ON SUBSEQUENTIALLY CONVERGENT SEQUENCES

SEFA ANIL SEZER AND İBRAHİM ÇANAK

ABSTRACT. In this study we obtain some sufficient conditions under which subsequential convergence of a sequence of real numbers follows from its boundedness. Eventually, we obtain crucial information about the subsequential behavior of sequences.

1. INTRODUCTION

It is well known that convergence of a sequence \(\{s_n\} \) of real numbers implies its boundedness, yet the converse is not necessarily true is clear from the example of \(\{\sin(n\pi/2)\} \). Since boundedness is a necessary condition for convergence of \(\{s_n\} \), we put the following question: Under which conditions we get information on the convergence behavior of bounded sequences. In the case where \(\{s_n\} \) is monotonic and bounded, we have its convergence. On the other hand, Bolzano-Weierstrass theorem states that every bounded sequence has at least one accumulation point. However, there are some bounded sequences such as \(\{\sin(\log n)\} \) whose accumulation points lie on a finite interval and all points in this interval are accumulation points of the sequence. In this case we just have convergence of some subsequences of \(\{s_n\} \). Motivated by this idea, Stanojević [10] defined a new kind of convergence as follows.

Definition 1. A sequence \(\{s_n\} \) is said to be subsequentially convergent if there exists a finite interval \(I \) such that all accumulation points of the sequence \(\{s_n\} \) are in \(I \) and every point of \(I \) is an accumulation point of \(\{s_n\} \).

Throughout this paper, we adopt the following familiar conventions:

(i) \(a_n = o(b_n) \) means \(a_n/b_n \to 0 \) as \(n \to \infty \),
(ii) \(a_n = O(b_n) \) means \(|a_n| \leq Hb_n \) for sufficiently large \(n \), where \(H \) is a positive constant,

Received by the editors: July 31, 2018; Accepted: January 15, 2019.

2010 Mathematics Subject Classification. Primary 40A05; Secondary 40E05.

Key words and phrases. Subsequential convergence, slowly oscillating sequences, logarithmic summability.

Submitted via 2nd International Conference of Mathematical Sciences (ICMS 2018).
(iii) $a_n \sim b_n$ means $a_n/b_n \to 1$ as $n \to \infty$.

Note that every convergent sequence is subsequentially convergent. Further, it is obvious that subsequential convergence implies boundedness. But the converse is not always valid, provided by the example $\{(-1)^n\}$. The first theorem which reveals that the converse is valid under certain conditions was obtained by Dik [3] as stated below.

Theorem 2. If $\{s_n\}$ is a bounded sequence such that $\Delta s_n = o(1)$ as $n \to \infty$, then $\{s_n\}$ is subsequentially convergent.

Using Theorem 2 we can easily show that $s_n = \{\sin(\log n)\}$ is subsequentially convergent. Indeed, since $\{s_n\}$ is bounded and

$$|\Delta s_n| = |\Delta \sin(\log n)| = |\sin(\log n) - \sin(\log(n-1))| \leq |\log n - \log(n-1)| = o(1), \quad n \to \infty,$$

$\{s_n\}$ is subsequentially convergent by Theorem 2.

Subsequential convergence was studied in a number of papers such as Çanak and Totur [1, 2], Dik [3], Dik et al. [4] and Sezer and Çanak [8]. In this paper we investigate conditions under which subsequential convergence of $\{s_n\}$ follows from its boundedness.

2. Preliminaries

In this section, we present some fundamental definitions, identities and lemmas which will be needed in the sequel.

The logarithmic mean of $\{s_n\}$ is defined by

$$t_n^{(1)}(s) = \frac{1}{\ell_n} \sum_{k=0}^{n} \frac{s_k}{k+1}, \quad \text{where} \quad \ell_n = \sum_{k=0}^{n} \frac{1}{k+1} \sim \log n, \quad n = 0, 1, 2, \ldots \tag{1}$$

Definition 3. A sequence $\{s_n\}$ is said to be summable to a finite number L by the logarithmic mean method $(\ell, 1)$ if $\lim_{n \to \infty} t_n^{(1)}(s) = L$. In this case, we write $s_n \to \xi(\ell, 1)$.

The difference between a sequence s_n and its logarithmic mean $t_n^{(1)}(s)$, that is known as the logarithmic Kronecker identity (see [9]) is given by

$$s_n - t_n^{(1)}(s) = v_n^{(0)}(\Delta s) \tag{2}$$

where $v_n^{(0)}(\Delta s) = \frac{1}{\ell_n} \sum_{k=1}^{n} \ell_{k-1} \Delta s_k$ and $\Delta s_n = s_n - s_{n-1}$ with $s_{-1} = 0$.

