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Abstract
This paper is a continuation of the research on selection properties of
certain classes of double sequences of positive real numbers that was
began in [6].
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1. Introduction
In recent years a number of papers concerning relations between selection principles

theory and the theory of convergence/divergence of sequences of positive real numbers
appeared in the literature [1, 2, 3, 4, 7]. Special attention have been paid to connections
between αi selection principles [12] and classes of sequences important in Karamata’s
theory of regular variation (see the papers [1, 3] and references therein, and also the papers
[13, 17] for important applications). On the other hand, in [6] the authors introduced
modified αi selection properties for double real sequences and gave their relations with
Pringsheim’s convergence of double sequences (see [14] and also [9, 10, 15]).

In this note we continue investigation began in [6] and extend results from this paper
considering the class of translationally rapidly varying double sequences following some
ideas from [3, 16].
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Recall definitions of two selection principles that we consider in this note. If A and B

are families of subsets of an infinite set X, then:
(1) S1(A,B) denotes the selection hypothesis that for each sequence (An : n ∈ N) in

A there is a sequence (bn : n ∈ N) such that for each n, bn ∈ An and {bn : n ∈ N} ∈ B.
(2) α2(A,B) denotes the selection hypothesis that for each sequence (An : n ∈ N) in

A there is an element B ∈ B such that for each n, B ∩An is infinite (see [12]).
For more details on selection principles see [11].

2. Results
Given a ∈ R, by ca2 we denote the set of double sequences of real numbers which

converge to a in the sense of Pringsheim [14]. Let

ca2,+ := {x = (xm,n)m,n∈N ∈ ca2 : xm,n > 0 for all m,n ∈ N}.

We say that a positive double sequence x = (xm,n)m,n∈N belongs to the class Tr(R−∞,s2)
of translationally rapidly varying double sequences if

lim
min{m,n}→∞

x[m+α],[n+β]

xm,n
= 0

for each α ≥ 0 and each β ≥ 0 such that max{α, β} ≥ 1. Here [x] denotes the integer
part of x ∈ R.

Notice that the class Tr(R−∞,s2) is nonempty, because it contains the double sequence
(xm,n) defined by

xm,n =
1

(m+ n)!
, m ∈ N, n ∈ N.

2.1. Theorem. Tr(R−∞,s2) & c02,+.

Proof. Let x = (xm,n)m,n∈N ∈ Tr(R−∞,s2). Let ε = 1
2

and α = β = 1. There is
N0 = N0(1/2, 1, 1) ∈ N such that

xm+1,n+1

xm,n
≤ 1

2

for all m,n ≥ N0. Therefore, for m = n ≥ N0 we have xn+1,n+1 ≤ 1
2
xn,n, and it

follows that limn→∞ xn,n = 0. Similarly, for ε = 1
2
and α = 1, β = 0, there is N1 =

N1(1/2, 1, 0) ∈ N such that xm+1,n ≤ 1
2
xm,n for all m,n ≥ N1. It implies that for n ≥ N1

we have limm→∞ xm,n = 0. Finally for ε = 1
2
, α = 0, β = 1 there is N2 = N2(1/2, 0, 1) ∈

N such that xm,n+1 ≤ 1
2
xm,n for all m,n ≥ N2. From here we obtain limn→∞ xm,n = 0,

for each m ≥ N2.
Let ε > 0 be arbitrary (and fixed). Then there is nε ∈ N such that xn,n ≤ ε for each

n ≥ nε. Set n∗ = max{nε, N1, N2}. Then xm,n ≤ ε for each m,n ≥ n∗, which means
that x ∈ c02,+.

The double sequence x = (xm,n)m,n∈N defined by

xm,n =

{
1/m for m ∈ N, n ∈ {1, 2, · · · ,m},
1/n for n ∈ N, m ∈ {1, 2, · · · , n}.

evidently belongs to the class c02,+, but it does not belong to Tr(R−∞,s2) because for
α = β = 1 and m = n we have

lim
n→∞

xm+1,n+1

xm,n
= lim
n→∞

n

n+ 1
= 1.

