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Abstract

We generalize the concept of weakly regularity in semigroups to S-acts,
where S is a monoid. We prove among other results that if a monoid
is von-Neumann regular then weakly regularity and von-Neumann reg-
ularity, in the context of S-acts, coincide. We also define locally pro-
jective S-acts, which is the generalization of projective S-acts. We
consider many relationships between weakly regular S-acts and locally
projective S-acts.
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1. Preliminaries
A right S-act is a triple (M,S, δ), where M is a nonempty set, S is a semigroup and
δ : M×S →M is a mapping such that δ(m, st) = δ(δ(m, s), t) for allm ∈M and s, t ∈ S.
For simplicity, we set δ(m, s) = ms. We denote right S-act by MS . Analogously, we can
define a left S-act which we denote as SM . An S1-S2-biact is a 5-tuple (M,S1, S2, δ1, δ2),
where (M,S1, δ1) is left S1-act and (M,S2, δ2) is right S2-act. That is, s1(ms2) = (s1m)s2
for all s1 ∈ S1, s2 ∈ S2 and m ∈ M . We denote S1-S2-biact by S1MS2 . A right
S-act is said to be unitary if S is a semigoup with identity 1 then m1 = m for all
m ∈ M . A nonempty subset N of a right S-act MS is said to be S-subact of MS

if NS ⊆ N . Let MS and AS be right S-acts. A mapping f : MS → AS is called
S-homomorphism if f(ms) = f(m)s for all m ∈M and s ∈ S. The S-monomorphism, S-
epimorphism, S-isomorphism and S-endomorphism are defined as usual. Simply, we use
the abbreviation hom for homomorphism, mon for monomorphism, epi for epimorphism,
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iso for isomorphism and end for endomorphism. Let AS and BS be right S-acts. We
denote the set containing all homs from AS to BS as

H(A,B) = {f | f is an S-homomorphism from AS to BS}.
Clearly, the set H(A,A) is a monoid with respect to the composition of mappings. Every
right S-act AS is a left H(A,A)-act under the action ψa = ψ(a), where ψ ∈ H(A,A) and
a ∈ A.

A nonempty subset U of a right S-actAS is called a generating set of AS if every
element a ∈ A can be represented as a = us for some u ∈ U, s ∈ S. We say that AS is
finitely generated if |U | <∞. We call AS cyclic if generating set U of AS is a singleton set.
A generating set U of AS is called a basis of AS if every element a ∈ AS can be uniquely
represented in the form a = us for some u ∈ U, s ∈ S. That is, if a = u1s1 = u2s2 then
u1 = u2 and s1 = s2. A right S-act is called free if it has a basis. A right S-act PS is
called projective if for every S-epi g : MS → NS and every S-hom h : PS → NS there
exists an S-hom k : PS → MS such that gk = h, where MS and NS are any S-acts.
Dual to projective S-acts, there is the notion of injective S-acts. A right S-act AS is
called injective if for any S-mon α : CS → BS and S-hom β : CS → AS , there is an
S-hom µ : BS → AS such that µα = β, where BS and CS are any S-acts. For our later
convenience we recall the following two results.

1.1. Proposition ([4]). Let J be a nonempty set. Let
⋃̇
Xj be the disjoint union of

right -acts Xj and take injections γj : Xj →
⋃̇
Xj defined by γj = I⋃̇Xj |Xj

, where I⋃̇Xj

denotes identity mapping. Then
⋃̇
Xj is an S-act and the injections γj are S-homs, for all

j ∈ J . Moreover, for every right S-act KS and for every family {ki ∈ H(Xj ,KS), j ∈ J},
the mapping k :

⋃̇
Xj → KS with k(x) = kj(x) for x ∈ Xj is the unique S-hom such that

kγj = kj for all j ∈ J .

1.2. Proposition ([4]). A right S-act MS is projective if and only if MS =
⋃̇
Pj, where

Pj
∼= ejS, for all j ∈ J .

In the rest of the paper, by an S-act we always mean unitary right S-act. For the
sake of clarity, we sometimes suppress S in the notation of S-acts.

