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COEFFICIENT BOUNDS FOR A CERTAIN SUBCLASS OF
ANALYTIC AND BI-UNIVALENT FUNCTIONS

NIZAMI MUSTAFA AND VEYSEL NEZIR

Abstract. In this paper, we introduce and investigate a new subclass of the a-
nalytic and bi-univalent functions in the open unit disk in the complex plane.
For the functions belonging to this class, we obtain estimates on the first
three coeffi cients in their Taylor-Maclaurin series expansion. Some interesting
corollaries and applications of the results obtained here are also discussed.

1. Introduction and Preliminaries

Let A denote the class of all complex-valued analytic functions in the open unit
disk U = {z ∈ C : |z| < 1} in the complex plane of the form

f(z) = z + a2z
2 + a3z

3 + · · · = z +

∞∑
n=2

anz
n, z ∈ U. (1.1)

Furthermore, by S we shall denote the class of all functions in A which are
univalent in U . Some of the important and well-investigated subclasses of S include
the class S∗(α) of starlike functions of order α and the class C(α) of convex functions
of order α (α ∈ [0, 1)).
By definition

S∗(α) =

{
f ∈ S : Re

(
zf ′(z)

f(z)

)
> α, z ∈ U

}
, α ∈ [0, 1)

and

C(α) =

{
f ∈ S : Re

(
1 +

zf ′(z)

f(z)

)
> α, z ∈ U

}
, α ∈ [0, 1) .

The above mentioned function classes have been recently investigated rather
extensively in [10, 20, 26, 29] and the references therein.
It is well-known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z, z ∈ U and f(f−1(w)) = w, w ∈ D = {w ∈ C : |w| < r0(f)} ,
r0(f) ≥ 1/4 where f−1(w) = w−a2w

2+
(
2a2

2 − a3

)
w3−

(
5a3

2 − 5a2a3 + a4

)
w4+···.
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An analytic function f is subordinate to an analytic function φ, written f(z) ≺
φ(z), provided there is an analytic function u : U → U with u(0) = 0 and |u(z)| < 1
satisfying f(z) = φ (u(z)) (see, for example, [14]).
Ma and Minda [12] unified various subclasses of starlike and convex functions

for which either of the quantity zf ′(z)
f(z) or 1 + zf ′′(z)

f ′(z) is subordinate to a more super-
ordinate function. For this purpose, they considered an analytic function φ with
positive real part in U , with φ(0) = 1, φ′(0) > 0 and φ maps U onto a region
starlike with respect to 1 and symmetric with respect to the real axis. The class of
Ma-Minda starlike and Ma-Minda convex functions consists of functions f ∈ A sat-
isfying the subordination zf ′(z)

f(z) ≺ φ(z) and 1 + zf ′′(z)
f ′(z) ≺ φ(z), respectively. These

classes denoted, respectively, by S∗ (φ) and C (φ) .
An analytic function f ∈ S is said to be bi- starlike of Ma-Minda type or bi-

convex of Ma-Minda type if both f and f−1 are, respectively, Ma-Minda starlike
or Ma-Minda convex functions. These classes are denoted, respectively, by S∗Σ (φ)
and CΣ (φ) . In the sequel, it is assumed that φ is an analytic function with positive
real part in U , satisfying φ(0) = 1, φ′(0) > 0 and φ (U) is starlike with respect to 1
and symmetric with respect to the real axis. Such a function has a series expansion
of the following form:

φ(z) = 1 + b1z + b2z
2 + b3z

3 + · · ·, b1 > 0. (1.2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent.
Let Σ denote the class of bi-univalent functions in U given by (1.1).
Examples of functions in the class Σ are

z

1− z , ln
1

1− z , ln

√
1 + z

1− z .

