$\begin{array}{c} & \mbox{ Hacettepe Journal of Mathematics and Statistics} \\ & \mbox{ Volume 43}(5) (2014), 754 - 762 \end{array}$

Characterization of Weakly Regular S-acts

Imran Khaliq * , Muhammad Shabir † and Gulshad Imran ‡

Received 28:02:2013 : Accepted 07:07:2013

Abstract

We generalize the concept of weakly regularity in semigroups to S-acts, where S is a monoid. We prove among other results that if a monoid is von-Neumann regular then weakly regularity and von-Neumann regularity, in the context of S-acts, coincide. We also define locally projective S-acts, which is the generalization of projective S-acts. We consider many relationships between weakly regular S-acts and locally projective S-acts.

2000 AMS Classification: 20M30.

Keywords: S-acts, Monoids, Projective S-acts, Weakly regular S-acts.

1. Preliminaries

A right S-act is a triple (M, S, δ) , where M is a nonempty set, S is a semigroup and $\delta: M \times S \to M$ is a mapping such that $\delta(m, st) = \delta(\delta(m, s), t)$ for all $m \in M$ and $s, t \in S$. For simplicity, we set $\delta(m, s) = ms$. We denote right S-act by M_S . Analogously, we can define a *left* S-act which we denote as ${}_{S}M$. An S_1 - S_2 -biact is a 5-tuple $(M, S_1, S_2, \delta_1, \delta_2)$, where (M, S_1, δ_1) is left S_1 -act and (M, S_2, δ_2) is right S_2 -act. That is, $s_1(ms_2) = (s_1m)s_2$ for all $s_1 \in S_1$, $s_2 \in S_2$ and $m \in M$. We denote S_1 - S_2 -biact by $s_1M_{S_2}$. A right S-act is said to be *unitary* if S is a semigoup with identity 1 then m1 = m for all $m \in M$. A nonempty subset N of a right S-act M_S is said to be S-subact of M_S if $NS \subseteq N$. Let M_S and A_S be right S-acts. A mapping $f : M_S \to A_S$ is called S-homomorphism if f(ms) = f(m)s for all $m \in M$ and $s \in S$. The S-monomorphism, S-epimorphism and S-endomorphism are defined as usual. Simply, we use the abbreviation hom for homomorphism, mon for monomorphism, epi for epimorphism,

^{*}Department of Computer Science, The University of Auckland, Auckland, New Zealand Email: ikha020@aucklanduni.ac.nz

 $^{^\}dagger Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan Email:mshabirbhati@yahoo.co.uk$

 $^{^{\}ddagger} Department of Mathematics, The University of Auckland, Auckland, New Zealand Email:ggul005@aucklanduni.ac.nz$

iso for isomorphism and end for endomorphism. Let A_S and B_S be right S-acts. We denote the set containing all homs from A_S to B_S as

 $\mathcal{H}(A,B) = \{ f \mid f \text{ is an } S \text{-homomorphism from } A_S \text{ to } B_S \}.$

Clearly, the set $\mathcal{H}(A, A)$ is a monoid with respect to the composition of mappings. Every right S-act A_S is a left $\mathcal{H}(A, A)$ -act under the action $\psi a = \psi(a)$, where $\psi \in \mathcal{H}(A, A)$ and $a \in A$.

A nonempty subset U of a right S-act A_S is called a generating set of A_S if every element $a \in A$ can be represented as a = us for some $u \in U, s \in S$. We say that A_S is finitely generated if $|U| < \infty$. We call A_S cyclic if generating set U of A_S is a singleton set. A generating set U of A_S is called a basis of A_S if every element $a \in A_S$ can be uniquely represented in the form a = us for some $u \in U, s \in S$. That is, if $a = u_1s_1 = u_2s_2$ then $u_1 = u_2$ and $s_1 = s_2$. A right S-act is called free if it has a basis. A right S-act P_S is called projective if for every S-epi $g : M_S \to N_S$ and every S-hom $h : P_S \to N_S$ there exists an S-hom $k : P_S \to M_S$ such that gk = h, where M_S and N_S are any S-acts. Dual to projective S-acts, there is the notion of injective S-acts. A right S-act A_S is called injective if for any S-mon $\alpha : C_S \to B_S$ and S-hom $\beta : C_S \to A_S$, there is an S-hom $\mu : B_S \to A_S$ such that $\mu \alpha = \beta$, where B_S and C_S are any S-acts. For our later convenience we recall the following two results.

