Selection principles and double sequences II

Agata Caserta * , Dragan Djurčić † and Melanija Mitrović ‡

Received 23:05:2013 : Accepted 12:08:2013

Dedicated to Prof. Ljubiša Kočinac on the occasion of his 65th birthday

Abstract

This paper is a continuation of the research on selection properties of certain classes of double sequences of positive real numbers that was began in [6].

2000 AMS Classification: 40A05, 54A20.

Keywords: Pringsheim convergence, selection principles, translationally rapidly varying sequence.

1. Introduction

In recent years a number of papers concerning relations between selection principles theory and the theory of convergence/divergence of sequences of positive real numbers appeared in the literature [1, 2, 3, 4, 7]. Special attention have been paid to connections between α_i selection principles [12] and classes of sequences important in Karamata's theory of regular variation (see the papers [1, 3] and references therein, and also the papers [13, 17] for important applications). On the other hand, in [6] the authors introduced modified α_i selection properties for double real sequences and gave their relations with Pringsheim's convergence of double sequences (see [14] and also [9, 10, 15]).

In this note we continue investigation began in [6] and extend results from this paper considering the class of translationally rapidly varying double sequences following some ideas from [3, 16].

Caserta, Italy

 $Email: \verb"agata.caserta@unina2.it"$

Svetog Save 65, 32000 Čačak, Serbia

Email:dragandj@tfc.kg.ac.rs Corresponding author.

Email:meli@masfak.ni.ac.rs

Supported by the Ministry of Education and Science, Serbia, Grants 174026 and 174032.

^{*}Department of Mathematics, Second University of Naples

[†]University of Kragujevac, Faculty of Technical Sciences in Čačak

[‡]University of Niš, Mechanical Engineering Faculty, 18000 Niš, Serbia

Recall definitions of two selection principles that we consider in this note. If \mathcal{A} and \mathcal{B} are families of subsets of an infinite set X, then:

- (1) $S_1(A, B)$ denotes the selection hypothesis that for each sequence $(A_n : n \in \mathbb{N})$ in A there is a sequence $(b_n : n \in \mathbb{N})$ such that for each $n, b_n \in A_n$ and $\{b_n : n \in \mathbb{N}\} \in B$.
- (2) $\alpha_2(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $(A_n : n \in \mathbb{N})$ in \mathcal{A} there is an element $B \in \mathcal{B}$ such that for each $n, B \cap A_n$ is infinite (see [12]).

For more details on selection principles see [11].

2. Results

Given $a \in \mathbb{R}$, by c_2^a we denote the set of double sequences of real numbers which converge to a in the sense of Pringsheim [14]. Let

$$c_{2,+}^a := \{ \mathbf{x} = (x_{m,n})_{m,n \in \mathbb{N}} \in c_2^a : x_{m,n} > 0 \text{ for all } m, n \in \mathbb{N} \}.$$

We say that a positive double sequence $\mathbf{x} = (x_{m,n})_{m,n \in \mathbb{N}}$ belongs to the class $\mathsf{Tr}(\mathsf{R}_{-\infty,s_2})$ of translationally rapidly varying double sequences if

$$\lim_{\min\{m,n\}\to\infty}\frac{x_{[m+\alpha],[n+\beta]}}{x_{m,n}}=0$$

for each $\alpha \geq 0$ and each $\beta \geq 0$ such that $\max\{\alpha, \beta\} \geq 1$. Here [x] denotes the integer part of $x \in \mathbb{R}$.

Notice that the class $\mathsf{Tr}(\mathsf{R}_{-\infty,\mathsf{s}_2})$ is nonempty, because it contains the double sequence $(x_{m,n})$ defined by

$$x_{m,n} = \frac{1}{(m+n)!}, m \in \mathbb{N}, n \in \mathbb{N}.$$

2.1. Theorem. $Tr(R_{-\infty,s_2}) \subsetneq c_{2,+}^0$.

Proof. Let $\mathbf{x}=(x_{m,n})_{m,n\in\mathbb{N}}\in \mathsf{Tr}(\mathsf{R}_{-\infty,\mathsf{s}_2})$. Let $\varepsilon=\frac{1}{2}$ and $\alpha=\beta=1$. There is $N_0=N_0(1/2,1,1)\in\mathbb{N}$ such that