However, the familiar Koebe function is not a member of Σ. Other common
examples of functions in A such as

2z − z2

2
and

z

1− z2

are also not members of Σ.
Earlier, Brannan and Taha [3] introduced certain subclasses of bi-univalent func-

tion class Σ, namely bi-starlike function of order α denoted S∗Σ(α) and bi-convex
function of order α denoted CΣ(α) corresponding to the function classes S∗(α) and
C(α), respectively. Thus, following Brannan and Taha [3], a function f ∈ Σ is
in the classes S∗Σ(α) and CΣ(α), respectively, if each of the following conditions is
satisfied:

Re

(
zf ′(z)

f(z)

)
> α, z ∈ U, Re

(
zg′(w)

g(w)

)
> α,w ∈ D
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and

Re

(
1 +

zf ′(z)

f(z)

)
> α, z ∈ U, Re

(
1 +

zg′(w)

g(w)

)
> α,w ∈ D.

For each of the function classes S∗Σ(α) and CΣ(α), they found non-sharp estimates
on the first two Taylor-Maclaurin coeffi cients |a2| and |a3|.
Lewin [11] investigated bi-univalent function class Σ and showed that |a2| < 1.51.

Subsequently, Brannan and Clunie [2] conjectured that |a2| <
√

2.
For a brief history and interesting examples of functions which are in the class Σ,

together with various other properties of this bi-univalent function class, one can
refer the work of Srivastava et al. [22] and references therein. In [22], Srivastava
et al. reviewed the study of coeffi cient problems for bi-univalent functions. Also,
various subclasses of bi-univalent function class were introduced and non-sharp
estimates on the first two coeffi cients in the Taylor-Maclaurin series expansion (1.1)
were found in several recent investigations (see, for example, [1, 4, 5, 6, 7, 8, 9, 13,
15, 19, 21, 23, 24, 25, 27, 28]. Recently, Orhan et al. [17] reviewed the study of
coeffi cient problems for the subclass NPµ,λΣ (β, h) of bi-univalent functions.
However, the problem to find the coeffi cient bounds on |an| , n = 3, 4, ... for

functions f ∈ Σ is presumably still an open problem (see, for example [2, 11, 16]).
Inspired by the aforementioned works, we define a subclass of Σ as follows.

Definition 1.1. A function f ∈ Σ given by (1.1) is said to be in the classMΣ (φ, β),
β ≥ 0, where φ is an analytic function given by (1.2), if the following conditions
are satisfied: (

zf ′(z)

f(z)

)β (
1 +

zf ′′(z)

f ′(z)

)1−β
≺ φ(z), z ∈ U,(

zg′(w)

g(w)

)β (
1 +

zg′′(w)

g′(w)

)1−β
≺ φ(w), w ∈ D,

where g = f−1.

Remark 1.2. Taking β = 1, we have MΣ (φ, 1) = S∗Σ (φ); that is,
zf ′(z)
f(z) ≺ φ(z), z ∈ U and zg′(w)

g(w) ≺ φ(w), w ∈ D
if and only if f ∈ S∗Σ (φ), where g = f−1.

Remark 1.3. Taking β = 0, we have MΣ (φ, 0) = CΣ (φ); that is,
1 + zf ′(z)

f(z) ≺ φ(z), z ∈ U and 1+ zg′(w)
g(w) ≺ φ(w), w ∈ D if and only if f ∈ CΣ (φ),

where g = f−1.

Remark 1.4. These classes S∗Σ (φ) and CΣ (φ) were investigated by Ma and Minda
[12].

The object of this paper is to introduce a new subclassMΣ (φ, β) of the function
class Σ that is wider (respect to β) to the subclasses examined so far and to find
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estimates on the first three Taylor-Maclaurin coeffi cients |a2|, |a3| and |a4| for the
functions in this class.
To prove our main results, we have to recall the following well-known Lemma

[18].

