Synthesis and characterization of Mn₂B nanocrystals by mechanical alloying method

Tuncay Şimşek¹*, Telem Şimşek², Şadan Öзcan³

¹Mersin University, Architecture Faculty, Department of Industrial Design, Mersin, Turkey, ORCID ID orcid.org/0000-0002-4683-0152
²Hacettepe University, Department of Physics Engineering, 06800 Ankara, Turkey, ORCID ID orcid.org/0000-0003-4852-2230
³Hacettepe University, Department of Physics Engineering, Division of Nanotechnology and Nanomedicine, 06800 Ankara, Turkey

ARTICLE INFO

Article history:
Received 17 August 2018
Revised form 30 October 2018
Accepted 11 January 2019
Available online 16 March 2019

Research Article

DOI: 10.30728/boron.454311

Keywords:
Mn₂B,
Nanoparticle,
Mechanical alloying,
Magnetic properties

ABSTRACT

In this study, elemental Mn and B initial materials were used to synthesize pure Mn₂B nanocrystals by ball milling. Milling experiments were conducted with high-energy planetary ball mill in a hardened steel vial with hardened steel balls, under Ar atmosphere at 40:1 ball-to-powder ratio and 300 rpm rotating speed. As synthesized Mn₂B nanocrystals phase structures and morphological/microstructural investigation were analyzed by X-Ray diffractometry (XRD) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX), respectively. Particle size of Mn₂B were calculated as 34.5 nm by Rietveld refinement. Furthermore, the magnetic behavior of nanocrystals were determined by vibrating sample magnetometer (VSM). Mn₂B sample shows ferromagnetic behavior at room temperature with saturation magnetization of 13 emu/g and coercivity of 90 Oe.

1. Introduction

The properties such as relatively high melting temperature, hardness and brittleness makes the transition metal boride of manganese as good candidates in the hard materials. Hard materials are used commonly as cutting tools and hard coating in various industrial fields [1]. Numerous synthesis methods have been used for the production of refractory borides such as combustion synthesis, which is also known as self-propagating high-temperature synthesis (SHS), solvothermal, carbothermal and mechanical alloying (MA) methods [2-5]. Among these methods, MA is intensively preferred for the advantages such as relatively low-cost equipment, simplicity, low-temperature processing, great flexibility in the selection of the processing parameters, and ability to produce large quantities of material with the same physical properties [6-9]. The powders are subjected to continuous cold-welding, flattened, fracturing and re-welding mechanisms due to impacts on the balls and grinding medium. A lot of unique alloying materials such as nanocrystalline, quasicrystalline, amorphous and supersaturated solid solutions alloys can be synthesized with this method [6]. In the literature, it is obvious that metal borides studies with MA method have exponentially increased in recent years due to its simple and favorable features [10-12].

The boron and its alloys form various compounds and alloys with many elements found in nature. In the literature, there are many allotropic phases of boron with transition elements. [13-16]. Five different solid state phases have been reported in the Mn-B binary phase diagram: the phase of Mn₂B (tetragonal structure of the Al₂Cu type, I4/mcm), MnB (orthorhombic structure of Fe-B type, Pnma), MnB₄ (orthorhombic structure of the TaB₄ type, Immm), MnB₅ (hexagonal structure of the AlB₂ type, P6/mmm), and MnB₆ (monoclinic structure of the MnB₄, C2/m). [1, 17-21]. However, there is a lack of available information on the synthesis of manganese borides in the literature. Meng et al. synthesized various kinds of manganese borides by liquid-solid reaction from manganese and amorphous boron powders at high pressure and high temperature. They have reported that mixing the boron and manganese powder at various atomic ratios, temperatures and pressures, Mn₁B, Mn₂B, MnB, Mn₅B₄, MnB₂, MnB₄, and MnB₆ phases were synthesized effectively [22]. In another study conducted by Zhu et al., MnB₆ alloy was synthesized by starting from Mn and B chips with arc melter [23]. Guo et al. conducted high-pressure synthesis experiments of single-crystal of MnB₄ and characterized their structure and hardness. They also theoretically examined the relative stability, as well as mechanical, electronic, and magnetic properties of MnB₄, in both the AlB₂- and ReB₂-type structures by means of first-principles calculations within DFT [24]. There are also studies by an arc melting methods for synthesis of Mn₉B₁₀₀₋ₓ and Mn₉B₁₀₀₋ₓCo₁₀₀₋ₓ alloys [25-26]. In this study, to the best of our knowledge, Mn₂B was

*Corresponding author: tuncaysimsek@mersin.edu.tr
synthesized for the first time with Mn and B powders mixture by using planetary type ball under Ar atmosphere. The phase and morphological structures were investigated with X-Ray Powder Diffractometry and crystal structures were analyzed by Rietveld refinement and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX). Magnetic properties of as-synthesized sample was characterized by using vibrating sample magnetometer (VSM).

