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Abstract
In this work, we shall consider higher order nonlinear neutral delay
difference equation of the type

∆m [xn + pnx
α
n−k] + qnx

β
n−l = 0 , n = 0, 1, 2, ...

where {pn} is a sequence of real numbers, {qn} is a sequence of non-
negative real numbers, k and l are positive integers and α, β ∈ (0,∞)
are quotient of odd positive integers.We obtain sufficient conditions for
the oscillations of all solutions of this equation.
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1. Introduction
In the present work, we consider the following higher order nonlinear neutral delay

difference equation:

(1.1) ∆m [xn + pnx
α
n−k] + qnx

β
n−l = 0 , n = 0, 1, 2, ...

where ∆ is the usual forward difference operator defined by ∆xn = xn+1 − xn, k, l are
positive integers, {pn} is a sequence of real numbers, {qn} is a sequence of nonnegative
real numbers and α ∈ (0,∞) and β ∈ (0,∞) are ratio of odd positive integers.

Recently, there have been a lot of studies concerning the behaviour of the oscillatory
difference and differential equations, see [1-14] and the reference cited therein. In [3],
Agarwal et al. and in [4], Agarwal and Grace studied behaviour of the oscillatory higher
order nonlinear neutral difference equations with different form from equation (1.1). Later
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in [9], Tang and Liu investigated the oscillatory behaviour of the first order nonlinear
delay difference equation of the form

∆xn + qnx
β
n−l = 0,

where {qn} is a sequence of nonnegative numbers, l is a positive integer and β ∈ (0,∞)
is a quotient of odd positive integers. Later in [10], Thandapani et al. considered the
neutral delay difference equation

∆ [xn + pnxn−k] + δqnx
β
n−l = 0,

where δ = ±1 and β is a ratio of odd positive integers and also {pn}, {qn} are positive
real sequences. Particularly, in [11], oscillation results were given for

∆m [xn + pnxn−k] + qnx
β
n−l = 0,

where {pn} is a sequence of real numbers, {qn} is a sequence of nonnegative real numbers,
k and l are positive integers and β ∈ (0,∞) is a quotient of odd positive integers. Note
that (1.1) includes this equation with α = 1.

In [5], X. Lin considered (1.1) with m = 1 which has the form

∆ [xn − pnxαn−k] + qnx
β
n−l = 0 , n = 0, 1, 2, ...

where α, β > 0 and {pn}, {qn} are sequences of nonnegative real numbers and k and l are
positive integers. Our conditions are more relaxed when the equation is of first order.

Let ρ = max{k, l}. By a solution of (1.1), we mean a real sequence {xn} which is
defined for all n ≥ −ρ and satisfies equation (1.1) for n ≥ 0. A solution of (1.1) is said
to be oscillatory if it is neither eventually positive nor eventually negative.

Our aim in this paper is to obtain sufficient conditions for the oscillation of all solutions
of (1.1).

In the sequel, we shall need the following conditions:
(C1) lim infn→∞ qn > 0;
(C2) 0 ≤ pn < 1;
(C3) −1 < −P ≤ pn ≤ 0, where P > 0 is a constant;
We need the following result proved in [13] for our subsequent discussion.

1.1. Lemma. Assume that for large n,

(pn, pn+1, ..., pn+k−1) 6= 0.

Then

∆xn + pnx
α
n−k = 0 , n = 0, 1, 2, ...

has an eventually positive solution if and only if the corresponding inequality

∆xn + pnx
α
n−k ≤ 0 , n = 0, 1, 2, ...

has an eventually positive solution.

Furthermore, we need following lemmas proved in [1].

1.2. Lemma. (Discrete Kneser’s Theorem) Let zn be defined for n ≥ a, and zn > 0 with
∆mzn of constant sign for n ≥ a and not identically zero. Then, there exists an integer
j, 0 ≤ j ≤ m with (m+ j) odd for ∆mzn ≤ 0, and (m+ j) even for ∆mzn ≥ 0, such that

j ≤ m− 1 implies (−1)j+i∆izn > 0, for all n ≥ a, j ≤ i ≤ m− 1,

and

j ≥ 1 implies ∆izn > 0, for all large n ≥ a, 1 ≤ i ≤ j − 1.