2. Weakly Reagular S-acts
Following [3], we call a monoid S right weakly regular, if for all t ∈ S, t is in (tS)2.
Needless to say, S is called left weakly regular if for all t ∈ S, t is in (St)2. In this section,
we introduce the notion of weakly regular S-acts. The following is the formal definition
of weakly regular S-acts.

2.1. Definition. An S-act MS is called weakly regular if for all m ∈ M , there exist
S-homs ψ ∈ H(M,M) and ξ ∈ H(M,S) such that m = ψ(m)ξ(m).

2.2. Theorem. A monoid S is left weakly regular if and only if the right S-act SS is
weakly regular S-act.

Proof. ⇒ Let S be a weakly regular monoid. For all x ∈ S, x is in (Sx)2. That is,
x = yxzx for some y, z ∈ S. We define the mapping α : SS → SS by α(a) = ya, for all
a ∈ S, where y is fixed. We also define the mapping β : SS → SS by β(b) = zb, for all
b ∈ S, where z is fixed. Clearly, these two mappings are S-homs. The element x can be
represented as x = α(x)β(x). Thus, SS is weakly regular.
⇐ Suppose SS is weakly regular. For all t ∈ SS , there exist S-homs ψ, ξ ∈ H(S, S) such
that t = ψ(t)ξ(t) = ψ(1)t ξ(1)t = sts′t, where s = ψ(1) and s′ = ξ(1). Thus, S is weakly
regular. �



2.3. Corollary. A monoid S is right weakly regular if and only if the left S-act SS is
weakly regular S-act.

Proof. The proof is similar to the above theorem. �

2.4. Proposition. A bisubact H(M,M)NS of a weakly regular biact H(M,M)MS is weakly
regular.

Proof. For all n ∈ N , there exist S-homs ψ ∈ H(M,M) and ξ ∈ H(M,S) such that n =
ψ(n)ξ(n). We know that H(M,M)NS is a left H(M,M)-subact of H(M,M)M . Therefore,
ψ(n) is in N . But H(M,M)NS is a right S-subact of MS too. Therefore, ψ(n)ξ(n) is in
N . Let ψ̂ and ξ̂ be restrictions of ψ and ξ respectively to N . We can rewrite the above
equation as n = ψ̂(n)ξ̂(n). Hence, H(M,M)NS is weakly regular. �

2.5. Lemma. Let MS be an S-act. For any m ∈ M and any S-hom ξ ∈ H(M,S), the
mapping mξ : MS →MS defined by (mξ)(x) = m · ξ(x), for all x ∈M , is S-end.

Proof. Obvious. �

We define the following notation as we are going to use it in our next result. To define
we proceed as follows. Let AS and BS be two S-acts and X be a nonempty set. We
define

H(A,B)(X) = {f(x) | f ∈ H(A,B) ∧ x ∈ X}.

2.6. Theorem. An S-act MS is weakly regular if and only if N = NH(M,S)(N) for all
left H(M,M)-subacts H(M,M)N of the left H(M,M)-act H(M,M)M .

Proof. ⇒ For all n ∈ N , there exist S-homs ψ ∈ H(M,M) and ξ ∈ H(M,S) such
that n = ψ(n)ξ(n). As H(M,M)N is subact of H(M,M)M , it follows that ψ(n) is in
N . Therefore, n is in NH(M,S)(N). Hence, N ⊆ NH(M,S)(N). To prove that
NH(M,S)(N) ⊆ N , we proceed as follows. Let nξ(n′) be in NH(M,S)(N), where
n, n′ ∈ N and ξ ∈ H(M,S). We can write nξ(n′) = (nξ)(n). By Lemma 2.5, nξ is an
S-hom from MS to MS . It follows that (nξ)(n′) is in N because H(M,M)N is subact of
MS . Thus, we conclude N = NH(M,S)(N).
⇐ For all m ∈ M , we know that H(M,M)H(M,M))(m) is subact of H(M,M)M . By
assumption, we have H(M,M)(m) = H(M,M)(m)H(M,S)(H(M,M)(m)). It follows
that,

m = I(m) = ψ(m)ξ(γ(m)) = ψ(m)(ξ γ)(m),

where I ∈ H(M,M) is an identity mapping, ψ, γ ∈ H(M,M) and ξ, ξ γ ∈ H(M,S).
Thus, MS is weakly regular. �

Before we mention our next result, we recall the following definition.

