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Abstract
We generalize the first and second kind Chebyshev polynomials by using
the concepts and the operational formalism of the Hermite polynomials
of the Kampé de Fériet type. We will see how it is possible to derive
integral representations for these generalized Chebyshev polynomials.
Finally we will use these results to state several relations for Gegenbauer
polynomials.
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1. Introduction
It is well known that the explicit form of the second kind Chebyshev polynomials [1]

reads

(1.1) Un(x) =

[n2 ]∑
k=0

(−1)k(n− k)!(2x)n−2k

k!(n− 2k)!

In a previous paper [2] we have stated for these polynomials an integral representation
of the type:

(1.2) Un(x) =
1

n!

∫ +∞

0

e−ttnHn

(
2x,−1

t

)
dt

where:

(1.3) Hn(x, y) = n!

[n2 ]∑
k=0

ykxn−2k

k!(n− 2k)!
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are the two-variable Hermite polynomials of Kampé de Fériet [3, 4] type, with gener-
ating function given by the formula

(1.4) e(xt+yt2) =

+∞∑
0

tn

n!
Hn(x, y)

It is also possible to state a different representation for the second kind Chebyshev
polynomials Un(x) by rearranging the argument of the Hn(x, y) polynomials. In fact [5],
by noting that

tnHn

(
2x,−1

t

)
= n!tn

[n2 ]∑
k=0

(−1)k(2x)n−2k

tkk!(n− 2k)!
=(1.5)

= n!

[n2 ]∑
k=0

(−1)ktk(2xt)n−2k

k!(n− 2k)!
= Hn(2xt,−t)

and, from the fact that

(1.6) (n− k)! =

∫ +∞

0

e−ttn−kdt

we can immediately conclude with

(1.7) Un(x) =
1

n!

∫ +∞

0

e−tHn(2xt,−t)dt

The use of the above integral representations for the second kind Chebyshev polyno-
mials can be used to introduce further generalized polynomial sets, including the two-
variable Chebyshev polynomials [6, 7, 8] and the two-variable Gegenbauer polynomials.

2. Two-variable generalized Chebyshev polynomials
Before to proceed, we premise some relevant operational relations involving the gen-

eralized Hermite polynomials [5].

1. Proposition. The polynomials Hn(x, y) solve the following partial differential equa-
tion:

(2.1)
∂2

∂x2
Hn(x, y) =

∂

∂y
Hn(x, y)

Proof. By deriving, separately with respect to x and to y, in the (1.3), we obtain:
∂

∂x
Hn(x, y) = nHn−1(x, y)(2.2)

∂

∂y
Hn(x, y) = n(n− 1)Hn−2(x, y).

From the first of the above relations, by deriving again with respect to x and by
noting the second relation in (2.2), we end up with the (2.1). The above results help us
to derive an important operational rule. In fact, by considering the differential equation
(2.1) as a linear ordinary one in the variable y and by noting that Hn(x, 0) = xn, we can
immediately state that

(2.3) Hn(x, y) = e
y ∂2

∂x2 xn



�

2. Proposition. The two-variable Hermite polynomials satisfy the following relation

(2.4)
(
x+ 2y

∂

∂x

)n
=

n∑
s=0

(
n

s

)
Hn(x, y) (2y)n−s

∂n−s

∂xn−s

Proof. By multiplying the l.h.s. of the above equation by tn

n!
and then summing up, we

find:

(2.5)
+∞∑
n=0

tn

n!

(
x+ 2y

∂

∂x

)n
= et(x+2y ∂

∂x )

To develope the exponential in the r.h.s. of the (2.5) we need to apply the Weyl
identity

(2.6) e(A+B) = eAeBe[A,B]/2

and then we have to calculate the commutator of the two operators:

(2.7)
[
tx, t2y

∂

∂x

]
= −2t2y

which help us to write:

(2.8)
+∞∑
n=0

tn

n!

(
x+ 2y

∂

∂x

)n
= ext+yt

2

e2ty ∂
∂x (1).

After expanding and manipulating the r.h.s. of the previous relation and by equating
the like t powers we find immediately the (2.4).