Since identity (2) can be rewritten as

$$s_n = v_n^{(0)}(\Delta s) + \sum_{k=1}^{n} \frac{v_k^{(0)}(\Delta s)}{(k+1)\ell_{k-1}} + s_0, \tag{3}$$

The logarithmic mean of $\{s_n\}$ is defined by

$$t_n^{(1)}(s) = \frac{1}{\ell_n} \sum_{k=0}^{n} \frac{s_k}{k+1}, \quad \text{where} \quad \ell_n = \sum_{k=0}^{n} \frac{1}{k+1} \sim \log n, \quad n = 0, 1, 2, \ldots \tag{1}$$

Definition 3. A sequence $\{s_n\}$ is said to be summable to a finite number L by the logarithmic mean method $(\ell, 1)$ if $\lim_{n \to \infty} t_n^{(1)}(s) = L$. In this case, we write $s_n \to \xi(\ell, 1)$.

The difference between a sequence s_n and its logarithmic mean $t_n^{(1)}(s)$, that is known as the logarithmic Kronecker identity (see [9]) is given by

$$s_n - t_n^{(1)}(s) = v_n^{(0)}(\Delta s) \tag{2}$$

where $v_n^{(0)}(\Delta s) = \frac{1}{\ell_n} \sum_{k=1}^{n} \ell_{k-1} \Delta s_k$ and $\Delta s_n = s_n - s_{n-1}$ with $s_{-1} = 0$.

Since identity (2) can be rewritten as

$$s_n = v_n^{(0)}(\Delta s) + \sum_{k=1}^{n} \frac{v_k^{(0)}(\Delta s)}{(k+1)\ell_{k-1}} + s_0, \tag{3}$$
The classical logarithmic control modulo of the oscillatory behavior of \(\{s_n\} \) is given by
\[
\omega_n^{(0)}(s) = \alpha_n \Delta s_n \sim n \log n \Delta s_n, \quad (4)
\]
where \(\alpha_n = (n + 1)\ell_{n-1} \). The general logarithmic control modulo of the oscillatory behavior of \(\{s_n\} \) of integer order \(r \geq 1 \) is recursively defined by
\[
\omega_n^{(r)}(s) = \omega_n^{(r-1)}(s) - t_n^{(r)}(s) - t_n^{(r-1)}(s), \quad (5)
\]
For every nonnegative integer \(r \), we have
\[
(\alpha_n \Delta)_r s_n = (\alpha_n \Delta)_{r-1}^r (\alpha_n \Delta s_n) = \alpha_n \Delta ((\alpha_n \Delta)_{r-1}^r s_n),
\]
where \((\alpha_n \Delta)_{r}^r s_n = s_n \) and \((\alpha_n \Delta)_{r}^r s_n = \alpha_n \Delta s_n \).

The next lemma provides a different representation of \(\{\omega_n^{(r)}(s)\} \).

Lemma 4. (Sezer and Çanak, [9]) For every integer \(r \geq 1 \), the assertion
\[
\omega_n^{(r)}(s) = (\alpha_n \Delta)_r v_n^{(r-1)}(\Delta s)
\]
is valid.

Definition 5. A sequence \(\{s_n\} \) is called slowly oscillating with respect to summability \((\ell,1)\) if
\[
\lim_{\lambda \to 1^+} \limsup_{n \to \infty} \max_{n < k \leq [n^\lambda]} |s_k - s_n| = 0 \quad (6)
\]
or equivalently
\[
\lim_{\lambda \to 1^-} \limsup_{n \to \infty} \max_{[n^\lambda] < k < n} |s_n - s_k| = 0, \quad (7)
\]
where \([n^\lambda]\) denotes the integer part of \(n^\lambda \).

Note that if the two-sided condition \(n \log n \Delta s_n = O(1) \) is satisfied, then \((6)\) holds.

There are subsequentially convergent sequences which are not slowly oscillating with respect to summability \((\ell,1)\), and vice versa. For instance, \(\{\log(\log n)\} \) is subsequentially convergent but not slowly oscillating with respect to summability.
The following lemma indicates that slow oscillation of \(\{s_n\} \) is a Tauberian condition for \((\ell, 1)\) summability.

Lemma 6. If \(\{s_n\} \) is \((\ell, 1)\) summable to \(L \) and slowly oscillating with respect to summability \((\ell, 1)\), then it converges to the same value.

3. Main Results

In this section, we present our main theorems.

Theorem 7. If \(s_n \) is bounded and \(\{\Delta s_n\} \) is slowly oscillating with respect to summability \((\ell, 1)\), then \(s_n \) is subsequentially convergent.