2.7. Definition. An S-act AS is a retract of an S-act BS if there exist S-homs α : AS →
BS and β : BS → AS such that β α = IA, where IA is the identity mapping from AS to
AS .

2.8. Lemma. Every retract of a weakly regular S-act is weakly regular.

Proof. Let BS be a retract of a weakly regular S-act MS . This implies that there exist
S-homs α : BS →MS and β : MS → BS such that β α = IB . Let b be in B. We have

(2.1) b = β(α(b)).

As MS is weakly regular, there exist S-homs ψ ∈ H(M,M) and ξ ∈ H(M,S) such that

(2.2) α(b) = ψ(α(b))ξ(α(b)).



From equations 2.1 and 2.2, we get

b = β(ψ(α(b))ξ(b)) = (β ψ α)(b)(ξ α)(b),

where β ψα ∈ H(B,B) and ξ α ∈ H(B,S). Thus, BS is weakly regular. �

2.9. Definition. Let MS be an S-act. An element θ in MS is called a fixed element if
θt = θ for all t in S.

2.10. Theorem. Let {Mj | j ∈ J} be a family of S-acts, where each Mj has a fixed
element. Their disjoint union

⋃̇
j∈J Mj is weakly regular if and only if each Mj is weakly

regular.

Proof. ⇒ We show that, for all j ∈ J , Mj is a retract of
⋃̇
Mj . To show this we proceed

as follows. We define the mapping αj :
⋃̇
Mj →Mj by

αj(x) =

{
x if x ∈Mj

θ otherwise

where θ is a fixed element in Mj . It is not hard to show that αj is an S-hom . Let
γj : Mj →

⋃̇
Mj be injection, for all j ∈ J . It implies that α γj = IMj . By Lemma 2.8,

Mj is weakly regular.

⇐ Let m be in
⋃̇

j∈J Mj . This implies that, there exists an i in J such that m is in Mi.
As Mi is weakly regular, there exist S-homs ψi ∈ H(Mi,Mi) and ξi ∈ H(Mi, S) such
that

(2.3) m = ψi(m)ξi(m).

We define S-hom ψ :
⋃̇
Mj →

⋃̇
Mj by ψ(x) = ψj(x) (where ψj ∈ H(Mj ,Mj)) whenever

x ∈Mj , for all j ∈ J . Let, for all j ∈ J , γj : Mj →
⋃̇
Mj be injections. Consider a family

{ξj ∈ H(Mj , S), j ∈ J}. By Proposition 1.1, there exists a unique S-hom ξ :
⋃̇
Mj → S

with ξ(y) = ξj(y), for y ∈ Mj , such that ξ γj = ξj , for all j ∈ J . Thus, the above
Equation 2.3 can be rewritten as

m = ψ(m)ξ γi(m) = ψ(m)ξ(m).

Thus,
⋃̇

j∈J Mj is weakly regular. �

2.11. Proposition. Let SS be a weakly regular S-act. If e is an idempotent element in
S, then eSS is weakly regular.

Proof. It is enough to show that eSS is a retract of SS . To show this we begin by defining
the mapping α : SS → eSS by α(t) = et, for all t ∈ S. Clearly, α is S-hom. Suppose
that β : eSS → SS is an inclusion mapping. Let et be an element of eS. We have
α β(et) = α(et) = e2t = et. This implies that α β = IeS . Thus, eSS is a retract of
SS . �

2.12. Theorem. A monoid S is a weakly regular S-act if and only if every projective
S-act is weakly regular.

Proof. ⇒ Let AS be a projective S-act. By Proposition 1.2, we have AS =
⋃̇
Pj , where

Pj is isomorphic to ejS, ej is idempotent in S, for all j ∈ J . By Proposition 2.11, each
ejS is a weakly regular S-act. From Theorem 2.10, it follows that

⋃̇
ejS is a weakly

regular S-act. Hence, AS is weakly regular.
⇐ Since every monoid S (considered as a right S-act) is projective. So by our assumption,
S is weakly regular S-act. �



Let us recall that an S-act is called free if it has a basis. We borrow the following
proposition from [4].