Lemma 1.5. Let P be the class of all analytic functions p(z) of the form

p(z) = 1 + p1z + p2z
2 + · · · = 1 +

∞∑
n=1

pnz
n,

satisfying Re (p(z)) > 0, z ∈ U and p(0) = 1. Then,

2p2 = p2
1 +

(
4− p2

1

)
x,

4p3 = p3
1 + 2

(
4− p2

1

)
p1x−

(
4− p2

1

)
p1x

2 + 2
(
4− p2

1

) (
1− |x|2

)
z,

for some x, z with |x| ≤ 1, |z| ≤ 1 and p1 ∈ [0, 2] .

2. Coefficient bounds for the function class MΣ (φ, β)

In this section, we will try to find the estimates on the coeffi cients |a2|, |a3| and
|a4| for the functions in the class MΣ (φ, β).

Theorem 2.1. Let the function f(z) given by (1.1) be in the class MΣ (φ, β) , β ∈
[0, 1], where φ is an analytic function given by (1.2). Then,

|a2| ≤
b1

2− β , |a3| ≤


b21

(2−β)2
, if b1 ≤ (2−β)2

2(3−2β) ,

b1
2(3−2β) , if b1 >

(2−β)2

2(3−2β)

and

|a4| ≤ min


∣∣∣b31ϕ (β)− 6 (2− β)

3
Λ
∣∣∣+ 6 (2− β)

3 |2b2 − b1|

18 (2− β)
3

(4− 3β)
,

b1
3 (4− 3β)

 ,

where ϕ (β) = β3 − 3β2 − 46β + 60 > 0 and Λ = Λ (b1, b2, b3) = b1 − 2b2 + b3.

Proof. Let f ∈MΣ (φ, β) , β ∈ [0, 1], where φ is an analytic function given by (1.2)
and g = f−1. Then, there are analytic functions u : U → U, v : D → D with
u(0) = 0 = v(0), |u(z)| < 1, |v(w)| < 1 and satisfying(

zf ′(z)
f(z)

)β (
1 + zf ′′(z)

f ′(z)

)1−β
= φ (u(z))

and
(
wg′(w)
g(w)

)β (
1 + wg′′(w)

g′(w)

)1−β
= φ (v(w)) .

(2.1)

Let us define the functions p(z) and q(w) by
p(z) = 1+u(z)

1−u(z) = 1+
∑∞
n=1 pnz

n, z ∈ U and q(w) = 1+v(w)
1−v(w) = 1+

∑∞
n=1 qnw

n, w ∈ D.
It follows that
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u(z) =
p(z)− 1

p(z) + 1
=

1

2

{
p1z +

[
p2 −

p2
1

2

]
z2 +

[
p3 − p1p2 +

p3
1

4

]
z3 + · · ·

}
(2.2)

and

v(w) =
q(w)− 1

q(w) + 1
=

1

2

{
q1w +

[
q2 −

q2
1

2

]
w2 +

[
q3 − q1q2 +

q3
1

4

]
w3 + · · ·

}
. (2.3)

Using (2.2) and (2.3) in (1.2), we can easily write

φ (u(z)) = 1 + b1p1
2 z +

[
b1
2

(
p2 − p21

2

)
+ 1

4b2p
2
1

]
z2

+
[
b1
2

(
p3 − p1p2 +

p31
4

)
+ b2p1

2

(
p2 − p21

2

)
+

b3p
3
1

8

]
z3 + · · ·

(2.4)

and

φ (v(w)) = 1 + b1q1
2 w +

[
b1
2

(
q2 − q21

2

)
+ 1

4b2q
2
1

]
w2

+
[
b1
2

(
q3 − q1q2 +

q31
4

)
+ b2q1

2

(
q2 − q21

2

)
+

b3q
3
1

8

]
w3 + · · ·.