$$\frac{x_{m+1,n+1}}{x_{m,n}} \le \frac{1}{2}$$

for all $m,n\geq N_0$. Therefore, for $m=n\geq N_0$ we have $x_{n+1,n+1}\leq \frac{1}{2}x_{n,n}$, and it follows that $\lim_{n\to\infty}x_{n,n}=0$. Similarly, for $\varepsilon=\frac{1}{2}$ and $\alpha=1$, $\beta=0$, there is $N_1=N_1(1/2,1,0)\in\mathbb{N}$ such that $x_{m+1,n}\leq \frac{1}{2}x_{m,n}$ for all $m,n\geq N_1$. It implies that for $n\geq N_1$ we have $\lim_{m\to\infty}x_{m,n}=0$. Finally for $\varepsilon=\frac{1}{2},\,\alpha=0,\,\beta=1$ there is $N_2=N_2(1/2,0,1)\in\mathbb{N}$ such that $x_{m,n+1}\leq \frac{1}{2}x_{m,n}$ for all $m,n\geq N_2$. From here we obtain $\lim_{n\to\infty}x_{m,n}=0$, for each $m\geq N_2$.

Let $\varepsilon > 0$ be arbitrary (and fixed). Then there is $n_{\varepsilon} \in \mathbb{N}$ such that $x_{n,n} \leq \varepsilon$ for each $n \geq n_{\varepsilon}$. Set $n_* = \max\{n_{\varepsilon}, N_1, N_2\}$. Then $x_{m,n} \leq \varepsilon$ for each $m, n \geq n_*$, which means that $\mathbf{x} \in c_{2,+}^0$.

The double sequence $\mathbf{x} = (x_{m,n})_{m,n \in \mathbb{N}}$ defined by

$$x_{m,n} = \begin{cases} 1/m & \text{for } m \in \mathbb{N}, \ n \in \{1,2,\cdots,m\}, \\ 1/n & \text{for } n \in \mathbb{N}, \ m \in \{1,2,\cdots,n\}. \end{cases}$$

evidently belongs to the class $c_{2,+}^0$, but it does not belong to $\mathsf{Tr}(\mathsf{R}_{-\infty,\mathsf{s}_2})$ because for $\alpha=\beta=1$ and m=n we have

$$\lim_{n\to\infty}\frac{x_{m+1,n+1}}{x_{m,n}}=\lim_{n\to\infty}\frac{n}{n+1}=1.$$

In what follows we need two definitions from [6].

Let \mathcal{A} and \mathcal{B} be as above. Then:

- (a) $S_1^{(d)}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis: for each double sequence $(A_{m,n}: m, n \in \mathbb{N})$ of elements of \mathcal{A} there are elements $a_{m,n} \in A_{m,n}, m, n \in \mathbb{N}$, such that the double sequence $(a_{m,n})_{m,n\in\mathbb{N}}$ belongs to \mathcal{B} .
- (b) $\alpha_2^{(d)}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis: for each double sequence $(A_{m,n}: m, n \in \mathbb{N})$ of elements of \mathcal{A} there is an element B in \mathcal{B} such that $B \cap A_{m,n}$ is infinite for all $(m, n) \in \mathbb{N} \times \mathbb{N}$.
- **2.2. Theorem.** The selection principle $S_1^{(d)}(c_{2,+}^0, \text{Tr}(R_{-\infty,s_2}))$ is satisfied.

Proof. Let $(x_{m,n,j,k})$ be a double sequence of double sequences such that for a fixed $(j_0,k_0) \in \mathbb{N} \times \mathbb{N}$, $(x_{m,n,j_0,k_0}) \in c_{2,+}^0$. We create a new double sequence $\mathbf{y} = (y_{j,k})_{j,k \in \mathbb{N}}$ in the following way.

- 1^0 . $y_{1,1} = x_{m,n,1,1}$ for an arbitrary fixed $(m,n) \in \mathbb{N} \times \mathbb{N}$;
- 2^0 . $y_{1,2}=x_{m,n,1,2}$ such that $y_{1,2}<\frac{1}{2}y_{1,1},\ y_{2,1}=x_{m,n,2,1}$ such that $y_{2,1}<\frac{1}{2}y_{1,1}$, and $y_{2,2}=x_{m,n,2,2}$ such that $y_{2,2}<\frac{1}{2}\min\{y_{1,2},y_{2,1}\}.$