1.1. Proposition ([4]). Let J be a nonempty set. Let $\bigcup X_j$ be the disjoint union of right -acts X_j and take injections $\gamma_j : X_j \to \bigcup X_j$ defined by $\gamma_j = I_{\bigcup X_j|_{X_j}}$, where $I_{\bigcup X_j}$

denotes identity mapping. Then $\bigcup X_j$ is an S-act and the injections γ_j are S-homs, for all $j \in J$. Moreover, for every right S-act K_S and for every family $\{k_i \in \mathfrak{H}(X_j, K_S), j \in J\}$, the mapping $k : \bigcup X_j \to K_S$ with $k(x) = k_j(x)$ for $x \in X_j$ is the unique S-hom such that $k\gamma_j = k_j$ for all $j \in J$.

1.2. Proposition ([4]). A right S-act M_S is projective if and only if $M_S = \bigcup P_j$, where $P_j \cong e_j S$, for all $j \in J$.

In the rest of the paper, by an S-act we always mean unitary right S-act. For the sake of clarity, we sometimes suppress S in the notation of S-acts.

2. Weakly Reagular S-acts

Following [3], we call a monoid S right weakly regular, if for all $t \in S$, t is in $(tS)^2$. Needless to say, S is called *left weakly regular* if for all $t \in S$, t is in $(St)^2$. In this section, we introduce the notion of weakly regular S-acts. The following is the formal definition of weakly regular S-acts.

2.1. Definition. An S-act M_S is called *weakly regular* if for all $m \in M$, there exist S-homs $\psi \in \mathcal{H}(M, M)$ and $\xi \in \mathcal{H}(M, S)$ such that $m = \psi(m)\xi(m)$.

2.2. Theorem. A monoid S is left weakly regular if and only if the right S-act S_S is weakly regular S-act.

Proof. \Rightarrow Let *S* be a weakly regular monoid. For all $x \in S$, *x* is in $(Sx)^2$. That is, x = yxzx for some $y, z \in S$. We define the mapping $\alpha : S_S \to S_S$ by $\alpha(a) = ya$, for all $a \in S$, where *y* is fixed. We also define the mapping $\beta : S_S \to S_S$ by $\beta(b) = zb$, for all $b \in S$, where *z* is fixed. Clearly, these two mappings are *S*-homs. The element *x* can be represented as $x = \alpha(x)\beta(x)$. Thus, S_S is weakly regular.

 \Leftarrow Suppose S_S is weakly regular. For all $t \in S_S$, there exist S-homs $\psi, \xi \in \mathcal{H}(S, S)$ such that $t = \psi(t)\xi(t) = \psi(1)t \ \xi(1)t = sts't$, where $s = \psi(1)$ and $s' = \xi(1)$. Thus, S is weakly regular.

2.3. Corollary. A monoid S is right weakly regular if and only if the left S-act $_{S}S$ is weakly regular S-act.

Proof. The proof is similar to the above theorem.

2.4. Proposition. A bisubact $_{\mathcal{H}(M,M)}N_S$ of a weakly regular biact $_{\mathcal{H}(M,M)}M_S$ is weakly regular.

Proof. For all $n \in N$, there exist S-homs $\psi \in \mathcal{H}(M, M)$ and $\xi \in \mathcal{H}(M, S)$ such that $n = \psi(n)\xi(n)$. We know that $_{\mathcal{H}(M,M)}N_S$ is a left $\mathcal{H}(M,M)$ -subact of $_{\mathcal{H}(M,M)}M$. Therefore, $\psi(n)$ is in N. But $_{\mathcal{H}(M,M)}N_S$ is a right S-subact of M_S too. Therefore, $\psi(n)\xi(n)$ is in N. Let $\hat{\psi}$ and $\hat{\xi}$ be restrictions of ψ and ξ respectively to N. We can rewrite the above equation as $n = \hat{\psi}(n)\hat{\xi}(n)$. Hence, $_{\mathcal{H}(M,M)}N_S$ is weakly regular.