2.13. Proposition. Every free S-act is projective.

Now, we are ready to prove our next result.

2.14. Proposition. As S-act SS is weakly regular if and only if every free S-act is
weakly regular.

Proof. ⇒ The proof is evident from Theorem 2.12 and Proposition 2.13.
⇐ As every monoid S is free with basis {1}, where 1 is the identity element in S.
Therefore, SS is free with basis {1}. We conclude that SS is weakly regular. �

2.15. Proposition. Let MS be a free S-act with basis {uj}, j ∈ J . Then for all j ∈ J ,
S-act ujSS is a retract of SS.

Proof. For all j ∈ J : we define the mapping αj : ujS → SS by αj(ujx) = x, for all
x ∈ S. We also define the mapping βj : SS → ujS by βj(y) = ujy, where y is in S. It is
not hard to show that these mappings are S-homs . Clearly, β α = IujS . Hence, ujSS is
a retract of SS . �

A semigroupX is called von-Neumann regular if for any x ∈ X, there exists an element
y in X such that x = xyx. We extend the von-Neumann regularity of semigroups to S-
acts through the following definition.

2.16. Definition. An S-act MS is called von-Neumann regular if for all m ∈ M there
exists an S-act ξ ∈ H(M,S) such that m = mξ(m).

The immediate consequence of this definition is the following result, whose proof is
straightforward.

2.17. Lemma. Every von-Neumann regular S-act is weakly regular. �

2.18. Lemma. If S is von-Neumann regular monoid then every weakly regular S-act is
von-Neumann regular.

Proof. SupposeMS is a weakly regular. For allm ∈M , there exist S-homs ψ ∈ H(M,M)
and ξ ∈ H(M,S) such that

(2.4) m = ψ(m)ξ(m).

As S is von-Neumann regular monoid, there exists an element x ∈ S such that

(2.5) ξ(m) = ξ(m)xξ(m).

Putting Equation 2.5 in Equation 2.4, we get

(2.6) m = ψ(m)ξ(m)xξ(m) = mxξ(m).

We define the mapping φ : MS → SS by φ(m) = xξ(m). Clearly, φ is S-hom . We
rewrite Equation 2.6 as m = mφ(m). Hence, MS is von-Neumann regular. �

From the above two lemmas it follows that if a monoid S is von-Neumann regular
then the concept of von-Neumann regularity and weak regularity coincides over S-acts.
We formalize this observation in the following theorem.

2.19. Theorem. If a monoid S is von-Neumann regular, then for an S-act MS the
following are equivalent:

(1) MS is weakly regular,
(2) MS is von-Neumann regular. �



3. Locally Projective S-acts
We recall that an S-act PS is projective if for every S-epi g : MS → NS (where MS

and NS are any two S-acts) and every S-hom h : PS → NS , there exists an S-hom
k : PS →MS such that gk = h. We generalize the concept of projective in the following
definition.

3.1. Definition. An S-act MS is called locally projective if for all m ∈ M there exists
an element m′ ∈M and an S-hom ξ ∈ H(M,S) such that m = m′ξ(m).

It follows immediately that a weakly regular S-act is locally projective. We formalize
this in the following lemma.

3.2. Lemma. Every weakly regular S-act is locally projective. �

Our next lemma follows from the lemma above and Lemma 2.17.

3.3. Lemma. For an S-act we have the following implications:

von-Neumann regular ⇒ Weakly regular ⇒ Locally projective. �

3.4. Theorem. Every projective S-act is locally projective.

Proof. Let MS be a projective S-act. By Proposition 1.2, we can write MS =
⋃̇
Pj ,

where Pj
∼= ejS, ej is an idempotent element of S, for all j ∈ J . We represent the

isomorphism between Pj and ejS by αj for all j ∈ J . Let m be in M . This implies that
there exists an i in J for which m is in Pi. There exists an element s in S such that

m = αi(eis)

= αi(ei(eis))

= αi(ei)eis

= m′eis,

where m′ = αi(ei) ∈ Pi. As αi is S-iso, we can define its invrese. Assume that α−1
i :