 $p^{0}, p \geq 3$. Choose $y_{p,1} = x_{m,n,p,1}$ so that $y_{p,1} < \left(\frac{1}{2}\right)^{p} y_{p-1,1}$. For $\ell \in \{2, 3, \dots, p-1\}$ pick $y_{p,\ell} = x_{m,n,p,\ell}$ such that $y_{p,\ell} < \left(\frac{1}{2}\right)^{p} y_{p,\ell-1}$ and $y_{p,\ell} < \left(\frac{1}{2}\right)^{p} y_{p-1,\ell}$. Similarly, let $y_{1,p} = x_{m,n,1,p}$ be such that $y_{1,p} < \left(\frac{1}{2}\right)^{p} y_{1,p-1}$. Choose also $y_{\ell,p} = x_{m,n,\ell,p}$ such that $y_{\ell,p} < \left(\frac{1}{2}\right)^{p} y_{\ell-1,p}$ and $y_{\ell,p} < \left(\frac{1}{2}\right)^{p} y_{\ell,p-1}$. Finally, take $y_{p,p}$ to be some $x_{m,n,p,p}$ such that $y_{p,p} < \left(\frac{1}{2}\right)^{p} \min\{y_{p,p-1}, y_{p-1,p}\}$.

We prove that $\mathbf{y} \in \mathsf{Tr}(\mathsf{R}_{-\infty,s_2})$. Let $\varepsilon > 0$ and $\alpha, \beta \geq 0$ with $\max\{\alpha,\beta\} \geq 1$ be given. Set $h = h(\alpha,\beta) = [\alpha] + [\beta]$. There is $s_0 \in \mathbb{N}$ such that $(\frac{1}{2})^s \leq \varepsilon$ for each $s \geq s_0$. For $j \geq s_0, k \geq s_0$ we have

$$\frac{y_{j+1,k}}{y_{j,k}} \leq \left(\frac{1}{2}\right)^{s_0+1} \ \ \text{and} \ \ \frac{y_{j,k+1}}{y_{j,k}} \leq \left(\frac{1}{2}\right)^{s_0+1},$$

and thus we have

$$\frac{y_{[j+\alpha],[k+\beta]}}{y_{j,k}} = \frac{y_{j+[\alpha],k+[\beta]}}{y_{j,k}} \leq \left(\frac{1}{2}\right)^{(s_0+1)h} \leq \left(\frac{1}{2}\right)^{s_0} \leq \varepsilon,$$

which means that $\mathbf{y} \in \mathsf{Tr}(\mathsf{R}_{-\infty,s_2})$.

2.3. Theorem. The selection principle $\alpha_2^{(d)}(c_{2,+}^0, \operatorname{Tr}(\mathsf{R}_{-\infty,\mathsf{s}_2}))$ is satisfied.

Proof. Let $(x_{m,n,j,k})$ be a double sequence of double sequences such that for a fixed $(j_0,k_0) \in \mathbb{N} \times \mathbb{N}$, $(x_{m,n,j_0,k_0}) \in c_{2,+}^0$. Form a double sequence $\mathbf{y} = (y_{p,t})_{p,t \in \mathbb{N}}$ as follows.

- Step 1. Using some standard method arrange the given double sequence of double sequences in a sequence $(x_{n,m,r})$ of double sequences, where for each $r_0 \in \mathbb{N}$ the double sequence (x_{m,n,r_0}) belongs to $c_{2,+}^0$.
- Step 2. Consider the sequence of sequences $(x_{n,n,r})$, $r \in \mathbb{N}$. Observe that for each $r_0 \in \mathbb{N}$ it holds $(x_{n,n,r_0}) \in \mathbb{S}_0$, where \mathbb{S}_0 denotes the set of all sequences of positive real numbers converging to 0 (see, for instance, [7]). Let $J = \{(a_n)_{n \in \mathbb{N}} \in \mathbb{S} : a_1 > 0, a_{n+1} \leq \frac{a_n}{n+1}\}$, where \mathbb{S} is the set of all sequences of positive real numbers. It holds $J \nsubseteq \mathbb{S}_0$ and the selection principle $S_1(\mathbb{S}_0, J)$ is satisfied.
- Step 3. (In this part of the proof we use some techniques from [2]) Take an increasing sequence $(p_i)_{i\in\mathbb{N}}$ of prime numbers, $(p_1=2)$, and a fixed $r\in\mathbb{N}$. Consider subsequences $(x_{p_i^n,p_i^n,r})$, $i\in\mathbb{N}$, of the sequence $(x_{n,n,r})$. These subsequences are in the class \mathbb{S}_0 . Varying i and r in \mathbb{N} , arrange those subsequences in a sequence of sequences of \mathbb{S}_0 .