The above result gives us another important operational rule for the generalized Her-
mite polynomials. By using in fact the identity stated in equation (2.4), we have

(2.9) e
y ∂2

∂x2 xn =

n∑
s=0

(2y)s
(
n

s

)
Hn(x, y)

∂s

∂xs
(1)

Applying (2.4) at 1 and comparing with (2.5) gives

(2.10) e
y ∂2

∂x2 xn =

(
x+ 2y

∂

∂x

)n
(1)

�

Finally, we can state

3. Proposition. The Hermite polynomials Hn(x, y) solve the following differential equa-
tion:

(2.11) 2y
∂2

∂x2
Hn(x, y) + x

∂

∂x
Hn(x, y) = nHn(x, y)

Proof. By using the results derived from the Proposition 2, we can easily write that:

(2.12)
(
x+ 2y

∂

∂x

)
Hn(x, y) = Hn+1(x, y)



and from the first of the recurrence relations stated in (2.2):

(2.13)
∂

∂x
Hn(x, y) = nHn−1(x, y)

we have:

(2.14)
(
x+ 2y

∂

∂x

)(
∂

∂x

)
Hn(x, y) = nHn(x, y)

which is the thesis.
From this statement can be also derived an important recurrence relation. By exploit-

ing, in fact, the relation (2.12), we obtain:

(2.15) Hn+1(x, y) = xHn(x, y) + 2y
∂

∂x
Hn(x, y)

and then we can conclude with:

(2.16) Hn+1(x, y) = xHn(x, y) + 2nyHn−1(x, y).

�

1. Definition. Let x, y be write real variables and let α a real parameter, we call gener-
alized Chebyshev polynomials of second kind, the polynomials defined by the following
relation:

(2.17) Un(x, y;α) =
1

n!

∫ +∞

0

e−αtHn(2xt,−yt)dt

By using the recurrence relations relevant to the two-variable Hermite polynomials,
proved in first chapter, we can state the following:

4. Proposition. The generalized Chebyshev polynomials Un(x, y;α) satisfy the follow-
ing recurrence relations:

∂

∂y
Un(x, y;α) =

∂

∂α
Un−2(x, y;α)(2.18)

∂

∂x
Un(x, y;α) = −2

∂

∂α
Un−1(x, y;α).

Proof. By deriving with respect to y in the relation (2.17), we get:

(2.19)
∂

∂y
Un(x, y;α) =

1

n!

∫ +∞

0

e−αt
∂

∂y
Hn(2xt,−yt)dt

and since:

(2.20)
∂

∂y
Hn(2xt,−yt) = (−t)n(n− 1)Hn−2(2xt,−yt)

we obtain:

(2.21)
∂

∂y
Un(x, y;α) =

1

n!

∫ +∞

0

e−αt(−t)n(n− 1)Hn−2(2xt,−yt)dt

which gives the first of the (2.18).



The second relation can be obtained in the same way, by noting that:

(2.22)
∂

∂x
Hn(2xt,−yt) = 2tnHn−1(2xt,−yt).

�

5. Proposition. The generalized Chebyshev polynomials Un(x, y;α) satisfy the follow-
ing Cauchy problem:

(2.23)

{
∂2

∂x2
Un(x, y;α) = 4 ∂2

∂α∂y
Un(x, y;α)

Un(x, 0;α) = (2x)n

αn+1

.

Proof. By deriving with respect to x in the second identity of (2.18), we find:

(2.24)
∂2

∂x2
Un(x, y;α) = 4

∂

∂α

(
∂

∂α
Un−2(x, y;α)

)
and then, since:

(2.25)
∂

∂α
Un−2(x, y;α) =

∂

∂y
Un(x, y;α)

we obtain:

(2.26)
∂2

∂x2
Un(x, y;α) = 4

∂2

∂α∂y
Un(x, y;α)

By setting y = 0 in the relation (2.17), we have:

(2.27) Un(x, 0;α) =
1

n!

∫ +∞

0

e−αtHn(2xt, 0)dt

and since:

(2.28) Hn(2xt, 0) = (2xt)n

we find:

(2.29) Un(x, 0;α) =
(2x)n

n!

∫ +∞

0

e−αttndt

that is:

(2.30) Un(x, 0;α) =
(2x)n

αn+1
.

The partial differential equation, stated in (2.26), can be viewed as a first order or-
dinary differential equation for the variable y; and then by using the initial condition
founded through the (2.30), we can state the solution:

(2.31) Un(x, y;α) = e
y
4
D̂−1
α

∂2

∂x2
(2x)n

αn+1

which completely prove the proposition.
The symbol D̂−1

α denotes the inverse of the derivative [9], defined by



(2.32) D̂−1
α f(x) = −

+∞∫
x

f(t)dt

In Definition (2.17), we have introduced the generalized Chebyshev polynomials Un(x, y, α)
by using a specific integral form of the standard second kind Chebyshev polynomials.