(2.5)

Also, using (2.4) and (2.5) in (2.1) and equating the coeffi cients, we get

(2− β) a2 =
b1p1

2
, (2.6)

2 (3− 2β) a3 +
1

2

(
β2 + 5β − 8

)
a2

2 =
b1
2

(
p2 −

p2
1

2

)
+

1

4
b2p

2
1, (2.7)

3 (4− 3β) a4 +
(
4β2 + 11β − 18

)
a2a3 − 1

6

(
β3 + 21β2 + 20β − 48

)
a3

2

= b1
2

(
p3 − p1p2 +

p31
4

)
+ b2p1

2

(
p2 − p21

2

)
+

b3p
3
1

8

(2.8)

and

− (2− β) a2 =
b1q1

2
, (2.9)

− 2 (3− 2β) a3 +
1

2

(
β2 − 11β + 16

)
a2

2 =
b1
2

(
q2 −

q2
1

2

)
+

1

4
b2q

2
1 , (2.10)

−3 (4− 3β) a4 +
(
4β2 − 34β + 42

)
a2a3 + 1

6

(
β3 − 27β2 + 158β − 192

)
a3

2

= b1
2

(
q3 − q1q2 +

p31
4

)
+ b2q1

2

(
q2 − q21

2

)
+

b3q
3
1

8

(2.11)
From (2.6) and (2.9), we have

a2 =
b1p1

2 (2− β)
=
−b1q1

2 (2− β)
, (2.12)

which is equivalent to
p1 = −q1. (2.13)

By subtracting from (2.7) to (2.10) and considering (2.12) and (2.13), we can easily
obtain
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a3 =
b21p

2
1

4 (2− β)
2 +

b1 (p2 − q2)

8 (3− 2β)
. (2.14)

On the other hand, subtracting (2.11) from (2.8) and considering (2.12) and
(2.14), we get

a4 =
b31p

3
1ϕ(β)

144(2−β)3(4−3β)
+

5b21p1(p2−q2)
32(2−β)(3−2β) + b1(p3−q3)

12(4−3β)

+ (b2−b1)p1(p2+q2)
12(4−3β) − p31Λ

24(4−3β) ,
(2.15)

where ϕ (β) = β3 − 3β2 − 46β + 60 > 0 and Λ=Λ (b1, b2, b3) = b1 − 2b2 + b3.
Since p1 = −q1, according to Lemma 1.5 we write

p2 − q2 =
4− p2

1

2
(x− y) , p2 + q2 = p2

1 +
4− p2

1

2
(x+ y) (2.16)

and

p3 − q3 =
p31
2 +

p1(4−p21)
2 (x+ y)− p1(4−p21)

4

(
x2 + y2

)
+

4−p21
2

[(
1− |x|2

)
z −

(
1− |y|2

)
w
]
.

(2.17)

for some x, y, z, w with |x| ≤ 1, |y| ≤ 1, |z| ≤ 1, |w| ≤ 1. In this case, since
p1 ∈ [0, 2], we may assume without any restriction that t ∈ [0, 2], where t = |p1|.
Hence, we find from (2.12) that

|a2| ≤
b1

2− β .

Substituting the first expression (2.16) in (2.14), we obtain

a3 =
b21p

2
1

4 (2− β)
2 +

b1
(
4− p2

1

)
16 (3− 2β)

(x− y) .

Applying triangle inequality on the last equation and taking ξ = |x| , η = |y|, we
have

|a3| ≤ c1(t) + c2(t) (ξ + η) , (2.18)

where

c1(t) =
b21t

2

4 (2− β)
2 ≥ 0, c2(t) =

b1
(
4− t2

)
16 (3− 2β)

≥ 0, t ∈ [0, 2] .

Let us define the function F : R3 → R as follows:

F (ξ, η, t) = c1(t) + c2(t) (ξ + η) , (ξ, η) ∈ Ω, t ∈ [0, 2] , (2.19)

where Ω = {(ξ, η) : ξ, η ∈ [0, 1]}.
From (2.18) and (2.19), we can write
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|a3| ≤ min {max {F (ξ, η, t) : (ξ, η) ∈ Ω} : t ∈ [0, 2]} . (2.20)

We can easily show that

max {F (ξ, η, t) : (ξ, η) ∈ Ω} = F (1, 1, t) = c1(t) + 2c2(t), t ∈ [0, 2] . (2.21)

Now, let us define the function H : R→ R as follows:

H(t) = c1(t) + 2c2(t), t ∈ [0, 2] .