Proof. Considering identity (2), we have

\[
\Delta s_n = \frac{v_n^{(0)}(\Delta s)}{\alpha_n} + \Delta v_n^{(0)}(\Delta s).
\]

Since \(\{s_n\} \) be bounded, then so is \(\frac{v_n^{(0)}(\Delta s)}{\alpha_n} \). By identity (8) and slow oscillation of \(\{\Delta s_n\}, \{\Delta v_n^{(0)}(\Delta s)\} \) is slowly oscillating with respect to summability \((\ell, 1)\). Also, since

\[
\frac{1}{\ell_n} \sum_{k=0}^{n} \frac{\Delta v_k^{(0)}(\Delta s)}{k+1} = \frac{1}{\ell_n} \sum_{k=0}^{n} \frac{v_k^{(0)}(\Delta s)}{k+1} + \frac{1}{\ell_n} \frac{v_n^{(0)}(\Delta s)}{n+2} \rightarrow 0 \text{ as } n \rightarrow \infty,
\]

\(\{\Delta v_n^{(0)}(\Delta s)\} \) is \((\ell, 1)\) summable to 0. Hence, we obtain \(\Delta v_n^{(0)}(\Delta s) = o(1) \) by using Lemma 6. Also, by (8), \(\Delta s_n = o(1) \). Therefore, proof of Theorem 7 follows from Theorem 2. \(\square \)

Remark 8. Notice that the following conditions are some of the classical Tauberian conditions for the \((\ell, 1)\) summability which imply slow oscillation of \(\{\Delta s_n\} \):

(i) \(\{s_n\} \) is slowly oscillating with respect to summability \((\ell, 1)\), (Kwee, [6])

(ii) \(\omega_n^{(0)}(s) = O(1) \), (Kwee, [6])

(iii) \(\omega_n^{(0)}(s) = o(1) \), (Ishiguro, [5])

(iv) \(\{v_n^{(0)}(\Delta s)\} \) is slowly oscillating with respect to summability \((\ell, 1)\), (Sezer and Çanak, [9])

(v) \(v_n^{(0)}(\Delta s) = o(1) \) (Kwee, [4])

In the next theorems, we propose new conditions imposed on the general logarithmic control modulo of the oscillatory behavior of \(\{s_n\} \).

Theorem 9. If \(s_n \) is bounded and \(\{\Delta(t_n^{(1)}(\omega^{(r)}(s)))\} \) is slowly oscillating with respect to summability \((\ell, 1)\) for some nonnegative integer \(r \), then \(s_n \) is subsequentially convergent.
Proof. Suppose \(s_n = O(1) \). We see by using (2) that \(v_n^{(0)}(\Delta s) = t_n^{(1)}(\omega^{(0)}(s)) = O(1) \). From the identity

\[
t_n^{(1)}(\omega^{(0)}(s)) - t_n^{(2)}(\omega^{(0)}(s)) = t_n^{(1)}(\omega^{(1)}(s)),
\]

we get \(t_n^{(1)}(\omega^{(1)}(s)) = O(1) \). Continuing in the same fashion, we obtain

\[
t_n^{(1)}(\omega^{(r)}(s)) = O(1)
\]

for all integer \(r \geq 0 \), which is equivalent to

\[
(\alpha_n \Delta) v_n^{(r)}(\Delta s) = O(1).
\] (9)

Hence, we observe

\[
t_n^{(1)}(\Delta(t_n^{(1)}(\omega^{(r)}(s)))) = t_n^{(1)}(\Delta((\alpha_n \Delta) v_n^{(r)}(\Delta s))) = 1 \left(\sum_{k=0}^{n} \frac{(\alpha_k \Delta) v_k^{(r)}(\Delta s) - (\alpha_{k-1} \Delta) v_{k-1}^{(r)}(\Delta s)}{k+1} \right) + 1 \left(\frac{(\alpha_n \Delta) v_n^{(r)}(\Delta s)}{n+2} \right) \to 0
\]

as \(n \to \infty \). Combining the hypothesis of Theorem 9 and Lemma 6 yields

\[
\Delta(t_n^{(1)}(\omega^{(r)}(s))) = O((\alpha_n \Delta) v_n^{(r)}(\Delta s)) = o(1).
\] (10)

Considering identity

\[
\omega_n^{(r)}(s) - t_n^{(1)}(\omega^{(r)}(s)) = \omega_n^{(r+1)}(s),
\]

we have

\[
\Delta((\alpha_n \Delta) v_n^{(r-1)}(\Delta s)) = \frac{(\alpha_n \Delta) v_n^{(r)}(\Delta s)}{\alpha_n} + \Delta((\alpha_n \Delta) v_n^{(r)}(\Delta s)).
\]