Pi → eiS is the inverse of αi. Thus, α−1
i = eis. By Proposition 1.1, there exists the

unique S-hom α :
⋃̇
Pj → eiS with α(x) = α−1

i (x) for x ∈ Pi such that αβi = α−1
i ,

where βi is injection from Pi to
⋃̇
Pj . It follows that

m = m′eis

= m′α−1
i (m)

= m′(αβi)(m)

= m′α(m)

Thus,
⋃̇
Pj is locally projective, so is MS . �

3.5. Lemma. A retract of a locally projective S-act is locally projective.

Proof. Let an S-act MS be locally projective. Suppose an S-act AS is a retract of MS .
There exist S-homs α : AS → MS and β : MS → AS such that β α = IA. To show AS

is locally projective, we proceed as follows. Let a be an element in A. We write

(3.1) a = β α(a).



We set α(a) = m. AsMS is locally projective, form there existsm′ ∈M and ξ ∈ H(M,S)
such that m = m′ξ(m). Putting the value of m in Equation 3.1, we get

a = β(m′ξ(m))

= β(m′)ξ(m)

= β(m′)ξ(α(a))

= a′(ξ α)(a),

where a′ = β(m′). Thus, AS is locally projective. �

3.6. Theorem. Let {Mj | j ∈ J} be a family of S-acts, where each Mj has a fixed
element. Their disjoint union

⋃̇
j∈J Mj is locally projective if and only if each Mj is

locally projective.

Proof. ⇒ For all j ∈ J . Let γj : Mj →
⋃̇
Mj be injection. We define the mapping

αj :
⋃̇
Mj →Mj by

αj(x) =

{
x if x ∈Mj

θ otherwise

where θ is a fixed element in Mj . It is not hard to show that αj is S-hom . Clearly,
αj γj = IMj . EachMj is a retract of

⋃̇
Mj . By Lemma 3.5, eachMj is locally projective.

⇐ Let m be an element in
⋃̇
Mj . This implies that there exists an i ∈ J for which

m ∈ Mi. As Mi is locally projective, there exists an element m′ ∈ Mi and an S-hom
ξi ∈ H(Mi, S) such that

(3.2) m = m′ξi(m).

We assume that βj : Mj →
⋃̇

j∈J Mj are injections and a family {ξj ∈ H(Mj , S), j ∈ J}.
By Proposition 1.1, there exists the unique S-hom ξ̄ :

⋃̇
Mj → SS with ξ̄(x) = ξj(x)

(where x ∈Mj) such that ξ̄βj = ξj for all j ∈ J . Thus, Equation 3.2 can be written as:

m = m′(ξ̄βi)(m)

= m′ξ̄(βi(m))

= m′ξ̄(m).

Hence,
⋃̇

j∈J Mj is locally projective. �

3.7. Definition. An S-subact NS of an S-act MS is called ideal pure if

NSI = MSI ∩NS ,

for all left ideal I of S.

3.8. Proposition. A subact of a locally projective S-act is locally projective if the subact
is ideal pure.

Proof. Let n be an element in N . As MS is locally projective, there exists an m ∈ M
and an S-hom ξ ∈ H(M,S) such that n = mξ(n). Let ξ̂ be the restriction of ξ to NS ,
that is, ξ |NS= ξ̂. We can rewrite the above equation as n = mξ̂(n). For simplicity, we
set ξ̂(n) = x. Consider the left ideal I = Sx generated by x. As NS is ideal pure, this



implies that NSI = MSI ∩NS . We get,

n = mx ∈MSI ∩NS = NSI

= n′tx for some n′ ∈ N, tx ∈ I

= n′′x, where n′′ = n′t ∈ N

= n′′ξ̂(n).

Hence, NS is locally projective. �

3.9. Theorem. The following are equivalent.
(1) An S-act MS is weakly regular.
(2) MS is locally projective and every H(M,M)-S-bisubact of H(M,M)MS is ideal

pure.
(3) MS is locally projective and for all m ∈M , H(M,M)mS is ideal pure.