Applying $S_1(\mathbb{S}_0, J)$ one finds a sequence $(z_j) \in J$ such that (z_j) has infinitely many elements with the sequence $(x_{n,n,r})$ for each $r \in \mathbb{N}$. In other words, we conclude that the selection principle $\alpha_2(\mathbb{S}_0, J)$ is true.

Let now $y_{j,j}=z_j,\ j\in\mathbb{N}$. For $j\geq 2$ we choose $y_{s,j}=\sqrt{s+1}\cdot y_{s+1,j}$ for $s\in\{1,2,\cdots,j-1\}$, and $y_{j,s}=\sqrt{s+1}\cdot y_{j,s+1}$. It is easy to see that the double sequence $\mathbf{y}=(y_{p,t})$ obtained in this way has infinitely many common elements with each double sequence $(x_{m,n,j,k})$ for arbitrary and fixed $(j,k)\in\mathbb{N}\times\mathbb{N}$.

It remains to prove $\mathbf{y} \in \mathsf{Tr}(\mathsf{R}_{-\infty,\mathsf{s}_2})$. Let $\varepsilon > 0$ and $\alpha \ge 0$, $\beta \ge 0$ with $\max\{\alpha,\beta\} \ge 1$, be given. Set $h = [\alpha] + [\beta]$. There is $N_0 \in \mathbb{N}$ such that $\left(\frac{1}{\sqrt{N+1}}\right)^h \le \varepsilon$ for each $N \in \mathbb{N}$ with $N \ge N_0$ $(N_0 \ge \varepsilon^{-(2/h)} - 1)$. For $p, t \ge N_0$ we have

$$\frac{y_{p+1,t}}{y_{p,t}} \le \frac{1}{\sqrt{N_0 + 1}}$$
 and $\frac{y_{p,t+1}}{y_{p,t}} \le \frac{1}{\sqrt{N_0 + 1}}$.

So we have

$$\frac{y_{[p+\alpha],[t+\beta]}}{y_{p,t}} = \frac{y_{p+[\alpha],t+[\beta]}}{y_{p,t}} \left(\frac{1}{\sqrt{N_0+1}}\right)^h \leq \varepsilon,$$

i.e. $\mathbf{y} \in Tr(R_{-\infty,s_2})$.

2.4. Remark. (1) The selection principles $\alpha_i^{(d)}(c_{2,+}^0, \operatorname{Tr}(\mathsf{R}_{-\infty,s_2})), i = 3,4$, are also satisfied; see the papers [8, 6] in connection with these selection principles.

(2) From the proof of Theorem 2.3 it follows that selection principles $\alpha_i(c_{2,+}^0, \operatorname{Tr}(\mathsf{R}_{-\infty,s_2}))$, $i \in \{2,3,4\}$, are true; see [12] for these selection properties.

(3) From the proof of Theorem 2.2 one concludes that this theorem remains true if the first coordinate $c_{2,+}^0$ in it is replaced by the class of double sequences of positive real numbers which possesses at least one Pringsheim's limit point equal to 0 (see, for instance, [6]).

(4) Similarly, Theorem 2.3 remains true if the first coordinate $c_{2,+}^0$ is replaced by the class of double sequences $(x_{m,n})$ having property that the sequence $(x_{n,n})$ contains a subsequence converging to 0.

For a double sequence $\mathbf{x} = (x_{m,n})$ we define

$$\omega_n(\mathbf{x}) := \sup\{|x_{j,k} - x_{r,s}| : j \ge n, k \ge n, r \ge n, s \ge n\}, \ n \in \mathbb{N}.$$

The sequence $(\omega_n(\mathbf{x}))$ is called the Landau-Hurwicz sequence of \mathbf{x} (compare with [4]).

2.5. Proposition. A double sequence $\mathbf{x} = (x_{m,n})$ belongs to the class c_2^a , $a \in \mathbb{R}$, if and only if $\lim_{n\to\infty} \omega_n(\mathbf{x}) = 0$.

