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Abstract

This paper is a continuation of the research on selection properties of
certain classes of double sequences of positive real numbers that was
began in [6].
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1. Introduction

In recent years a number of papers concerning relations between selection principles
theory and the theory of convergence/divergence of sequences of positive real numbers
appeared in the literature [1, 2, 3, 4, 7]. Special attention have been paid to connections
between «; selection principles [12] and classes of sequences important in Karamata’s
theory of regular variation (see the papers [1, 3] and references therein, and also the papers
[13, 17] for important applications). On the other hand, in [6] the authors introduced
modified a; selection properties for double real sequences and gave their relations with
Pringsheim’s convergence of double sequences (see [14] and also [9, 10, 15]).

In this note we continue investigation began in [6] and extend results from this paper
considering the class of translationally rapidly varying double sequences following some
ideas from [3, 16].
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Recall definitions of two selection principles that we consider in this note. If A and B
are families of subsets of an infinite set X, then:

(1) S1(A,B) denotes the selection hypothesis that for each sequence (A, : n € N) in
A there is a sequence (b, : n € N) such that for each n, b, € A,, and {b, : n € N} € B.

(2) az2(A, B) denotes the selection hypothesis that for each sequence (4, : n € N) in
A there is an element B € B such that for each n, BN A, is infinite (see [12]).

For more details on selection principles see [11].

2. Results

Given a € R, by ¢§ we denote the set of double sequences of real numbers which
converge to a in the sense of Pringsheim [14]. Let

31+ = {X = (Tm,n)mmneN € €3 : Tm,n > 0 for all m,n € N}.

We say that a positive double sequence x = (Zm,n)m,nen belongs to the class Tr(R_s,)
of translationally rapidly varying double sequences if
x
lim [m+a],[n+8] =0
min{m,n}—oo Tm,n
for each a@ > 0 and each 8 > 0 such that max{a, 3} > 1. Here [z] denotes the integer
part of z € R.

Notice that the class Tr(R_s,) is nonempty, because it contains the double sequence
(m,n) defined by

Tm,n —

1
m,'fﬂGRLTLGN.

2.1. Theorem. Tr(R_ws,) & €9 4.

Proof. Let x = (Tm,n)mmnen € Tr(R_ss,). Let € = % and a = 8 = 1. There is
No = No(1/2,1,1) € N such that

Tm+1,n+1 < 1

Tm,n - 5

for all m,n > Ny. Therefore, for m = n > Ny we have Tpiint1 < %xnyn, and it
follows that limp—yo0 Tn,n = 0. Similarly, for ¢ = % and a« = 1, 8 = 0, there is N1 =
N1(1/2,1,0) € N such that Zm41,n < %mm,n for all m,n > Ni. It implies that for n > Ny
we have limp,— 00 Tm,n = 0. Finally for € = %, a =0, 8 =1 thereis No = N2(1/2,0,1) €
N such that zm,ny1 < %wm,n for all m,n > N>. From here we obtain limy,—cc Zm,n = 0,
for each m > Na.

Let € > 0 be arbitrary (and ﬁxed). Then there is n. € N such that x,,, < € for each
n > ne. Set n, = max{ne, N1, No}. Then x,,, < e for each m,n > n., which means
that x € cJ .

The double sequence X = (Zm,n)m,nen defined by

1/m formeN, ne{l,2,---,m},
z —
e 1/n forneN, me{1,2,---,n}.

evidently belongs to the class ¢3 ,, but it does not belong to Tr(R-_s,) because for

a=f=1and m =n we have
. X 1 1 . n

lim =Lt — lim =1
n— 00 Tm,n n~>oon+1




In what follows we need two definitions from [6].

Let A and B be as above. Then:

(a) Sgd)(A,B) denotes the selection hypothesis: for each double sequence (Am,n :
m,n € N) of elements of A there are elements am,n € Am,n, m,n € N, such that the
double sequence (am,n)m,nen belongs to B.

(b) agd) (A, B) denotes the selection hypothesis: for each double sequence (Ap,,n :
m,n € N) of elements of A there is an element B in B such that BN A, ., is infinite for
all (m,n) € NxN.

2.2. Theorem. The selection principle Sgd)(cg,Jr,Tr(R,oo,sZ)) is satisfied.

Proof. Let (m,n,j,k) be a double sequence of double sequences such that for a fixed
(jo, ko) € N XN, (Zim,n,jo.ko) € €3+ We create a new double sequence y = (y;.)j ken in
the following way.