Now, using (9) and (10), we have

\[
\Delta((\alpha_n \Delta) v_n^{(r-1)}(\Delta s)) = o(1).
\] (11)

In the light of (10) and (11), if we continue in the same manner, then we get

\[
\Delta v_n^{(0)}(\Delta s) = o(1).
\]

Therefore, taking the identity

\[
\Delta s_n = \frac{v_n^{(0)}(\Delta s)}{\alpha_n} + \Delta v_n^{(0)}(\Delta s)
\]

into account together with the assumption \(s_n = O(1) \), we conclude \(\Delta s_n = o(1) \). This completes the proof. \(\square \)

Remark 10. The following results are noteworthy.
(i) If \(\{t^{(1)}_n(\omega(r)(s))\}\) is slowly oscillating with respect to summability \((\ell, 1)\), then so is \(\{\Delta(t^{(1)}_n(\omega(r)(s)))\}\) of its backward difference.

(ii) Set \(r = 0 \) in \(\{t^{(1)}_n(\omega(r)(s))\}\). Then slow oscillation of \(\{v^{(0)}_n(\Delta s)\} = \{t^{(0)}_n(\omega(0)(s))\}\) is sufficient for subsequential convergence of a bounded sequence.

(iii) Two-sided condition \(n \log n \Delta v^{(0)}_n(\Delta s) = O(1) \) implies slow oscillation of \(\{v^{(0)}_n(\Delta s)\}\).

Theorem 11. Let \(\{s_n\} \) be a bounded sequence and \(\{A_n\} \) be a sequence satisfying

\[
\frac{1}{\ell_n} \sum_{k=0}^{n} |A_k|^p = O(1), \quad p > 1.
\] (12)

If

\[
\omega^{(r)}_n(s) = O(A_n)
\] (13)

for some nonnegative integer \(r \), then \(\{s_n\} \) is subsequentially convergent.

Proof. By (12), we see that \(\left\{ \sum_{j=0}^{n} \frac{A_j}{\alpha_j} \right\} \) is slowly oscillating with respect to summability \((\ell, 1)\). Indeed,

\[
\max_{n < k \leq [n^\lambda]} \left| \sum_{j=n+1}^{k} \frac{A_j}{\alpha_j} \right| \leq \max_{n < k \leq [n^\lambda]} \sum_{j=n+1}^{k} \frac{|A_j|}{\alpha_j} \leq \sum_{j=n+1}^{[n^\lambda]} \frac{|A_j|}{(j+1)\ell_{j-1}}
\]

\[
\leq \frac{1}{\ell_n} \sum_{j=n+1}^{[n^\lambda]} \frac{|A_j|}{(j+1)}
\]

\[
\leq \frac{1}{\ell_n} \left(\sum_{j=n+1}^{[n^\lambda]} \frac{1}{j+1} \right)^\frac{1}{p} \left(\sum_{j=n+1}^{[n^\lambda]} \frac{1}{j+1} |A_j|^p \right)^\frac{1}{p}
\]

\[
\leq \left(\frac{\ell_{[n^\lambda]} - \ell_n}{\ell_n} \right)^\frac{1}{p} \left(\frac{\ell_{[n^\lambda]}}{\ell_n} \right)^\frac{1}{p} \left(\frac{1}{\ell_{[n^\lambda]}} \sum_{j=0}^{[n^\lambda]} |A_j|^p \right)^\frac{1}{p}
\]

where \(\frac{1}{p} + \frac{1}{q} = 1 \). Taking the limit supremum as \(n \to \infty \) of both sides of the last inequality

\[
\limsup_{n \to \infty} \max_{n < k \leq [n^\lambda]} \left| \sum_{j=n+1}^{k} \frac{A_j}{\alpha_j} \right|
\]

\[
\leq \limsup_{n \to \infty} \left(\frac{\ell_{[n^\lambda]} - \ell_n}{\ell_n} \right)^\frac{1}{p} \left(\frac{\ell_{[n^\lambda]}}{\ell_n} \right)^\frac{1}{p} \limsup_{n \to \infty} \left(\frac{1}{\ell_{[n^\lambda]}} \sum_{j=0}^{[n^\lambda]} |A_j|^p \right)^\frac{1}{p}
\]
ON SUBSEQUENTIALLY CONVERGENT SEQUENCES

\[
\lim_{n \to \infty} \left(\frac{\ell_{[n^\lambda]} - \ell_n}{\ell_n} \right)^{\frac{1}{\lambda}} \lim_{n \to \infty} \left(\frac{\ell_{[n^\lambda]}}{\ell_n} \right)^{\frac{1}{\lambda}} \lim_{n \to \infty} \sup_{j \in \mathbb{N}} \left(\frac{1}{\ell_{[n^\lambda]}} \sum_{j=0}^{[n^\lambda]} |A_j|^p \right)^{\frac{1}{p}}.
\]