�



In what follows we need two definitions from [6].

Let A and B be as above. Then:
(a) S

(d)
1 (A,B) denotes the selection hypothesis: for each double sequence (Am,n :

m,n ∈ N) of elements of A there are elements am,n ∈ Am,n, m,n ∈ N, such that the
double sequence (am,n)m,n∈N belongs to B.

(b) α(d)
2 (A,B) denotes the selection hypothesis: for each double sequence (Am,n :

m,n ∈ N) of elements of A there is an element B in B such that B ∩Am,n is infinite for
all (m,n) ∈ N× N.

2.2. Theorem. The selection principle S
(d)
1 (c02,+,Tr(R−∞,s2)) is satisfied.

Proof. Let (xm,n,j,k) be a double sequence of double sequences such that for a fixed
(j0, k0) ∈ N×N, (xm,n,j0,k0) ∈ c02,+. We create a new double sequence y = (yj,k)j,k∈N in
the following way.

10. y1,1 = xm,n,1,1 for an arbitrary fixed (m,n) ∈ N× N;
20. y1,2 = xm,n,1,2 such that y1,2 < 1

2
y1,1, y2,1 = xm,n,2,1 such that y2,1 < 1

2
y1,1, and

y2,2 = xm,n,2,2 such that y2,2 < 1
2
min{y1,2, y2,1}.

p0, p ≥ 3. Choose yp,1 = xm,n,p,1 so that yp,1 <
(
1
2

)p
yp−1,1. For ` ∈ {2, 3, · · · , p− 1}

pick yp,` = xm,n,p,` such that yp,` <
(
1
2

)p
yp,`−1 and yp,` <

(
1
2

)p
yp−1,`. Similarly, let

y1,p = xm,n,1,p be such that y1,p <
(
1
2

)p
y1,p−1. Choose also y`,p = xm,n,`,p such that

y`,p <
(
1
2

)p
y`−1,p and y`,p <

(
1
2

)p
y`,p−1. Finally, take yp,p to be some xm,n,p,p such that

yp,p <
(
1
2

)p
min{yp,p−1, yp−1,p}.

We prove that y ∈ Tr(R−∞,s2). Let ε > 0 and α, β ≥ 0 with max{α, β} ≥ 1 be given.
Set h = h(α, β) = [α] + [β]. There is s0 ∈ N such that ( 1

2
)s ≤ ε for each s ≥ s0. For

j ≥ s0, k ≥ s0 we have

yj+1,k

yj,k
≤
(
1

2

)s0+1

and
yj,k+1

yj,k
≤
(
1

2

)s0+1

,

and thus we have
y[j+α],[k+β]

yj,k
=
yj+[α],k+[β]

yj,k
≤
(
1

2

)(s0+1)h

≤
(
1

2

)s0
≤ ε,

which means that y ∈ Tr(R−∞,s2). �

2.3. Theorem. The selection principle α(d)
2 (c02,+,Tr(R−∞,s2)) is satisfied.

Proof. Let (xm,n,j,k) be a double sequence of double sequences such that for a fixed
(j0, k0) ∈ N× N, (xm,n,j0,k0) ∈ c02,+. Form a double sequence y = (yp,t)p,t∈N as follows.

Step 1. Using some standard method arrange the given double sequence of double
sequences in a sequence (xn,m,r) of double sequences, where for each r0 ∈ N the double
sequence (xm,n,r0) belongs to c

0
2,+.