2.5. Lemma. Let M_S be an S-act. For any $m \in M$ and any S-hom $\xi \in \mathcal{H}(M, S)$, the mapping $m\xi : M_S \to M_S$ defined by $(m\xi)(x) = m \cdot \xi(x)$, for all $x \in M$, is S-end.

Proof. Obvious.

We define the following notation as we are going to use it in our next result. To define we proceed as follows. Let A_S and B_S be two S-acts and X be a nonempty set. We define

$$\mathcal{H}(A,B)(X) = \{f(x) \mid f \in \mathcal{H}(A,B) \land x \in X\}.$$

2.6. Theorem. An S-act M_S is weakly regular if and only if $N = N\mathcal{H}(M, S)(N)$ for all left $\mathcal{H}(M, M)$ -subacts $_{\mathcal{H}(M,M)}N$ of the left $\mathcal{H}(M, M)$ -act $_{\mathcal{H}(M,M)}M$.

Proof. ⇒ For all $n \in N$, there exist S-homs $\psi \in \mathcal{H}(M, M)$ and $\xi \in \mathcal{H}(M, S)$ such that $n = \psi(n)\xi(n)$. As $_{\mathcal{H}(M,M)}N$ is subact of $_{\mathcal{H}(M,M)}M$, it follows that $\psi(n)$ is in N. Therefore, n is in $N\mathcal{H}(M,S)(N)$. Hence, $N \subseteq N\mathcal{H}(M,S)(N)$. To prove that $N\mathcal{H}(M,S)(N) \subseteq N$, we proceed as follows. Let $n\xi(n')$ be in $N\mathcal{H}(M,S)(N)$, where $n, n' \in N$ and $\xi \in \mathcal{H}(M, S)$. We can write $n\xi(n') = (n\xi)(n)$. By Lemma 2.5, $n\xi$ is an S-hom from M_S to M_S . It follows that $(n\xi)(n')$ is in N because $_{\mathcal{H}(M,M)}N$ is subact of M_S . Thus, we conclude $N = N\mathcal{H}(M,S)(N)$.

 \leftarrow For all $m \in M$, we know that $_{\mathcal{H}(M,M)}\mathcal{H}(M,M)(m)$ is subact of $_{\mathcal{H}(M,M)}M$. By assumption, we have $\mathcal{H}(M,M)(m) = \mathcal{H}(M,M)(m)\mathcal{H}(M,S)(\mathcal{H}(M,M)(m))$. It follows that,

$$m = I(m) = \psi(m)\xi(\gamma(m)) = \psi(m)(\xi \gamma)(m),$$

where $I \in \mathcal{H}(M, M)$ is an identity mapping, $\psi, \gamma \in \mathcal{H}(M, M)$ and $\xi, \xi \gamma \in \mathcal{H}(M, S)$. Thus, M_S is weakly regular.

Before we mention our next result, we recall the following definition.

2.7. Definition. An S-act A_S is a *retract* of an S-act B_S if there exist S-homs $\alpha : A_S \to B_S$ and $\beta : B_S \to A_S$ such that $\beta \alpha = I_A$, where I_A is the identity mapping from A_S to A_S .

2.8. Lemma. Every retract of a weakly regular S-act is weakly regular.

Proof. Let B_S be a retract of a weakly regular S-act M_S . This implies that there exist S-homs $\alpha : B_S \to M_S$ and $\beta : M_S \to B_S$ such that $\beta \alpha = I_B$. Let b be in B. We have

(2.1) $b = \beta(\alpha(b)).$

As M_S is weakly regular, there exist S-homs $\psi \in \mathcal{H}(M, M)$ and $\xi \in \mathcal{H}(M, S)$ such that (2.2) $\alpha(b) = \psi(\alpha(b))\xi(\alpha(b)).$ From equations 2.1 and 2.2, we get

$$b = \beta(\psi(\alpha(b))\xi(b)) = (\beta \ \psi \ \alpha)(b)(\xi \ \alpha)(b),$$

where $\beta \ \psi \alpha \in \mathcal{H}(B, B)$ and $\xi \ \alpha \in \mathcal{H}(B, S)$. Thus, B_S is weakly regular.