1.3. Lemma. Let zn be defined for n ≥ a, and zn > 0 with ∆mzn ≤ 0 for n ≥ a and
not identically zero. Then, there exists a large n1 ≥ a such that

zn ≥
(n− n1)m−1

(m− 1)!
∆m−1z2m−j−1n , n ≥ n1,

where j is defined in Lemma 1.2. Further, if zn is increasing, then

zn ≥
1

(m− 1)!

( n

2m−1

)m−1

∆m−1zn , n ≥ 2m−1n1.

2. Sufficient Conditions For Oscillations Of Equation (1.1)
2.1. Theorem. Assume 1 ≤ α <∞, (C1) and (C2) hold.
(a) Let m be even. If the difference equation

(2.1) ∆wn + qn

(
1− pn−l
(m− 1)!

)β (
n− l
2m−1

)(m−1)β

wβn−l = 0

is oscillatory, then all solutions of (1.1) are oscillatory.
(b) Let m be odd. Then, every solution of (1.1) either oscillates or tends to zero as
n→∞.

Proof. Let {xn} be a nonoscillatory solution of (1.1), with xn−ρ > 0 for all n ≥ n0.
Setting zn = xn + pnx

α
n−k, we get zn ≥ xn > 0 and

(2.2) ∆mzn = −qnxβn−l < 0 , n ≥ n0.

It is clear from Lemma 1.2 that ∆izn is eventually strictly monotonic for i = 1, 2, 3, ...,m−
1 and it is also of constant sign. By Lemma 1.2 that for m ≥ 2

(2.3) ∆m−1zn > 0 , n ≥ n0

Now, we claim that limn→∞ xn = 0. Summing (2.2) from n1 ≥ n0 + l to ∞
∞∑

s=n4

∆mzs = −
∞∑

s=n4

qsx
β
s−l

or

0 < ∆m−1zn4 − L =

∞∑
s=n4

qsx
β
s−l

where 0 ≤ L := lims→∞∆m−1zs <∞. Since
∑∞
s=n4

qsx
β
s−l <∞, we have lims→∞ qsx

β
s−l =

0, in the view of (C1), we see that lims→∞ xs = 0 holds. Therefore, there is a n ≥ n1

such that

0 ≤ xαn ≤ xn , n ≥ n1

or

(2.4) 0 ≤ xα−1
n ≤ 1 , n ≥ n1.

Now, we claim that ∆zn ≤ 0 eventually. This is obvious from equation (1.1) in the case
m = 1. For m ≥ 2, we suppose on the contrary, that ∆zn > 0 for n ≥ n1. Then,
considering (2.4),

(2.5)

(1− pn)zn ≤ zn − pnzn−k
= xn + pnx

α
n−k − pnxn−k − pnpn−kxαn−2k

= xn + pnxn−k
(
xα−1
n−k − 1

)
− pnpn−kxαn−2k

≤ xn.



for n ≥ n2 ≥ n1 + 2k. Since zn is positive and increasing, it follows from Lemma 1.3 and
(2.5)

(2.6) xn ≥ (1− pn)zn ≥
(1− pn)

(m− 1)!

( n

2m−1

)(m−1)

∆m−1zn , n ≥ 2m−1n2

Using (2.6), we find

qn (xn−l)
β ≥ qn

(
(1− pn−l)
(m− 1)!

(
n− l
2m−1

)(m−1)

∆m−1zn−l

)β
, n ≥ n3 ≥ 2m−1n2 + l

and so from (2.2)

∆mzn ≤ −qn
(

1− pn−l
(m− 1)!

)β (
n− l
2m−1

)(m−1)β

(∆m−1zn−l)
β , n ≥ n3

or

∆mzn + qn

(
1− pn−l
(m− 1)!