Hence, from (12) we get

\[
\limsup_{n \to \infty} \max_{n < k \leq [n^\lambda]} \left| \sum_{j=n+1}^{k} \frac{A_j}{\alpha_j} \right| \leq (\lambda - 1)^{\frac{1}{\lambda}} \lambda^\lambda H
\]

for \(H > 0 \). Now, letting \(\lambda \to 1^+ \) in (14) gives

\[
\lim_{\lambda \to 1^+} \limsup_{n \to \infty} \max_{n < k \leq [n^\lambda]} \left| \sum_{j=n+1}^{k} \frac{A_j}{\alpha_j} \right| \leq \lim_{\lambda \to 1^+} (\lambda - 1)^{\frac{1}{\lambda}} \lambda^\lambda H = 0.
\]

Since slow oscillation of \(\left\{ \sum_{j=0}^{n} \frac{A_j}{\alpha_j} \right\} \) implies \(\frac{A_{[n]}}{\alpha_{[n]}} = o(1) \), it follows from

\[
\omega_{(r)}(s) = \alpha_n \Delta((\alpha_n \Delta)_{r-1} v_n^{(r-1)}(s)) = O(A_n)
\]

that

\[
\Delta((\alpha_n \Delta)_{r-1} v_n^{(r-1)}(s)) = o(1).
\]

By the boundedness of \(\{s_n\} \), we also have

\[
\ell_{(r)}^{(1)}(\omega^{(m)}(s)) = O(1) \text{ for each integer } m \geq 0.
\]

Considering (16) for \(m = r - 1 \), we have

\[
\ell_{(r)}^{(1)}(\omega^{(r-1)}(s)) = (\alpha_n \Delta)_{r-1} v_n^{(r-1)}(s) = O(1).
\]

Now, construct identity below using the definition of general logarithmic control modulo

\[
\Delta((\alpha_n \Delta)_{r-2} v_n^{(r-2)}(s)) = (\alpha_n \Delta)_{r-1} v_n^{(r-1)}(s) \Delta((\alpha_n \Delta)_{r-1} v_n^{(r-1)}(s)).
\]

Thus, by (15) and (17), we have

\[
\Delta((\alpha_n \Delta)_{r-2} v_n^{(r-2)}(s)) = o(1).
\]

Taking (15) and (18) into account and proceeding likewise, we accomplish

\[
\Delta v_n^{(0)}(s) = o(1).
\]

Then, since

\[
\Delta s_n = \frac{v_n^{(0)}(s)}{\alpha_n} + \Delta v_n^{(0)}(s)
\]

and \(\{s_n\} \) is bounded, we find \(\Delta s_n = o(1) \), which completes the proof.

Remark 12. Considering special cases of Theorem 11, we obtain the following corollaries.
(i) Take $A_n = 1$ for all integer $n \geq 0$. Then (12) and (13) reduce to $\omega_n^{(r)}(s) = O(1)$.

(ii) Take $A_n = \alpha_n \Delta_n^{(1)}(\omega^{(r)}(s))$, then by the condition

$$\frac{1}{t_n} \sum_{k=0}^{n} |\alpha_k \Delta_k(\omega^{(r)}(s))|^{p} = O(1), \quad p > 1,$$

we get subsequential convergence of a bounded sequence $\{s_n\}$ using Remark 10, since (20) necessitate that $\{t_n^{(1)}(\omega^{(r)}(s))\}$ is slowly oscillating with respect to summability $(\ell,1)$.

Acknowledgment

This paper is presented at the 2nd International Conference of Mathematical Sciences (ICMS 2018), 31 July 2018-06 August 2018, Maltepe University, Istanbul, Turkey.

References

Current address: SEFA ANIL SEZER: Istanbul Medeniyet University, Department of Mathematics, Turkey.
E-mail address: sefaanil.sezer@medeniyet.edu.tr
ORCID Address: http://orcid.org/0000-0002-8053-9991

Current address: İBRAHİM ÇANAK: Ege University, Department of Mathematics, Turkey.
E-mail address: ibrahim.canak@ege.edu.tr
ORCID Address: http://orcid.org/0000-0002-1754-1685