2.9. Definition. Let M_S be an S-act. An element θ in M_S is called a *fixed element* if $\theta t = \theta$ for all t in S.

2.10. Theorem. Let $\{M_j \mid j \in J\}$ be a family of S-acts, where each M_j has a fixed element. Their disjoint union $\bigcup_{j \in J} M_j$ is weakly regular if and only if each M_j is weakly regular.

Proof. \Rightarrow We show that, for all $j \in J$, M_j is a retract of $\bigcup M_j$. To show this we proceed as follows. We define the mapping $\alpha_j : \bigcup M_j \to M_j$ by

$$\alpha_j(x) = \begin{cases} x & \text{if } x \in M_j \\ \theta & \text{otherwise} \end{cases}$$

where θ is a fixed element in M_j . It is not hard to show that α_j is an S-hom. Let $\gamma_j: M_j \to \bigcup M_j$ be injection, for all $j \in J$. It implies that $\alpha \gamma_j = I_{M_j}$. By Lemma 2.8, M_j is weakly regular.

 \leftarrow Let *m* be in $\bigcup_{j \in J} M_j$. This implies that, there exists an *i* in *J* such that *m* is in M_i . As M_i is weakly regular, there exist *S*-homs $\psi_i \in \mathcal{H}(M_i, M_i)$ and $\xi_i \in \mathcal{H}(M_i, S)$ such that

(2.3)
$$m = \psi_i(m)\xi_i(m).$$

We define S-hom $\psi : \bigcup M_j \to \bigcup M_j$ by $\psi(x) = \psi_j(x)$ (where $\psi_j \in \mathcal{H}(M_j, M_j)$) whenever $x \in M_j$, for all $j \in J$. Let, for all $j \in J$, $\gamma_j : M_j \to \bigcup M_j$ be injections. Consider a family $\{\xi_j \in \mathcal{H}(M_j, S), j \in J\}$. By Proposition 1.1, there exists a unique S-hom $\xi : \bigcup M_j \to S$ with $\xi(y) = \xi_j(y)$, for $y \in M_j$, such that $\xi \gamma_j = \xi_j$, for all $j \in J$. Thus, the above Equation 2.3 can be rewritten as

$$m = \psi(m)\xi \ \gamma_i(m) = \psi(m)\xi(m).$$

Thus, $\dot{\bigcup}_{i \in J} M_i$ is weakly regular.

2.11. Proposition. Let S_S be a weakly regular S-act. If e is an idempotent element in S, then eS_S is weakly regular.

Proof. It is enough to show that eS_S is a retract of S_S . To show this we begin by defining the mapping $\alpha : S_S \to eS_S$ by $\alpha(t) = et$, for all $t \in S$. Clearly, α is S-hom. Suppose that $\beta : eS_S \to S_S$ is an inclusion mapping. Let et be an element of eS. We have $\alpha \ \beta(et) = \alpha(et) = e^2t = et$. This implies that $\alpha \ \beta = I_{eS}$. Thus, eS_S is a retract of S_S .

2.12. Theorem. A monoid S is a weakly regular S-act if and only if every projective S-act is weakly regular.

Proof. ⇒ Let A_S be a projective S-act. By Proposition 1.2, we have $A_S = \bigcup P_j$, where P_j is isomorphic to $e_j S$, e_j is idempotent in S, for all $j \in J$. By Proposition 2.11, each $e_j S$ is a weakly regular S-act. From Theorem 2.10, it follows that $\bigcup e_j S$ is a weakly regular S-act. Hence, A_S is weakly regular.

 \Leftarrow Since every monoid S (considered as a right S-act) is projective. So by our assumption, S is weakly regular S-act.