Proof. (\Rightarrow) Assume that $\mathbf{x} = (x_{m,n})$ is a double sequence from c_2^a for some arbitrary and fixed $a \in \mathbb{R}$. Let $\varepsilon > 0$ be given. There is $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that $|x_{j,k} - a| \le \varepsilon/2$ for each $j \ge n_0$ and each $k \ge n_0$. Therefore we have

$$|x_{j,k} - x_{r,s}| = |x_{j,k} - a + a - x_{r,s}| \le |x_{j,k} - a| + |x_{r,s} - a| \le \varepsilon/2 + \varepsilon/2$$

for all $j, k, r, s \ge n_0$. This implies that for each $n \ge n_0$ we have

$$0 \le \omega_n(\mathbf{x}) \le \sup\{|x_{j,k} - x_{r,s}| : j \ge n_0, k \ge n_0, r \ge n_0, s \ge n_0\} \le \varepsilon,$$

i.e. $\lim_{n\to\infty} \omega_n(\mathbf{x}) = 0$.

 (\Leftarrow) Let $\mathbf{x} = (x_{m,n})$ be a double sequence with $\lim_{n\to\infty} \omega_n(\mathbf{x}) = 0$. For a given $\varepsilon > 0$, there is $n_1 = n_1(\varepsilon) \in \mathbb{N}$ such that $0 \le |x_{j,k} - x_{r,s}| \le \varepsilon/2$ for $j \ge n_1$, $k \ge n_1$, $r \ge n_1$, $s \ge n_1$, because

$$0 < \omega_n(\mathbf{x}) = \sup\{|x_{i,k} - x_{r,s}| : j > n_1, k > n_1, r > n_1, s > n_1\} < \varepsilon/2$$

for $n \geq n_1$. Since for all $j,r \geq n_1$ it holds $|x_{j,j} - x_{r,r}| \leq \varepsilon/2$, it follows that the sequence $(x_{t,t})$ is convergent (as a Cauchy sequence), i.e. there is $A \in \mathbb{R}$ such that $\lim_{t \to \infty} x_{t,t} = A$. This implies there is $n_2 = n_2(\varepsilon) \in \mathbb{N}$ such that $|x_{t,t} - A| \leq \varepsilon/2$ for each $t \geq n_2$. Therefore, for $n_0 = \max\{n_1, n_2\}$ and all $j, k \geq n_0$ we have

$$|x_{j,k} - A| \le |x_{j,k} - x_{j,j}| + |x_{j,j} - A| \le \varepsilon.$$

For $a \in \mathbb{R}$ we define

$$c^a_{\mathsf{Tr}(\mathsf{R}_{-\infty,\mathsf{s}}),2} := \{\mathbf{x} \in c^a_2 : (\omega_n(\mathbf{x})) \in \mathsf{Tr}(\mathsf{R}_{-\infty,\mathsf{s}})\}.$$

(For the definition of $Tr(R_{-\infty,s})$ see [3].)

2.6. Example. Given $a \in \mathbb{R}$, consider the double sequence $\mathbf{x} = (x_{j,k})$ defined by

$$x_{j,k} = \begin{cases} a & \text{for } j \neq k, \\ a+1/j & \text{for } j=k. \end{cases}$$

It is clear that $\mathbf{x} \in c_2^a$. However, $\mathbf{x} \notin c_{\mathsf{Tr}(\mathsf{R}_{-\infty,s}),2}^a$ because $\omega_n(\mathbf{x}) = 1/n$ for each $n \in \mathbb{N}$ and

$$\lim_{n \to \infty} \frac{\omega_{n+1}(\mathbf{x})}{\omega_n(\mathbf{x})} = 1.$$

- 2.7. Theorem. The following selection principles are satisfied:
 - (1) $S_1^{(d)}(c_{2,+}^0, c_{\mathsf{Tr}(\mathsf{R}_{-\infty,s}),2,+}^0);$
 - (2) $\alpha_2^{(d)}(c_{2,+}^0, c_{\mathsf{Tr}(\mathsf{R}_{-\infty,s}),2,+}^0).$