Substituting the value of c1(t) and c2(t) in the above function, we have

H(t) =
b1

2 (3− 2β)
+

∆ (β, b1)

8 (3− 2β) (2− β)
2 t

2, (2.22)

where ∆(β, b1) = 2(3− 2β)b21 − (2− β)2b1.
Differentiating both sides of (2.22), we get

H ′(t) =
∆(β, b1)

4 (3− 2β) (2− β)
2 t.

It is clear that H ′(t) ≤ 0 if 0 < b1 ≤ (2−β)2

2(3−2β) ; that is, H(t) is a decreasing
function. Therefore,

min {H(t) : t ∈ [0, 2]} = H(2) =
b21

(2− β)
2 . (2.23)

Let b1 >
(2−β)2

2(3−2β) , then H
′(t) > 0, so H(t) is a strictly increasing function.

Therefore,

min {H(t) : t ∈ [0, 2]} = H(0) =
b1

2 (3− 2β)
. (2.24)

Consequently, from (2.21)-(2.24) and (2.20), we have

|a3| ≤


b21

(2−β)2
, if b1 ≤ (2−β)2

2(3−2β) ,

b1
2(3−2β) , if b1 >

(2−β)2

2(3−2β) .
(2.25)

Substituting the expressions (2.16) and (2.17) in (2.15), we obtain

a4 =
b1(4−p21)
24(4−3β)

[(
1− |x|2

)
z −

(
1− |y|2

)
w
]
− b1(4−p21)p1

48(4−3β)

(
x2 + y2

)
+

b2(4−p21)p1
24(4−3β) (x+ y) +

5b21(4−p21)p1
64(2−β)(3−2β) (x− y)

+
b31ϕ(β)−6(2−β)3Λ+6(2−β)3(2b2−b1)

144(2−β)3(4−3β)
p3

1.

Applying triangle inequality on the last equation, we have
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|a4| ≤ d1 (t)
(
ξ2 + η2

)
+ d2 (t) (ξ + η) + d3 (t) , (2.26)

where

d1(t) =
b1
(
4− t2

)
(t− 2)

48 (4− 3β)
≤ 0,

d2(t) =

(
4− t2

)
t
[
8 |b2| (2− β) (3− 2β) + 15b21 (4− 3β)

]
192 (2− β) (3− 2β) (4− 3β)

≥ 0,

d3 (t) =

∣∣∣b31ϕ (β)− 6 (2− β)
3

Λ
∣∣∣+ 6 (2− β)

3 |2b2 − b1|

144 (2− β)
3

(4− 3β)
t3 +

b1
(
4− t2

)
12 (4− 3β)

≥ 0.

Let us define the function G : R3 → R as follows:

G(ξ, η, t) = d1 (t)
(
ξ2 + η2

)
+ d2 (t) (ξ + η) + d3 (t) , (ξ, η) ∈ Ω, t ∈ [0, 2] . (2.27)

From (2.26) and (2.27), we can write

|a4| ≤ min {max {G (ξ, η, t) : (ξ, η) ∈ Ω} : t ∈ [0, 2]} . (2.28)

Firstly, we need investigate maximum of the function G(ξ, η, t) on the closed
square Ω for each t ∈ [0, 2]. Since the coeffi cients of the function G(ξ, η, t) is
dependent to variable t, we must investigate this maximum respect to t taking into
account these cases: t = 0, t ∈ (0, 2) and t = 2.
For t = 0 we have

G0(ξ, η) = G(ξ, η, 0) =
−b1

6 (4− 3β)

(
ξ2 + η2

)
+

b1
3 (4− 3β)

, (ξ, η) ∈ Ω.