Let us recall that an S-act is called free if it has a basis. We borrow the following proposition from [4].

2.13. Proposition. Every free S-act is projective.

Now, we are ready to prove our next result.

2.14. Proposition. As S-act S_S is weakly regular if and only if every free S-act is weakly regular.

Proof. \Rightarrow The proof is evident from Theorem 2.12 and Proposition 2.13.

 \Leftarrow As every monoid S is free with basis {1}, where 1 is the identity element in S. Therefore, S_S is free with basis {1}. We conclude that S_S is weakly regular.

2.15. Proposition. Let M_S be a free S-act with basis $\{u_j\}, j \in J$. Then for all $j \in J$, S-act $u_j S_S$ is a retract of S_S .

Proof. For all $j \in J$: we define the mapping $\alpha_j : u_j S \to S_S$ by $\alpha_j(u_j x) = x$, for all $x \in S$. We also define the mapping $\beta_j : S_S \to u_j S$ by $\beta_j(y) = u_j y$, where y is in S. It is not hard to show that these mappings are S-homs. Clearly, $\beta \alpha = I_{u_j S}$. Hence, $u_j S_S$ is a retract of S_S .

A semigroup X is called *von-Neumann regular* if for any $x \in X$, there exists an element y in X such that x = xyx. We extend the von-Neumann regularity of semigroups to S-acts through the following definition.

2.16. Definition. An S-act M_S is called *von-Neumann regular* if for all $m \in M$ there exists an S-act $\xi \in \mathcal{H}(M, S)$ such that $m = m\xi(m)$.

The immediate consequence of this definition is the following result, whose proof is straightforward.

2.17. Lemma. Every von-Neumann regular S-act is weakly regular.

2.18. Lemma. If S is von-Neumann regular monoid then every weakly regular S-act is von-Neumann regular.

Proof. Suppose M_S is a weakly regular. For all $m \in M$, there exist S-homs $\psi \in \mathcal{H}(M, M)$ and $\xi \in \mathcal{H}(M, S)$ such that

(2.4) $m = \psi(m)\xi(m).$

As S is von-Neumann regular monoid, there exists an element $x \in S$ such that

(2.5) $\xi(m) = \xi(m)x\xi(m).$

Putting Equation 2.5 in Equation 2.4, we get

(2.6)
$$m = \psi(m)\xi(m)x\xi(m) = mx\xi(m)$$

We define the mapping $\phi : M_S \to S_S$ by $\phi(m) = x\xi(m)$. Clearly, ϕ is S-hom. We rewrite Equation 2.6 as $m = m\phi(m)$. Hence, M_S is von-Neumann regular.

From the above two lemmas it follows that if a monoid S is von-Neumann regular then the concept of von-Neumann regularity and weak regularity coincides over S-acts. We formalize this observation in the following theorem.

2.19. Theorem. If a monoid S is von-Neumann regular, then for an S-act M_S the following are equivalent:

- (1) M_S is weakly regular,
- (2) M_S is von-Neumann regular.

3. Locally Projective S-acts

We recall that an S-act P_S is projective if for every S-epi $g: M_S \to N_S$ (where M_S and N_S are any two S-acts) and every S-hom $h: P_S \to N_S$, there exists an S-hom $k: P_S \to M_S$ such that gk = h. We generalize the concept of projective in the following definition.

3.1. Definition. An S-act M_S is called *locally projective* if for all $m \in M$ there exists an element $m' \in M$ and an S-hom $\xi \in \mathcal{H}(M, S)$ such that $m = m'\xi(m)$.

It follows immediately that a weakly regular S-act is locally projective. We formalize this in the following lemma.

3.2. Lemma. Every weakly regular S-act is locally projective.

Our next lemma follows from the lemma above and Lemma 2.17.

3.3. Lemma. For an S-act we have the following implications:

von-Neumann regular \Rightarrow Weakly regular \Rightarrow Locally projective.