Proof. (1) ⇒ (2) Let MS be weakly regular S-act. By Lemma 3.2, MS is locally
projective. To show that H(M,M)-S-bisubact H(M,M)NS of H(M,M)MS is ideal pure,
we proceed as follows. Let x be an element in MSI ∩ NS , where I is an ideal of S. As
by Proposition 2.4, H(M,M )NS is weakly regular, therefore, for the element x, there exist
ψ ∈ H(N,N) and ξ ∈ H(N,S) such that x = ψ(x)ξ(x). As x is in MSI too, there exist
elements m ∈M and t ∈ I such that x = mt. We can write

ξ(x) = ξ(mt) = ξ(m)t ∈ SI ⊆ I.

It follows that x = ψ(x)ξ(x) is in NSI. So, MSI ∩NS is contained in NSI. Clearly, NSI

is contained in NS . Hence, MSI ∩NS = NSI.
(2) ⇒ (3) As for all m ∈ M , H(M,M)mSS is H(M,M)-S-bisubact of H(M,M)MS , so
by our assumption in (2), H(M,M)mSS is ideal pure.
(3) ⇒ (1) As MS is locally projective, for all m ∈ M , there exists m′ ∈ M and S-hom
ξ ∈ H(M,M) such that m = m′ξ(m). By Lemma 2.5, the mapping m′ξ is in H(M,M)
and by the fact that S contains the identity element 1, it follows that the m is in

MSξ(m) ∩H(M,M)mS.

By our assumption in (3), H(M,M)mS is ideal pure. Consider the left ideal Sξ(m) of
S. We can write

H(M,M)mSSξ(m) = H(M,M)mSξ(m) = MSSξ(m) ∩H(M,M)mS

= MSξ(m) ∩H(M,M)mS.

This implies that m is in H(M,M)mSξ(m). This implies that there exists ψ ∈ H(M,M)
and u ∈ S such that

m = ψmtξ(m)

= (ψ(mt))ξ(m)

= ψ(m)tξ(m),

where tξ ∈ H(M,M). Thus, MS is weakly regular. �

Before we begin our next result we define PM-injective S-acts stated in [1]. LetMS ba
a fixed S-act. We say an S-act AS is PM-injective if each S-hom from a cyclic S-subact
mS (for all m ∈M) of MS to AS extends to an S-hom from MS to AS .

3.10. Theorem. The following are equivalent:
(1) An S-act MS is von-Neumann regular.
(2) MS is locally projective and every S-act is PM-injective.



(3) MS is locally projective and for each m ∈M , mSS is PM-injective.

Proof. (1) ⇒ (2) Let an S-act MS be von-Neumann regular. By Lemma 3.3, MS is
locally projective. Let QS be an S-act. To show that QS is PM-injective, we proceed
as follows. Assume that β : mSS → QS is S-hom from a cyclic S-subact mS (where
m ∈M) of the MS to QS . We define the mapping α : SS → mSS by α(t) = mt. Clearly,
α is S-hom . Consider an S-hom ξ from MS to SS . Such S-hom exsits as MS is locally
projective. Now, the mapping βαξ : MS → QS is the required S-hom that extends β.
Hence, QS is PM-injective.
(2)⇒ (3) Obvious.
(3) ⇒ (1) As MS is locally projective, for all m ∈ M , there exists m′ ∈ M and S-hom
ξ ∈ H(M,S) such that

(3.3) m = m′ξ(m).

Let ξ̂ : mSS → SS be restriction of ξ. Let I : mSS → mSS be identity mapping. As
mSS is PM-injective, there exists an extension, say ρ : MS → mS, of I. We know that
ξ̂ρ(m) = ξ(m). We can write

(3.4) m′ξ̂ρ(m) = m′ξ(m).

Consider Equation 3.3:

m = m′ξ̂(m)

= m′ξ̂ρ(m); Using Equation 3.4

= m′ξ̂ρ(m′ξ(m)); Using Equation 3.3

= m′ξ̂ρ(m′)ξ(m)

= m′ξ̂(mt)ξ(m); Aussuming that ρ(m′) = mt for some t ∈ S

= m′ξ̂(m)tξ(m)

= m′ξ(m)(tξ)(m)

= m(tξ)(m),

where tξ ∈ H(M,S). Thus, MS is von-Neumann regular. �
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