19, Y1,1 = Tm,n,1,1 for an arbitrary fixed (m,n) € N x N;

20, Y1,2 = Tm,n,1,2 such that y1 2 < %yl,l, Y2,1 = Tm,n,2,1 Such that y21 < %ylyl, and
Y2,2 = Tm,n,2,2 such that y2 2 < %min{ylyg,ygyl}.

p°, p > 3. Choose Yp,1 = Tm.np,1 50 that yp,1 < (%)pyp,m. For ¢ € {2,3,--- ,p—1}
pick Yp.¢e = Tm,n,p,e such that y,, < (%)pyp,z_1 and yp,r < (%)pyp_u. Similarly, let
Yi,p = Tm,n,1,p be such that yi1, < (% P y1.p—1. Choose also y¢p = Tm.n.e,p such that
Yeo,p < (%)pyg_lm and y¢,p < (%)p Ye,p—1. Finally, take yp,» to be some &, n,p,p such that
Yp,p < (%)pmin{yp,p—layp—lyp}-

We prove that y € Tr(R_w,s,). Let € > 0 and «, 8 > 0 with max{«a, 8} > 1 be given.
Set h = h(a, 8) = [a] + [B]. There is so € N such that (3)° < e for each s > so. For
j > s0, k> so we have

X so+1 ) so+1
Yitlk (}) and YEktl < (l) 7
Yj.k 2 Yj.k 2
and thus we have
so+1)h s
Yistablkts) _ Yitlohhtls) o (1>(9° ) < (1) e
Yj.k Yj.k 2

which means that y € Tr(R_o s, ). O

2.3. Theorem. The selection principle aéd)(cg’Jr,Tr(R_oo,Sz)) is satisfied.
Proof. Let (Tm,n,j,5) be a double sequence of double sequences such that for a fixed
(jo, ko) € N X N, (Tn,njo,ko) € €3 4. Form a double sequence y = (yp,¢)p,ten as follows.

Step 1. Using some standard method arrange the given double sequence of double
sequences in a sequence (Tn,m,r) of double sequences, where for each ro € N the double
sequence (Tm,n,r) belongs to cJ | .

Step 2. Consider the sequence of sequences (Zn,n,), 7 € N. Observe that for each
ro € N it holds (Zn,n,r,) € So, where Sp denotes the set of all sequences of positive real
numbers converging to 0 (see, for instance, [7]). Let J = {(an)nen € S: a1 > 0,an1 <

an_1, where S is the set of all sequences of positive real numbers. It holds J & Sp and

n+
the selection principle S1(So, J) is satisfied.

Step 3. (In this part of the proof we use some techniques from [2]) Take an increasing
sequence (p;)ien of prime numbers, (p1 = 2), and a fixed r € N. Consider subsequences
(Tpp,pp,r), © € N, of the sequence (Znn,r). These subsequences are in the class So.
Varying ¢ and r in N, arrange those subsequences in a sequence of sequences of So.



Applying S1(So, J) one finds a sequence (z;) € J such that (z;) has infinitely many
elements with the sequence (2n,n,r) for each 7 € N. In other words, we conclude that the
selection principle a2 (So, J) is true.

Let now y;; = 25, j € N. For j > 2 we choose ys; = vVs+1-ysy1,; for s €
{1,2,---,7—1}, and yjs = V/s+1-yjs+1. It is easy to see that the double sequence
¥ = (yp,+) obtained in this way has infinitely many common elements with each double
sequence (Tm,n,j.k) for arbitrary and fixed (j, k) € N x N.

It remains to prove y € Tr(R_w,s,). Let € > 0 and a > 0, 8 > 0 with max{«, 8} > 1,

h
be given. Set h = [a] + [8]. There is Ny € N such that (\/ﬁ) < e for each N € N
with N > Ny (No > e~ (/h) _ 1). For p,t > Ny we have

Y1t 1 and Ypttl o 1

Yot ~ VNo+1 Ypt ~ VNo+1

So we have

h
Yiptal.lt+8] _ Yp+lal.t+(8] < 1 ) <
Yp,t Yp,t vVNo+1/ ™

ie. y € Tr(Ross,).

g

O

2.4. Remark. (1) The selection principles agd)(cger,Tr(R_oo,Sz)), it = 3,4, are also
satisfied; see the papers [8, 6] in connection with these selection principles.

(2) From the proof of Theorem 2.3 it follows that selection principles a; (9 1, Tr(R—oo.s,)),
1 € {2,3,4}, are true; see [12] for these selection properties.