3.4. Theorem. Every projective S-act is locally projective.

Proof. Let M_S be a projective S-act. By Proposition 1.2, we can write $M_S = \bigcup P_j$, where $P_j \cong e_j S$, e_j is an idempotent element of S, for all $j \in J$. We represent the isomorphism between P_j and $e_j S$ by α_j for all $j \in J$. Let m be in M. This implies that there exists an i in J for which m is in P_i . There exists an element s in S such that

$$m = \alpha_i(e_i s)$$

= $\alpha_i(e_i(e_i s))$
= $\alpha_i(e_i)e_i s$
= $m'e_i s$,

where $m' = \alpha_i(e_i) \in P_i$. As α_i is S-iso, we can define its invrese. Assume that $\alpha_i^{-1} : P_i \to e_i S$ is the inverse of α_i . Thus, $\alpha_i^{-1} = e_i s$. By Proposition 1.1, there exists the unique S-hom $\alpha : \bigcup P_j \to e_i S$ with $\alpha(x) = \alpha_i^{-1}(x)$ for $x \in P_i$ such that $\alpha \beta_i = \alpha_i^{-1}$, where β_i is injection from P_i to $\bigcup P_j$. It follows that

$$m = m'e_is$$

= $m'\alpha_i^{-1}(m)$
= $m'(\alpha\beta_i)(m)$
= $m'\alpha(m)$

Thus, $\bigcup P_j$ is locally projective, so is M_s .

3.5. Lemma. A retract of a locally projective S-act is locally projective.

Proof. Let an S-act M_S be locally projective. Suppose an S-act A_S is a retract of M_S . There exist S-homs $\alpha : A_S \to M_S$ and $\beta : M_S \to A_S$ such that $\beta \alpha = I_A$. To show A_S is locally projective, we proceed as follows. Let α be an element in A. We write

$$(3.1) a = \beta \ \alpha(a).$$

We set $\alpha(a) = m$. As M_S is locally projective, for m there exists $m' \in M$ and $\xi \in \mathcal{H}(M, S)$ such that $m = m'\xi(m)$. Putting the value of m in Equation 3.1, we get

$$a = \beta(m'\xi(m))$$

= $\beta(m')\xi(m)$
= $\beta(m')\xi(\alpha(a))$
= $a'(\xi \alpha)(a),$

where $a' = \beta(m')$. Thus, A_S is locally projective.

3.6. Theorem. Let $\{M_j \mid j \in J\}$ be a family of S-acts, where each M_j has a fixed element. Their disjoint union $\bigcup_{j \in J} M_j$ is locally projective if and only if each M_j is locally projective.

Proof. \Rightarrow For all $j \in J$. Let $\gamma_j : M_j \to \bigcup M_j$ be injection. We define the mapping $\alpha_j : \bigcup M_j \to M_j$ by

$$\alpha_j(x) = \begin{cases} x & \text{if } x \in M_j \\ \theta & \text{otherwise} \end{cases}$$

where θ is a fixed element in M_j . It is not hard to show that α_j is S-hom. Clearly, $\alpha_j \ \gamma_j = I_{M_j}$. Each M_j is a retract of $\bigcup M_j$. By Lemma 3.5, each M_j is locally projective. \Leftarrow Let m be an element in $\bigcup M_j$. This implies that there exists an $i \in J$ for which $m \in M_i$. As M_i is locally projective, there exists an element $m' \in M_i$ and an S-hom $\xi_i \in \mathcal{H}(M_i, S)$ such that

(3.2)
$$m = m'\xi_i(m).$$

We assume that $\beta_j : M_j \to \bigcup_{j \in J} M_j$ are injections and a family $\{\xi_j \in \mathcal{H}(M_j, S), j \in J\}$. By Proposition 1.1, there exists the unique S-hom $\bar{\xi} : \bigcup M_j \to S_S$ with $\bar{\xi}(x) = \xi_j(x)$ (where $x \in M_j$) such that $\bar{\xi}\beta_j = \xi_j$ for all $j \in J$. Thus, Equation 3.2 can be written as:

$$m = m'(\bar{\xi}\beta i)(m)$$
$$= m'\bar{\xi}(\beta_i(m))$$
$$= m'\bar{\xi}(m).$$

Hence, $\bigcup_{j \in J} M_j$ is locally projective.