Proof. (1) Consider the double sequence $\mathbf{y} = (y_{j,k})$ which was the selector in the proof of Theorem 2.2. We have

$$\omega_n(\mathbf{y}) = \sup\{|y_{j,k} - y_{r,s}| : j \ge n, k \ge n, r \ge n, s \ge n\} = y_{n,n}, \ n \in \mathbb{N},$$

which implies

$$\lim_{n\to\infty}\frac{\omega_{n+1}(\mathbf{y})}{\omega_n(\mathbf{y})}=\lim_{n\to\infty}\frac{y_{n+1,n+1}}{y_{n,n}}\leq\lim_{n\to\infty}\left(\frac{1}{2}\right)^{n+1}=0,$$

i.e. (1) is true

(2) Consider the double sequence $\mathbf{y} = (y_{j,k})$ which was the selector in the proof of Theorem 2.3. For this double sequence we have $\omega_n(\mathbf{y}) = y_{n,n}, n \in \mathbb{N}$. Since

$$\lim_{n\to\infty}\frac{\omega_{n+1}(\mathbf{y})}{\omega_n(\mathbf{y})}=\lim_{n\to\infty}\frac{y_{n+1,n+1}}{y_{n,n}}\leq\lim_{n\to\infty}\frac{1}{n+1}=0,$$

one concludes that (2) is satisfied.

We recall a definition from [6]. Let \mathcal{A} and \mathcal{B} be as in Introduction. Then $S_1^{\varphi}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis: for each sequence (A_t) of elements from \mathcal{A} there is an element $B = (b_{j,k}) \in \mathcal{B}$ such that $b_{j,k} \in A_t$ for $t = \varphi(j,k)$, where $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is a given bijection.

2.8. Theorem. The selection principle $\mathsf{S}_1^{\varphi}(c_{2,+}^0,\mathsf{Tr}(\mathsf{R}_{-\infty,\mathsf{s}_2}))$ is satisfied.

Proof. Suppose that (A_t) is a sequence of double sequences $A_t = (x_{m,n,t})$ in $c_{2,+}^0$. Let us consider the double sequence of double sequences $(x_{m,n,j,k})$ (constructed from the sequence (A_t)), where $(j,k) = (j(t),k(t)) = \varphi^{-1}(t)$, $t \in \mathbb{N}$. To this double sequence of double sequences apply the procedure from the proof of Theorem 2.2 to obtain the double sequence $\mathbf{y} = (y_{j,k})$ which will witness that the theorem is true.

From the proof of Theorem 2.8 and Theorem 2.7(1) we have the following corollary.

2.9. Corollary. The selection principle $S_1^{\varphi}(c_{2,+}^0, c_{\mathsf{Tr}(\mathsf{R}_{-\infty,s}),2,+}^0)$ is satisfied.

References

- D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Some properties of rapidly varying sequences, J. Math. Anal. Appl. 327 (2007), 1297–1306.
- [2] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Relations between sequences and selection properties, Abst. Appl. Anal. 2007 (2007), Article ID 43081, 8 pages.
- [3] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Classes of sequences of real numbers, games and selection properties, Topology Appl. 156 (2008), 46–55.
- [4] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Rapidly varying sequences and rapid convergence, Topology Appl. 155 (2008), 2143–2149.
- [5] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, A few remarks on divergent sequences: rates of divergence, J. Math. Analysis Appl. 360 (2009), 588–598.
- [6] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Double sequences and selections, Abst. Appl. Anal. 2012 (2012), Article ID 497594, 6 pages.
- [7] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, On the class S₀ of real sequences, Appl. Math. Letters 25 (2012), 1296−1298.
- [8] D. Djurčić, M.R. Žižović, A. Petojević, Note on selection principles of Kočinac, Filomat 26 (2012), 1291–1295.
- [9] G.H. Hardy, On the convergence of certain multiple series, Math. Proc. Cambridge Phil. Soc. 19 (1917), 86–95.
- [10] E.W. Hobson, The Theory of Functions of a Real Variable, Vol. II (2nd edition), Cambridge University Press, Cambridge, 1926.
- [11] Lj.D.R. Kočinac, Selected results on selection principles, in: Proc. Third Sem. Geom. Topology (July 15–17, 2004, Tabriz, Iran), pp. 71–104, 2004.
- [12] Lj.D.R. Kočinac, On the α_i -selection principles and games, Contem. Math. 533 (2011), 107–124.
- [13] S. Matucci, P. Rehák, Rapidly varying decreasing solutions of half-linear difference equations, Math. Comp. Modelling 49 (2009), 1692–1699.
- [14] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289–321.
- [15] G.M. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc. 28 (1926), 50-73
- [16] M. Tasković, Fundamental facts on translationally O-regularly varying functions, Math. Morav. 7 (2003), 107–152.
- [17] J. Vítovec, Theory of rapid variation on time-scales with applications to dynamic equations, Arch. Math. (Brno) 46 (2010), 263–284.