We can easily show that the maximum of the function G0(ξ, η) occurs at (ξ, η) =
(0, 0), and

max {G0 (ξ, η) : (ξ, η) ∈ Ω} = G0 (0, 0) =
b1

3 (4− 3β)
. (2.29)

In the case t ∈ (0, 2), by simple differentiation, we get

G
′

ξ(ξ, η, t) = 2d1 (t) ξ + d2 (t) , G
′

η(ξ, η, t) = 2d1 (t) η + d2 (t) ,

G
′′

ξξ(ξ, η, t) = G
′′

ηη(ξ, η, t) = 2d1 (t) , G
′′

ξη(ξ, η, t) = G
′′

ηξ(ξ, η, t) = 0.

From the first and second equations above, we see that (ξ0, η0), where ξ0 = η0 =
−d2(t)
2d1(t) , is critical and likely a extremal point for of the function G(ξ, η, t).
Since

∆ (ξ0, η0) = G
′′

ξξ(ξ0, η0, t)G
′′

ηη(ξ0, η0, t)−
[
G

′′

ξξ(ξ0, η0, t)
]2

= 4d2
1 (t) > 0
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and G
′′

ξξ(ξ, η, t) = G
′′

ηη(ξ, η, t) = 2d1 (t) < 0, (ξ0, η0) is a likely maximum point for
the function G(ξ, η, t). But, it is clear that (ξ0, η0) is not a local maximum point if
−d2(t)
2d1(t) > 0; that is if (ξ0, η0) /∈ Ω. We assume that (ξ0, η0) ∈ Ω. In this case (ξ0, η0)

is a local maximum point for the function G(ξ, η, t).
Therefore,

max {G (ξ, η, t) : (ξ, η) ∈ Ω} = G (ξ0, η0, t) = d3 (t)− −d
2
2 (t)

2d1 (t)
.

Let us define the function h : R→ R by

h (t) = d3 (t)− −d
2
2 (t)

2d1 (t)
, t ∈ (0, 2) .

Substituting the value d1 (t) , d2 (t) and d3 (t) in the above function, we have

h (t) = h1t
3 + h2t

2 + h3, t ∈ (0, 2) , (2.30)

where

h1 =
|b31ϕ(β)−6(2−β)3Λ|+6(2−β)3|2b2−b1|

144(2−β)3(4−3β)

+
[8|b2|(2−β)(3−2β)+15b21(4−3β)]

2

1536(2−β)2(3−2β)2(4−3β)b1
> 0,

h2 =

[
8 |b2| (2− β) (3− 2β) + 15b21 (4− 3β)

]2
768 (2− β)

2
(3− 2β)

2
(4− 3β) b1

− b1
12 (4− 3β)

,

h3 =
b1

3 (4− 3β)
> 0.

Also, we consider the function h̄ : R→ R as follows:
h̄ (t) = h1t

3 + h̄2t
2 + h3, t ∈ (0, 2) , (2.31)

where

h̄2 = h2 +
b1

12 (4− 3β)
=

[
8 |b2| (2− β) (3− 2β) + 15b21 (4− 3β)

]2
768 (2− β)

2
(3− 2β)

2
(4− 3β) b1

> 0.

Since h (t) < h̄ (t) for all t ∈ (0, 2), we can write
min {h (t) : t ∈ (0, 2)} ≤ min

{
h̄ (t) : t ∈ (0, 2)

}
. (2.32)

Now, we will investigate minimum of the function h̄ (t) on the open interval
(0, 2).
Differentiating both sides of (2.31), we have

h̄′ (t) =
(
3h1t+ 2h̄2

)
t, t ∈ (0, 2) .

Since h1 > 0, h̄2 > 0, the function h̄ (t) is a strictly increasing function on (0, 2).
Therefore,

min
{
h̄ (t) : t ∈ (0, 2)

}
= h̄ (0+) = lim

t→0+
h̄ (t) =

b1
3 (4− 3β)

. (2.33)
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Finally, let t = 2. In this case the function G(ξ, η, 2) is a constant as follows:

G2(ξ, η) = G(ξ, η, 2) = d3 (2) =

∣∣∣b31ϕ (β)− 6 (2− β)
3

Λ
∣∣∣+ 6 (2− β)

3 |2b2 − b1|

18 (2− β)
3

(4− 3β)
.