3.7. Definition. An S-subact N_S of an S-act M_S is called *ideal pure* if

$$N_S \mathfrak{I} = M_S \mathfrak{I} \cap N_S,$$

for all left ideal \mathcal{I} of S.

3.8. Proposition. A subact of a locally projective S-act is locally projective if the subact is ideal pure.

Proof. Let n be an element in N. As M_S is locally projective, there exists an $m \in M$ and an S-hom $\xi \in \mathcal{H}(M, S)$ such that $n = m\xi(n)$. Let $\hat{\xi}$ be the restriction of ξ to N_S , that is, $\xi \mid_{N_S} = \hat{\xi}$. We can rewrite the above equation as $n = m\hat{\xi}(n)$. For simplicity, we set $\hat{\xi}(n) = x$. Consider the left ideal $\mathcal{I} = Sx$ generated by x. As N_S is ideal pure, this

implies that $N_S \mathfrak{I} = M_S \mathfrak{I} \cap N_S$. We get,

$$n = mx \in M_S \mathfrak{I} \cap N_S = N_S \mathfrak{I}$$
$$= n'tx \text{ for some } n' \in N, tx \in \mathfrak{I}$$
$$= n''x, \text{ where } n'' = n't \in N$$
$$= n''\hat{\xi}(n).$$

Hence, N_S is locally projective.

3.9. Theorem. The following are equivalent.

- (1) An S-act M_S is weakly regular.
- (2) M_S is locally projective and every $\mathfrak{H}(M, M)$ -S-bisubact of $\mathfrak{H}_{(M,M)}M_S$ is ideal pure.
- (3) M_S is locally projective and for all $m \in M$, $\mathcal{H}(M, M)mS$ is ideal pure.

Proof. (1) \Rightarrow (2) Let M_S be weakly regular S-act. By Lemma 3.2, M_S is locally projective. To show that $\mathcal{H}(M, M)$ -S-bisubact $_{\mathcal{H}(M,M)}N_S$ of $_{\mathcal{H}(M,M)}M_S$ is ideal pure, we proceed as follows. Let x be an element in $M_S \mathfrak{I} \cap N_S$, where \mathfrak{I} is an ideal of S. As by Proposition 2.4, $_{\mathcal{H}(M,M)}N_S$ is weakly regular, therefore, for the element x, there exist $\psi \in \mathcal{H}(N, N)$ and $\xi \in \mathcal{H}(N, S)$ such that $x = \psi(x)\xi(x)$. As x is in $M_S \mathfrak{I}$ too, there exist elements $m \in M$ and $t \in \mathfrak{I}$ such that x = mt. We can write

$$\xi(x) = \xi(mt) = \xi(m)t \in S\mathfrak{I} \subseteq \mathfrak{I}.$$

It follows that $x = \psi(x)\xi(x)$ is in $N_S \mathfrak{I}$. So, $M_S \mathfrak{I} \cap N_S$ is contained in $N_S \mathfrak{I}$. Clearly, $N_S \mathfrak{I}$ is contained in N_S . Hence, $M_S \mathfrak{I} \cap N_S = N_S \mathfrak{I}$.

(2) \Rightarrow (3) As for all $m \in M$, $\mathcal{H}(M, M)mS_S$ is $\mathcal{H}(M, M)$ -S-bisubact of $_{\mathcal{H}(M,M)}M_S$, so by our assumption in (2), $\mathcal{H}(M, M)mS_S$ is ideal pure.