2. Materials and methods

The Mn$_2$B was synthesized by mechanical milling. Mn (Alfa Aesar, 99%) and B (Alfa Aesar, crystalline 98%) were used as initial materials. Sample preparation and milling experiments were conducted under Argon gas (99.5%) atmosphere. Milling experiments were performed using high-energy planetary ball mill (Retch, PM 100 CM, Monomill) with hardened steel balls and hardened steel vial. Milling experiments were performed at 300 rpm rotating speed and 40:1 ball to powder ratio and prolonged up to 10 h. The purification of the obtained powders was not required. Milling conditions were given in Table 1. The reaction for preparation of Mn$_2$B powder is given in Eq 1. Appropriate amounts (Eq.1) of initial powders were weighted in glove box using precision balance.

\[
2 \text{Mn} + \text{B} \rightarrow \text{Mn}_2\text{B} \quad (1)
\]

Rigaku D-max B horizontal diffractometer with CuKα radiation at a scanning rate of 0.02–1s.

<table>
<thead>
<tr>
<th>Table 1. Milling conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vial material</td>
</tr>
<tr>
<td>Ball material</td>
</tr>
<tr>
<td>Ball diameter (mm)</td>
</tr>
<tr>
<td>Ball to powder ratio</td>
</tr>
<tr>
<td>Rotation speed (rpm)</td>
</tr>
<tr>
<td>Milling period (h)</td>
</tr>
</tbody>
</table>

Phase and structural analysis of as-made nanoparticles were analyzed via X-Ray Diffractometry (Rigaku, D/Max B horizontal diffractometer) using Cu-Kα radiation at 40 kV and 30 mA, anode voltage and current for 2θ range from 20° to 100° at a scanning rate of 0.02–1s. International Center for Diffraction Data (ICDD) powder diffraction files were used in the identification of crystalline phases. The crystal structure of the synthesized Mn$_2$B phase was studied by multiphase Rietveld method using MAUD software [27]. Crystallography Open Database is used for the .cif files in the refinement. For the refinement of peak profiles, the Pseudo-Voigt function is used. Morphological and microstructural characterizations were determined by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX) using a FEI-Quanta FEG 450 microscope operated at 12.3 kV in secondary electron mode. The magnetic behavior of particles were determined using vibrating sample magnetometer (VSM) module of Physical Properties Measurement System (PPMS, Quantum Design).

3. Results and discussion

The Mn-B binary phase diagram is given in Figure 1. As seen in Figure 1, Mn$_2$B phase has tetragonal structure of the Al$_2$Cu type (space group; I4/mcm) while other phases such as MnB has orthorhombic structure of Fe-B type (space group; Pnma), Mn$_3$B$_4$ has orthorhombic structure of the Ta$_3$B$_4$ type (space group; Immm), MnB$_2$ has hexagonal structure of the AlB$_2$ type, (space group; P6/mmm), and MnB$_4$ has monoclinic structure of the MnB$_4$ (space group; C2/m) [1]. The Al$_2$Cu-type Mn$_2$B phase is easy to produce with low calculated enthalpy of formation as shown in Figure 1.

The phase analyses and microstructures of the initial materials mixtures are given in Figure 2 and Figure 3. As seen from the Figure 2, the reflections related to crystalline Mn (ICDD Card No:32-0637, Cubic, I-43m)
and B (ICDD Card No: 31-0207, Hexagonal, R-3m) were observed in diffraction pattern. The SEM images of initial powders reveal that both of Mn and B powders were in irregular shape and morphology and size range of the B powder before milling was in the 2-200 µm while Mn was in the range of 450 nm-5 µm.

The mixed powders were ball milled for 10 hours (Table 1) and weight ratio of milling balls to powder charge ratio is 40:1. XRD pattern of the sample ball milled are given in Figure 4. The XRD pattern shows that Mn$_2$B phase was successfully occurred after 10 h of ball milling processes. Multiphase Rietveld refinement showed that all the Mn$_2$B reflections are observed (ICDD Card No: 00-025-0535) and sample is single phase. Refinements confirm the tetragonal structure of Mn$_2$B in I4/mcm space group with the lattice parameters of a=b=5.142 (1) Å and c=4.165 (2) Å. The structural parameters obtained from Rietveld refinements are summarized in Table 2. After progressive cold-welding, flattened and fracturing mechanisms, reactions takes place at low temperature and particle size reduce to 34.5 nm.

Figure 5 shows the SEM image of the synthesized Mn$_2$B nanocrystals. It is seen that size of Mn$_2$B particles are within the range of 50-500 nm, and have irregular/coaxial shape and morphologies. It has been also
observed that particles are agglomerated. It is known that particle size reduction takes due to some mechanisms such as cold welding, flattening and repeated fractures in mechanical alloying processing. Consequently, new unstable surfaces are formed by continuous fractures and deformations, and as a result agglomeration occurs. The EDX elemental analysis confirms the Mn and B phases together with little Cr and Fe impurities. Due to the nature of the milling process, impurities are frequently observed originating from to the milling vial.