By using the same procedure, it is possible to obtain similar integral representations
for the first kind Chebyshev polynomials. There are some relevant applications in the
field of electromagnetics, and in particular they are an important tool to solve integral
equations [10]. In fact, since their explicit form is [1, 2]:

(2.33) Tn(x) =
n

2

[n2 ]∑
k=0

(−1)k(n− k − 1)!(2x)n−2k

k!(n− 2k)!
,

we can immediately derive that

(2.34) Tn(x) =
1

2(n− 1)!

∫ +∞

0

e−ttn−1Hn

(
2x,−1

t

)
dt .

We have also introduced [1, 2, 6] Chebyshev-like polynomials by using the method of
integral representation:

(2.35) Wn(x) =
2

(n+ 1)!

∫ +∞

0

e−ttn+1Hn

(
2x,−1

t

)
dt .

We can now generalize the above Chebyshev polynomials.
�

2. Definition. Let x, y real variables and let α a real parameter, we define the following
three polynomials sets

(2.36) Un(x, y;α) =
1

n!

∫ +∞

0

e−αttnHn
(

2x,−y
t

)
dt ,

(2.37) Tn(x, y;α) =
1

2(n− 1)!

∫ +∞

0

e−αttn−1Hn
(

2x,−y
t

)
dt

and:

(2.38) Wn(x, y;α) =
1

(n+ 1)!

∫ +∞

0

e−αttn+1Hn
(

2x,−y
t

)
dt .

It is immediate to note the following relations.

6. Proposition. The generalized Chebyshev polynomials satisfy the following recurrence
relations:

∂

∂α
Un(x, y;α) = −1

2
(n+ 1)Wn(x, y;α)(2.39)

∂

∂α
Tn(x, y;α) = −n

2
Un(x, y;α) .



Proof. By deriving with respect to α in the relation (2.17), we find:

(2.40)
∂

∂α
Un(x, y;α) = − 1

n!

∫ +∞

0

e−αttn+1Hn
(

2x,−y
t

)
dt

and then the first of equations (2.39), immediatly follows.
In the same way, by following a similar procedure, by using the identity (2.37), we

have:

(2.41)
∂

∂α
Tn(x, y;α) = − 1

2(n− 1)!

∫ +∞

0

e−αttnHn
(

2x,−y
t

)
dt

and then the thesis.
�

3. Generalized Gegenbauer polynomials
It is worth noting that the Chebyshev polynomials can be viewed as a particular case

of the Gegenbauer polynomials [6, 11].

3. Definition. Let x and µ real variables, be n− th order Gegenbauer polynomials [11],
the polynomials defined by the follow relation:

(3.1) C(µ)
n (x) =

1

Γ(µ)

[n2 ]∑
k=0

(−1)k(2x)n−2kΓ (n− k + µ)

k!(n− 2k)!

where Γ(µ) is the Euler function.
By recalling the integral representation of the above Euler function:

(3.2) Γ(µ) =

∫ +∞

0

e−ttµ−1dt

and by using the same arguments exploited for the Chebyshev case, we can state the
integral representation for the Gegenbauer polynomials:

(3.3) C(µ)
n (x) =

1

n!Γ(µ)

∫ +∞

0

e−ttn+µ−1Hn

(
2x,−1

t

)
dt .

We can also generalize the Gegenbauer polynomials by using their integral represen-
tation.

4. Definition. Let x, y be write real variables and let α a real parameter, we call
generalized Gegenbauer polynomials, the polynomials defined by the following relation:

(3.4) C(µ)
n (x, y;α) =

1

n!Γ(µ)

∫ +∞

0

e−αttn+µ−1Hn
(

2x,−y
t

)
dt .

The above integral representation is a very flexible tool; in fact it can be exploited to
derive interesting relations regarding the Gegenbauer polynomials and also the Chebyshev
polynomials [4, 6].

7. Proposition. Let ξ ∈ R, such that |ξ| < 1, µ 6= 0. The generating function of the
polynomials C(µ)

n (x, y;α) is given by:

(3.5)
+∞∑
n=0

ξnC(µ)
n (x, y;α) =

1

[α− 2xξ + yξ2]µ
.



Proof. By multiplying both sides of the identity (3.4), by ξn and by summing up over n,
we get:

(3.6)
+∞∑
n=0

ξnC(µ)
n (x, y;α) =

∫ +∞

0

+∞∑
n=0

ξntn

n!Γ(µ)
e−αttµ−1Hn

(
2x,−y

t

)
dt

and by noting that:

(3.7)
+∞∑
n=0

(ξt)n

n!
Hn
(

2x,−y
t

)
= exp

[
ξ (2xt) + ξ2(−yt)

]
we can write:

(3.8)
+∞∑
n=0

ξnC(µ)
n (x, y;α) =

∫ +∞

0

1

Γ(µ)
e−αteξ(2xt)+ξ

2(−yt)tµ−1dt .