 $(3) \Rightarrow (1)$ As M_S is locally projective, for all $m \in M$, there exists $m' \in M$ and S-hom $\xi \in \mathcal{H}(M, M)$ such that $m = m'\xi(m)$. By Lemma 2.5, the mapping $m'\xi$ is in $\mathcal{H}(M, M)$ and by the fact that S contains the identity element 1, it follows that the m is in

$$M_S\xi(m)\cap \mathcal{H}(M,M)mS.$$

By our assumption in (3), $\mathcal{H}(M, M)mS$ is ideal pure. Consider the left ideal $S\xi(m)$ of S. We can write

$$\mathcal{H}(M,M)mSS\xi(m) = \mathcal{H}(M,M)mS\xi(m) = M_SS\xi(m) \cap \mathcal{H}(M,M)mS$$
$$= M_S\xi(m) \cap \mathcal{H}(M,M)mS.$$

This implies that m is in $\mathcal{H}(M, M)mS\xi(m)$. This implies that there exists $\psi \in \mathcal{H}(M, M)$ and $u \in S$ such that

 $m = \psi m t \xi(m)$ = $(\psi(mt))\xi(m)$ = $\psi(m)t\xi(m)$,

where $t\xi \in \mathcal{H}(M, M)$. Thus, M_S is weakly regular.

Before we begin our next result we define PM-injective S-acts stated in [1]. Let M_S ba a fixed S-act. We say an S-act A_S is PM-injective if each S-hom from a cyclic S-subact mS (for all $m \in M$) of M_S to A_S extends to an S-hom from M_S to A_S .

3.10. Theorem. The following are equivalent:

- (1) An S-act M_S is von-Neumann regular.
- (2) M_S is locally projective and every S-act is PM-injective.

(3) M_S is locally projective and for each $m \in M$, mS_S is PM-injective.

Proof. (1) \Rightarrow (2) Let an S-act M_S be von-Neumann regular. By Lemma 3.3, M_S is locally projective. Let Q_S be an S-act. To show that Q_S is PM-injective, we proceed as follows. Assume that $\beta : mS_S \to Q_S$ is S-hom from a cyclic S-subact mS (where $m \in M$) of the M_S to Q_S . We define the mapping $\alpha : S_S \to mS_S$ by $\alpha(t) = mt$. Clearly, α is S-hom. Consider an S-hom ξ from M_S to S_S . Such S-hom exsits as M_S is locally projective. Now, the mapping $\beta \alpha \xi : M_S \to Q_S$ is the required S-hom that extends β . Hence, Q_S is PM-injective.

$$(2) \Rightarrow (3)$$
 Obvious.

(3) \Rightarrow (1) As M_S is locally projective, for all $m \in M$, there exists $m' \in M$ and S-hom $\xi \in \mathcal{H}(M, S)$ such that

(3.3) $m = m'\xi(m).$

Let $\hat{\xi} : mS_S \to S_S$ be restriction of ξ . Let $I : mS_S \to mS_S$ be identity mapping. As mS_S is PM-injective, there exists an extension, say $\rho : M_S \to mS$, of I. We know that $\hat{\xi}\rho(m) = \xi(m)$. We can write

(3.4) $m'\hat{\xi}\rho(m) = m'\xi(m).$

Consider Equation 3.3:

$$\begin{split} m &= m'\hat{\xi}(m) \\ &= m'\hat{\xi}\rho(m); \text{ Using Equation 3.4} \\ &= m'\hat{\xi}\rho(m'\xi(m)); \text{ Using Equation 3.3} \\ &= m'\hat{\xi}\rho(m')\xi(m) \\ &= m'\hat{\xi}(mt)\xi(m); \text{ Aussuming that } \rho(m') = mt \text{ for some } t \in S \\ &= m'\hat{\xi}(mt)\xi(m) \\ &= m'\xi(m)t\xi(m) \\ &= m'\xi(m)(t\xi)(m) \\ &= m(t\xi)(m), \end{split}$$

where $t\xi \in \mathcal{H}(M, S)$. Thus, M_S is von-Neumann regular.

References

- Ahsan, J., Khan, M.F., Shabir, M., Takahashi, M.: Characterization of Monoids by pinjective and normal S-systems, Kobe J. Math. 8, 173-190, 1991.
- [2] Ahsan, J., Saifullah, K.: Completely Quasi-projective Monoids, Semigroup Forum. 38, 123-126, 1989.
- [3] Howie, J.M.: An introduction to semigroup theory, Academic Press, London. 1976.
- [4] Kilp, M., Knauer, U., Mikhalev, A.V.: Monooids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics. 29, 2000.