Step 2. Consider the sequence of sequences (xn,n,r), r ∈ N. Observe that for each
r0 ∈ N it holds (xn,n,r0) ∈ S0, where S0 denotes the set of all sequences of positive real
numbers converging to 0 (see, for instance, [7]). Let J = {(an)n∈N ∈ S : a1 > 0, an+1 ≤
an
n+1
}, where S is the set of all sequences of positive real numbers. It holds J & S0 and

the selection principle S1(S0, J) is satisfied.
Step 3. (In this part of the proof we use some techniques from [2]) Take an increasing

sequence (pi)i∈N of prime numbers, (p1 = 2), and a fixed r ∈ N. Consider subsequences
(xpni ,pni ,r), i ∈ N, of the sequence (xn,n,r). These subsequences are in the class S0.
Varying i and r in N, arrange those subsequences in a sequence of sequences of S0.



Applying S1(S0, J) one finds a sequence (zj) ∈ J such that (zj) has infinitely many
elements with the sequence (xn,n,r) for each r ∈ N. In other words, we conclude that the
selection principle α2(S0, J) is true.

Let now yj,j = zj , j ∈ N. For j ≥ 2 we choose ys,j =
√
s+ 1 · ys+1,j for s ∈

{1, 2, · · · , j − 1}, and yj,s =
√
s+ 1 · yj,s+1. It is easy to see that the double sequence

y = (yp,t) obtained in this way has infinitely many common elements with each double
sequence (xm,n,j.k) for arbitrary and fixed (j, k) ∈ N× N.

It remains to prove y ∈ Tr(R−∞,s2). Let ε > 0 and α ≥ 0, β ≥ 0 with max{α, β} ≥ 1,

be given. Set h = [α] + [β]. There is N0 ∈ N such that
(

1√
N+1

)h
≤ ε for each N ∈ N

with N ≥ N0 (N0 ≥ ε−(2/h) − 1). For p, t ≥ N0 we have
yp+1,t

yp,t
≤ 1√

N0 + 1
and

yp,t+1

yp,t
≤ 1√

N0 + 1
.

So we have
y[p+α],[t+β]

yp,t
=
yp+[α],t+[β]

yp,t

(
1√

N0 + 1

)h
≤ ε,

i.e. y ∈ Tr(R−∞,s2).
�

2.4. Remark. (1) The selection principles α(d)
i (c02,+,Tr(R−∞,s2)), i = 3, 4, are also

satisfied; see the papers [8, 6] in connection with these selection principles.
(2) From the proof of Theorem 2.3 it follows that selection principles αi(c02,+,Tr(R−∞,s2)),

i ∈ {2, 3, 4}, are true; see [12] for these selection properties.
(3) From the proof of Theorem 2.2 one concludes that this theorem remains true if

the first coordinate c02,+ in it is replaced by the class of double sequences of positive
real numbers which possesses at least one Pringsheim’s limit point equal to 0 (see, for
instance, [6]).

(4) Similarly, Theorem 2.3 remains true if the first coordinate c02,+ is replaced by the
class of double sequences (xm,n) having property that the sequence (xn,n) contains a
subsequence converging to 0.

For a double sequence x = (xm,n) we define

ωn(x) := sup{|xj,k − xr,s| : j ≥ n, k ≥ n, r ≥ n, s ≥ n}, n ∈ N.
The sequence (ωn(x)) is called the Landau-Hurwicz sequence of x (compare with [4]).

2.5. Proposition. A double sequence x = (xm,n) belongs to the class ca2 , a ∈ R, if and
only if limn→∞ ωn(x) = 0.

Proof. (⇒) Assume that x = (xm,n) is a double sequence from ca2 for some arbitrary and
fixed a ∈ R. Let ε > 0 be given. There is n0 = n0(ε) ∈ N such that |xj,k − a| ≤ ε/2 for
each j ≥ n0 and each k ≥ n0. Therefore we have

|xj,k − xr,s| = |xj,k − a+ a− xr,s| ≤ |xj,k − a|+ |xr,s − a| ≤ ε/2 + ε/2

for all j, k, r, s ≥ n0. This implies that for each n ≥ n0 we have

0 ≤ ωn(x) ≤ sup{|xj,k − xr,s| : j ≥ n0, k ≥ n0, r ≥ n0, s ≥ n0} ≤ ε,
i.e. limn→∞ ωn(x) = 0.