)β (
n− l
2m−1

)(m−1)β

(∆m−1zn−l)
β ≤ 0.

Thus, we see that
{

∆m−1zn
}
is an eventually positive (see (2.3)) solution of

(2.7) ∆wn + qn

(
1− pn−l
(m− 1)!

)β (
n− l
2m−1

)(m−1)β

wβn−l ≤ 0.

Therefore by Lemma 1.1, (2.1) has eventually positive solution. This is a contradiction
with the oscillatory of equation (2.1) under the assumption of Theorem 2.1. Hence,
∆zn ≤ 0 eventually. Since ∆zn ≤ 0 eventually, in Lemma 1.2, we must have j = 0 and

(2.8) (−1)i∆izn > 0 , 0 ≤ i ≤ m− 1, n ≥ n1.

If m is even, (2.8) yields a contradiction to (2.3). This proves part (a) of the theorem.
Now, let m be odd. Assume further that xn is a non-oscillating solution which does not
tend to zero as n→∞. As in the preceding case, (2.3) holds. Therefore, summing (2.2)
from n1 ≥ n0 + l to ∞, we get

0 < ∆m−1zn4 =

∞∑
k=n4

qnx
β
n−l <∞

which implies limn→∞ xn = 0 in the view of (C1). This contradiction completes the proof
of part (b). �

2.2. Theorem. Assume (C1) and (C3) hold. Then every solution of (1.1) either oscil-
lates or tends to zero as n→∞.

Proof. Let {xn} be a non-oscillatory solution of (1.1) which is not limiting to zero, with
xn−ρ > 0, for all n ≥ n0. Setting zn = xn + pnx

α
n−k, we get zn ≤ xn, and also inequality

(2.2) for n ≥ n1 where n1 ≥ n0. Then, by Lemma 1.2, we have (2.3) for n ≥ n1.
Summing (2.2), from n2 ≥ n1 + l to ∞, we get

0 < ∆m−1zn4 − L =

∞∑
s=n4

qsx
β
s−l

where 0 ≤ L := lims→∞∆m−1zs <∞. Since
∑∞
s=n4

qsx
β
s−l <∞ , we have lims→∞ qsx

β
s−l =

0, in the view of (C1), we see that lims→∞ xs = 0 holds. This contradiction completes
the proof. �



3. Applications on (1.1)
In this section, we give general examples on the equation (1.1).

3.1. Example. Letm be an even positive integer, l be an odd positive integer, α ∈ [1,∞)
be a quotient of odd positive integer and β ∈ (0, 1) be a quotient of odd positive integer,
furthermore 0 < p < 1 and q > 0. Consider

(3.1) ∆m [xn + pxαn−k] + qxβn−l = 0.

Since every condition of Theorem 2.1(a) is satisfied. So, we associate (3.1) with

(3.2) ∆wn + q

(
1− p

(m− 1)!

)β (
n− l
2m−1

)β(m−1)

wβn−l = 0.

Therefore,
∞∑
n=0

q

(
1− p

(m− 1)!

)β (
n− l
2m−1

)β(m−1)

=∞,

every solution of (3.2) is oscillatory from Theorem 1.2 in [6] and so is (3.1). Also,

xn :=

(
2m

q

) 1
β−1

cos (nπ)

is such kind of a solution of (3.1).

3.2. Example. Let m be an odd positive integer and l be an even positive integer,
α ∈ [1,∞) be a quotient of odd positive integer and β be a quotient of odd positive
integer, furthermore p ∈ (−1, 1)− {0} and q, k > 0. Consider

(3.3) ∆m [xn + pxαn−k] + qxβn−l = 0.

Since every condition of Theorem 2.1(b) is satisfied when 0 < p < 1 and the case where
−1 < p < 0 hold conditions of Theorem 2.2, every solution of (3.3) is oscillatory or
tending to zero. Direct substitution of

xn :=

(
2m

q

) 1
β−1

sin
(
nπ +

π

2

)
into (3.3) shows that xn is an oscillatory solution of (3.3).
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