(3) From the proof of Theorem 2.2 one concludes that this theorem remains true if
the first coordinate c3 , in it is replaced by the class of double sequences of positive
real numbers which possesses at least one Pringsheim’s limit point equal to 0 (see, for
instance, [6]).

(4) Similarly, Theorem 2.3 remains true if the first coordinate cJ , is replaced by the
class of double sequences (zm,») having property that the sequence (zn,,) contains a
subsequence converging to 0.

For a double sequence x = (Z,») we define
wn(x) :=sup{|zjr —zrs|:j >0,k >n,r>n,8s>n}, neN.
The sequence (wn(x)) is called the Landau-Hurwicz sequence of x (compare with [4]).

2.5. Proposition. A double sequence x = (Xm,n) belongs to the class ¢3, a € R, if and
only if limy,— 00 wn (x) = 0.

Proof. (=) Assume that x = (2, is a double sequence from ¢§ for some arbitrary and
fixed a € R. Let € > 0 be given. There is no = no(e) € N such that |z, — a|] < e/2 for
each j > no and each k > ng. Therefore we have

| — Trs| = |2je —a+a—xrs| < |xjp —a| + |xrs —al| <e/24+¢/2
for all j, k,r, s > no. This implies that for each n > no we have
0 < wn(x) <sup{|zjk — Trs|:J = no,k > no,m > no,s 2not <e,
ie. limpoo wn(x) = 0.
(<) Let x = (m,n) be a double sequence with lim, o wn(x) = 0. For a given € > 0,

there is n1 = n1(e) € N such that 0 < |z; 5 — 25| < /2 for j > n1, k> na1, v > nq,
s > n1, because

0 < wn(x) =sup{|zjr — Trs|:j > n1,k>n1,r > n1,s >2nt <eg/2



for n > ny. Since for all j,7 > n1 it holds |z;,; — x| < €/2, it follows that the sequence
(z+,+) is convergent (as a Cauchy sequence), i.e. there is A € R such that lim; o0 ¢, = A.
This implies there is n2 = n2(e) € N such that |z — A| < /2 for each t > ny. Therefore,
for ng = max{ni,n2} and all j, k > no we have

lzj 6 — Al < |xj6 — x5,5] + |25, — Al < e.

For a € R we define
iz = (X € (@a(x)) € TR )}
(For the definition of Tr(R_oos) see [3].)
2.6. Example. Given a € R, consider the double sequence x = (x; ) defined by
a for j # k,
Tk = {a—i— 1/j forj=k.

It is clear that x € c3. However, x ¢ cf,(r___ ,)» because wn(x) = 1/n for each n € N

and
lim Wnt11X) (x)

=1.
n—oo  wp(x)

2.7. Theorem. The following selection principles are satisfied:
(1) SSP(B4s Sr o y2t)i
(2) o5™(S 1, hr_ oo yot)-
Proof. (1) Consider the double sequence y = (y;,x) which was the selector in the proof
of Theorem 2.2. We have
wn(y) =sup{lyjr — Yrsl G 2 nkZn,r 2 n,s >n} =ynn, nEN,

which implies

n+1
lm Cntl) gy Yt g (1) =0,

ie. (1) is true.
(2) Consider the double sequence y = (y,,x) which was the selector in the proof of
Theorem 2.3. For this double sequence we have w,(y) = yn,n, n € N. Since
lim ) gy Ynin g
n—oo  wn(y n—oo  Ynon n—oo n + 1

one concludes that (2) is satisfied. O

’

We recall a definition from [6]. Let A and B be as in Introduction. Then S¥ (A, B)
denotes the selection hypothesis: for each sequence (A;) of elements from A there is an
element B = (b; ) € B such that b;, € A, for t = ¢(j, k), where ¢ : Nx N — Nis a
given bijection.

2.8. Theorem. The selection principle S{ (9, , Tr(R_ooys,)) 4s satisfied.

Proof. Suppose that (A:) is a sequence of double sequences A; = (Zm,n¢) In cg7+. Let
us consider the double sequence of double sequences (Zm n,j,x) (constructed from the
sequence (A:)), where (j,k) = (§(t),k(t)) = ¢ '(¢), t € N. To this double sequence
of double sequences apply the procedure from the proof of Theorem 2.2 to obtain the
double sequence y = (y;,x) which will witness that the theorem is true. O



From the proof of Theorem 2.8 and Theorem 2.7(1) we have the following corollary.

2.9. Corollary. The selection principle S{(c5 4, cﬁ)—“RﬂC,S)yZ#) 1s satisfied.
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