(⇐) Let x = (xm,n) be a double sequence with limn→∞ ωn(x) = 0. For a given ε > 0,
there is n1 = n1(ε) ∈ N such that 0 ≤ |xj,k − xr,s| ≤ ε/2 for j ≥ n1, k ≥ n1, r ≥ n1,
s ≥ n1, because

0 ≤ ωn(x) = sup{|xj,k − xr,s| : j ≥ n1, k ≥ n1, r ≥ n1, s ≥ n1} ≤ ε/2



for n ≥ n1. Since for all j, r ≥ n1 it holds |xj,j − xr,r| ≤ ε/2, it follows that the sequence
(xt,t) is convergent (as a Cauchy sequence), i.e. there is A ∈ R such that limt→∞ xt,t = A.
This implies there is n2 = n2(ε) ∈ N such that |xt,t−A| ≤ ε/2 for each t ≥ n2. Therefore,
for n0 = max{n1, n2} and all j, k ≥ n0 we have

|xj,k −A| ≤ |xj,k − xj,j |+ |xj,j −A| ≤ ε.
�

For a ∈ R we define

caTr(R−∞,s),2 := {x ∈ c
a
2 : (ωn(x)) ∈ Tr(R−∞,s)}.

(For the definition of Tr(R−∞,s) see [3].)

2.6. Example. Given a ∈ R, consider the double sequence x = (xj,k) defined by

xj,k =

{
a for j 6= k,

a+ 1/j for j = k.

It is clear that x ∈ ca2 . However, x /∈ caTr(R−∞,s),2
because ωn(x) = 1/n for each n ∈ N

and
lim
n→∞

ωn+1(x)

ωn(x)
= 1.

2.7. Theorem. The following selection principles are satisfied:
(1) S

(d)
1 (c02,+, c

0
Tr(R−∞,s),2,+

);

(2) α
(d)
2 (c02,+, c

0
Tr(R−∞,s),2,+

).

Proof. (1) Consider the double sequence y = (yj,k) which was the selector in the proof
of Theorem 2.2. We have

ωn(y) = sup{|yj,k − yr,s| : j ≥ n, k ≥ n, r ≥ n, s ≥ n} = yn,n, n ∈ N,

which implies

lim
n→∞

ωn+1(y)

ωn(y)
= lim
n→∞

yn+1,n+1

yn,n
≤ lim
n→∞

(
1

2

)n+1

= 0,

i.e. (1) is true.
(2) Consider the double sequence y = (yj,k) which was the selector in the proof of

Theorem 2.3. For this double sequence we have ωn(y) = yn,n, n ∈ N. Since

lim
n→∞

ωn+1(y)

ωn(y)
= lim
n→∞

yn+1,n+1

yn,n
≤ lim
n→∞

1

n+ 1
= 0,

one concludes that (2) is satisfied. �

We recall a definition from [6]. Let A and B be as in Introduction. Then Sϕ1 (A,B)
denotes the selection hypothesis: for each sequence (At) of elements from A there is an
element B = (bj,k) ∈ B such that bj,k ∈ At for t = ϕ(j, k), where ϕ : N × N → N is a
given bijection.

2.8. Theorem. The selection principle Sϕ1 (c
0
2,+,Tr(R−∞,s2)) is satisfied.

Proof. Suppose that (At) is a sequence of double sequences At = (xm,n,t) in c02,+. Let
us consider the double sequence of double sequences (xm,n,j,k) (constructed from the
sequence (At)), where (j, k) = (j(t), k(t)) = ϕ−1(t), t ∈ N. To this double sequence
of double sequences apply the procedure from the proof of Theorem 2.2 to obtain the
double sequence y = (yj,k) which will witness that the theorem is true. �



From the proof of Theorem 2.8 and Theorem 2.7(1) we have the following corollary.

2.9. Corollary. The selection principle Sϕ1 (c
0
2,+, c

0
Tr(R−∞,s),2,+

) is satisfied.
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