Finally, by integrating over t , by using the integral representation of the Euler func-
tion, we obtain the thesis.

�

8. Proposition. The generalized second kind Chebyshev polynomials and the general-
ized Gegenbauer polynomials satisfy the following recurrence relation:

(3.9) (−1)m
∂m

∂αm
Un(x, y;α) = m!C(m+1)

n (x, y;α) .

Proof. By deriving with respect to α in the relation (2.36), m-times, we get:

(3.10)
∂m

∂αm
Un(x, y;α) =

(−1)m

n!

∫ +∞

0

e−αttn+mHn
(

2x,−y
t

)
dt .

The r.h.s. of the above identity can be written in the form:

(3.11)
(−1)m

n!

∫ +∞

0

e−αttn+mHn
(

2x,−y
t

)
dt =

(−1)mm!

n!m!

∫ +∞

0

e−αttn+mHn
(

2x,−y
t

)
dt

and then the thesis follows.
By using Proposition 3, it is easy to note that:

(3.12)
[
(2x) +

(
−y
t

) ∂

∂x

]
Hn
(

2x,−y
t

)
= Hn+1

(
2x,−y

t

)
which can be used to derive the following results:

�

3.1. Theorem. The generalized Gegenbauer polynomials C(µ)
n (x, y;α) satisfy the recur-

rence relations:

(3.13)
n+ 1

2µ
C

(µ)
n+1(x, y;α) = xC(µ+1)

n (x, y;α)− yC(µ+1)
n−1 (x, y;α)

and:



(3.14)
∂

∂y
C(µ)
n (x, y;α) = −µC(µ+1)

n−2 (x, y;α) .

Proof. By using the relation (3.12), we can write the generalized Gegenbauer polynomial
of order n+ 1, in the form:

C
(µ)
n+1(x, y;α) =(3.15)

= 1
(n+1)!Γ(µ)

∫ +∞
0

e−αttn+µ
[
(2x) +

(
− y
t

)
∂
∂x

]
Hn
(
2x,− y

t

)
dt .

After exploiting the r.h.s of the above identity, we get:

C
(µ)
n+1(x, y;α) =(3.16)

= 1
(n+1)!Γ(µ)

[∫ +∞
0

e−αttn+µ(2x)Hn
(
2x,− y

t

)
dt−(3.17)

+
∫ +∞

0
e−αttn−1+µy(2n)Hn−1

(
2x,− y

t

)
dt
]

and then:

C
(µ)
n+1(x, y;α) =(3.18)

= 2x
(n+1)!Γ(µ)

∫ +∞
0

e−αttn+µHn
(
2x,− y

t

)
dt−(3.19)

+ 2yn
(n+1)!Γ(µ)

∫ +∞
0

e−αttn−1+µHn−1

(
2x,− y

t

)
dt .

We can rearrange the above relation in the form:
n+1

2
C

(µ)
n+1(x, y;α) =(3.20)

= x 1
n!Γ(µ)

∫ +∞
0

e−αttn+µHn
(
2x,− y

t

)
dt−(3.21)

+y 1
(n−1)!Γ(µ)

∫ +∞
0

e−αttn−1+µHn−1

(
2x,− y

t

)
dt

and finally:

n+1
2µ

C
(µ)
n+1(x, y;α) =(3.22)

= x 1
n!Γ(µ+1)

∫ +∞
0

e−αttn+µHn
(
2x,− y

t

)
dt−(3.23)

+y 1
(n−1)!Γ(µ+1)

∫ +∞
0

e−αttn−1+µHn−1

(
2x,− y

t

)
dt

which proves the (3.13).
To show the recurrence relation in the (3.14), it is important to note that:

(3.24)
∂

∂y
Hn
(

2x,−y
t

)
= −n(n− 1)

t
Hn−2

(
2x,−y

t

)
.

In fact, by deriving respct to y in the (3.14), we get:

(3.25) .
∂

∂y
C(µ)
n (x, y;α) =

1

n!Γ(µ)

∫ +∞

0

e−αttn+µ−1 ∂

∂y
Hn
(

2x,−y
t

)
dt

and by using the (3.24), we can write:

(3.26)
∂

∂y
C(µ)
n (x, y;α) = −n(n− 1)

n!Γ(µ)

∫ +∞

0

e−αttn−2+µHn−2

(
2x,−y

t

)
dt



which immediately gives the thesis.
�
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