(2.34)
Thus, from (2.29)-(2.34) and (2.28), we obtain

|a4| ≤ min


∣∣∣b31ϕ (β)− 6 (2− β)

3
Λ
∣∣∣+ 6 (2− β)

3 |2b2 − b1|

18 (2− β)
3

(4− 3β)
,

b1
3 (4− 3β)

 .

With this, the proof of Theorem 2.1 is completed. �

The following theorems are direct results of Theorem 2.1.

Theorem 2.2. Let the function f(z) given by (1.1) be in the class S∗Σ (φ), where
φ is an analytic function given by (1.2). Then,

|a2| ≤ b1, |a3| ≤
{
b21, if b1 ≤ 1

2 ,
b1
2 , if b1 >

1
2

and

|a4| ≤ min

{∣∣2b31 − Λ
∣∣+ |2b2 − b1|

3
,
b1
3

}
,

where Λ = Λ(b1, b2, b3) = b1 − 2b2 + b3.

Theorem 2.3. Let the function f(z) given by (1.1) be in the class CΣ (φ), where
φ is an analytic function given by (1.2). Then,

|a2| ≤
b1
2
, |a3| ≤

{
b21
4 , if b1 ≤ 2

3 ,
b1
6 , if b1 >

2
3

and

|a4| ≤ min

{∣∣5b31 − 4Λ
∣∣+ 4 |2b2 − b1|

48
,
b1
12

}
,

where Λ = Λ(b1, b2, b3) = b1 − 2b2 + b3.

3. Concluding remarks

If the function φ(z), aforementioned in study, is given by

φ(z) =
1 + az

1 + bz
= 1+(a−b)z−b(a−b)z2 +b2(a−b)z3 +·· · (−1 ≤ b < a ≤ 1), (3.1)

then b1 = (a− b), b2 = −b(a− b) and b3 = b2(a− b).
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Taking a = 1− 2α, b = −1 in (3.1), we have

φ(z) =
1 + (1− 2α)z

1− z = 1 + 2(1−α)z+ 2(1−α)z2 + 2(1−α)z3 + · · · (0 ≤ α < 1).

(3.2)
Hence, b1 = b2 = b3 = 2(1− α).
Choosing φ(z) of the form (3.1) and (3.2) in Theorem 2.1, we can readily deduce

the following results, respectively.

Corollary 3.1. Let the function f(z) given by (1.1) be in the class MΣ

(
1+az
1+bz , β

)
(−1 ≤ b < a ≤ 1, 0 ≤ β ≤ 1). Then,

|a2| ≤ a−b
2−β , |a3| ≤

{
(a−b)2
(2−β)2 , if a− b ≤ (2−β)2

2(3−2β) ,
a−b

2(3−2β) , if a− b > (2−β)2

2(3−2β)

and |a4| ≤ a−b
3(4−3β) .

Corollary 3.2. Let the function f(z) given by (1.1) be in the classMΣ

(
1+(1−2α)z

1−z , β
)

= MΣ (α, β), α ∈ [0, 1) , β ∈ [0, 1]. Then,

|a2| ≤ 2(1−α)
2−β , |a3| ≤

{
1−α
3−2β , if 0 ≤ α < 1− α0,
4(1−α)2

(2−β)2 , if 1− α0 ≤ α < 1,
and |a4| ≤ 2(1−α)

3(4−3β) ,

where α0 = (2−β)2

4(3−2β) .
Also, taking α = 0 in (3.2), we get

φ(z) =
1 + z

1− z = 1 + 2z + 2z2 + 2z3 + · · · . (3.3)

Hence, b1 = b2 = b3 = 2.

