[5] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Wilson, Atlas of Finite Groups, Clarendon: Oxford, 1985.
[6] G. Frobenius, Verallgemeinerung des sylowschen satze, Berliner sitz. (1895), 981-993.
[7] D. Gorenstein, Finite groups, Harper and Row: New York, 1968.
[8] M. Hall, The Theory of Groups, Macmillan: New York 1959.
[9] M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra. 120 (1968), no.10, 383-388.
[10] M. Khatami, B. Khosaravi, Z. Akhlaghi, A new characterization for some linear groups, Monatsh Math., vol. 163 (2011), 39-50.
[11] G. Miller, Addition to a theorem due to Frobenius, Bull. Am. Math. Soc. 11 (1904), 6-7.
[12] R. Shen, C.G. Shao, Q.H. Jiang, W. Shi, V. Mazuro, A New Characterization of A_{5} Monatsh Math. 160 (2010), 337-341.
[13] C.G. Shao, W. Shi, Q.H. Jiang, Characterization of simple $K_{4}-$ groups, Front Math, China 3 (2008), 355-370.
[14] W. Shi, The simple groups of order $2^{a} 3^{b} 5^{c} 7^{d}$ and Janko's simple groups, J. Southwest China Normal University (Natural Science Edition). 12 (1987), no.4, 1-8.

[^0]: *Department of Mathematics, Farhagian University, Shariati Mazandaran, Iran and Department of Mathematics, College of Engineering, Buin Zahra Branch, Islamic Azad University, Buin Zahra, Iran,
 Email: khaliliasbo@yahoo.com Corresponding author.
 ${ }^{\dagger}$ Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran, Email:salehisss@baboliau.ac.ir
 ${ }^{\ddagger}$ Department of Mathematics, Faculty of Mathematical Sciences Tarbiat Modares University P. O. Box: 14115-137, Tehran, Iran,

 Email:iranmanesh@modares.ac.ir