Choosing φ(z) of the form (3.3) in Theorem 2.1, we arrive at the following
corollary.

Corollary 3.3. Let the function f(z) given by (1.1) be in the classMΣ

(
1+z
1−z , β

)
, β ∈

[0, 1]. Then,
|a2| ≤ 2

2−β , |a3| ≤ 1
3−2β and |a4| ≤ 2

3(4−3β) .

Choosing φ(z) of the form (3.1) and (3.2) in Theorem 2.2, we can readily deduce
the following results, respectively.

Corollary 3.4. Let the function f(z) given by (1.1) be in the class S∗Σ
(

1+az
1+bz

)
(−1 ≤ b < a ≤ 1). Then,

|a2| ≤ a− b, |a3| ≤
{

(a− b)2, if a− b ≤ 1
2 ,

a−b
2 , if a− b > 1

2

and |a4| ≤ a−b
3 .

Corollary 3.5. Let the function f(z) given by (1.1) be in the classS∗Σ
(

1+(1−2α)z
1−z

)
= S∗Σ(α), α ∈ [0, 1). Then,

|a2| ≤ 2(1− α), |a3| ≤
{

1− α, if 0 ≤ α< 3
4 ,

4(1− α)2, if 3
4 ≤ α < 1

and |a4| ≤ 2(1−α)
3 .



SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS 1503

Remark 3.6. In the special case, we can also obtain Corollary 3.4 from Corollary
3.1 and Corollary 3.5 from Corollary 3.2 for β = 1.
Moreover, taking, for example, α = 3

4 in (3.2), we have

φ(z) =
2− z

2 (1− z) = 1 +
1

2
z +

1

2
z2 +

1

2
z3 + · · · . (3.4)

Hence, b1 = b2 = b3 = 1
2 .

Choosing φ(z) of the form (3.4) in Theorem 2.2, we arrive at the following
corollary.

Corollary 3.7. Let the function f(z) given by (1.1) be in the class S∗Σ
(

2−z
2(1−z)

)
.

Then,
|a2| ≤ 1

2 , |a3| ≤ 1
4 and |a4| ≤ 1

6 .

Remark 3.8. In the special case, we can also obtain Corollary 3.7 from Corollary
3.5 for α = 3

4 .

Choosing φ(z) of the form (3.1) and (3.2) in Theorem 2.3, we can readily deduce
the following results, respectively.

Corollary 3.9. Let the function f(z) given by (1.1) be in the class CΣ

(
1+az
1+bz

)
(−1 ≤ b < a ≤ 1). Then,

|a2| ≤ a−b
2 , |a3| ≤

{
(a−b)2

4 , if a− b ≤ 2
3 ,

a−b
6 , if a− b > 2

3

and |a4| ≤ a−b
12 .

Corollary 3.10. Let the function f(z) given by (1.1) be in the class CΣ

(
1+(1−2α)z

1−z

)
= CΣ(α), α ∈ [0, 1). Then,

|a2| ≤ 1− α, |a3| ≤
{

1−α
3 , if 0 ≤ α< 2

3 ,
(1− α)2, if 2

3 ≤ α < 1
and |a4| ≤ 1−α

6 .

Moreover, taking, for example, α = 2
3 in (3.2), we get

φ(z) =
3− z

3 (1− z) = 1 +
2

3
z +

2

3
z2 +

2

3
z3 + · · · . (3.5)

Hence, b1 = b2 = b3 = 2
3 .

Choosing φ(z) of the form (3.5) in Theorem 2.3, we arrive at the following
corollary.

Corollary 3.11. Let the function f(z) given by (1.1) be in the classCΣ

(
3−z

3(1−z)

)
.

Then,
|a2| ≤ 1

3 , |a3| ≤ 1
9 and |a4| ≤ 1

18 .

Remark 3.12. In the special case, we can also obtain Corollary 3.11 from Corollary
3.10 for α = 2

3 .
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