In order to obtain information about the magnetic properties, magnetic field dependence of magnetization \((M(H))\) of the as-made \(\text{Mn}_2\text{B}\) powder is measured at 300 K (Figure 6). This measurement can be divided into 4 quadrants. In the 1st quadrant, external magnetic field is applied to powder sample and swept from \(0 – 3\) T range, which is also called virgin curve. Magnetization of the sample was measured continuously under the applied field. Then in the second quadrant, magnetic field is swept from \(3 – 0\) T. The direction of the applied field was then reversed during the 3rd quadrant and field is applied from \(0 – (-3)\) T. Finally applied field was swept from \(-3 – 0\) T in the 4rd quadrant and magnetization of the sample was measured continuously. Significant physical parameters such as; saturation magnetization, saturation field, coercivity, anisotropy constant and maximum energy product can be obtained from \(M(H)\) measurement. As can be seen in Figure 4, \(\text{Mn}_2\text{B}\) sample has weak ferromagnetic signal with the saturation magnetization of 13 emu/g. Sample has coercivity of 90 Oe at 300 K, as depicted in the inset of figure. Among the manganese borides only \(\text{MnB}\) with positive exchange interaction between Mn atoms shows ferromagnetic behavior while \(\text{MnB}_2\) and \(\text{Mn}_3\text{B}_4\) are antiferromagnetic. \(\text{MnB}_2\) phase is paramagnetic and \(\text{Mn}_2\text{B}\) is non-magnetic [28]. The ferromagnetic behavior observed in our sample (Figure 6) could be attributed to the small amount of Fe/Cr impurities, which originates from milling experiment carried using hardened steel vial.

<table>
<thead>
<tr>
<th>28 (degree)</th>
<th>hkl</th>
<th>Relative intensity</th>
<th>d calculation Å</th>
<th>d experimental Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.435</td>
<td>110</td>
<td>10.0</td>
<td>3.6400</td>
<td>3.6494</td>
</tr>
<tr>
<td>34.826</td>
<td>200</td>
<td>15.0</td>
<td>2.5740</td>
<td>2.6050</td>
</tr>
<tr>
<td>42.952</td>
<td>002</td>
<td>25.0</td>
<td>2.1040</td>
<td>2.0952</td>
</tr>
<tr>
<td>44.833</td>
<td>211</td>
<td>100.0</td>
<td>2.0200</td>
<td>2.0185</td>
</tr>
<tr>
<td>50.020</td>
<td>112</td>
<td>11.0</td>
<td>1.8220</td>
<td>1.8180</td>
</tr>
<tr>
<td>56.441</td>
<td>202</td>
<td>25.0</td>
<td>1.6290</td>
<td>1.6228</td>
</tr>
<tr>
<td>73.461</td>
<td>312</td>
<td>12.0</td>
<td>1.2880</td>
<td>1.2861</td>
</tr>
<tr>
<td>78.767</td>
<td>330</td>
<td>9.0</td>
<td>1.2140</td>
<td>1.2170</td>
</tr>
<tr>
<td>80.029</td>
<td>213</td>
<td>30.0</td>
<td>1.1980</td>
<td>1.2006</td>
</tr>
<tr>
<td>84.017</td>
<td>420</td>
<td>1.0</td>
<td>1.1510</td>
<td>1.1460</td>
</tr>
<tr>
<td>89.102</td>
<td>402</td>
<td>6.0</td>
<td>1.0980</td>
<td>1.0923</td>
</tr>
</tbody>
</table>

Table 2. Phase structures of \(\text{Mn}_2\text{B}\) nanocrystals.

![Figure 4. XRD patterns of 10h milled \(\text{Mn}_2\text{B}\) nanocrystals before and after leaching. Indexing the \(\text{Mn}_2\text{B}\) phase is done using tetragonal unit cell (ICDD Card No: 00-025-0535).](image-url)
4. Conclusion

The synthesis of Mn$_2$B nanocrystals were studied with the initial powders of Mn and B at 300 rpm rotating speed and 40:1 ball to powder ratio via planetary ball mill. It is seen that after 10 h ball milling Mn$_2$B nanocrystals were synthesized. The synthesized particles are characterized using x-ray diffraction/spectroscopy, electron microscopy, and vibrating sample magnetometer measurements. Particle sizes of the nanocrystals were calculated as 34.5 nm by Rietveld refinement. In contrary to the reported works in the literature, Mn$_2$B sample was found to be ferromagnetic at room temperature with small saturation magnetization of 13 emu/g. This weak ferromagnetic signal is attributed to the Fe impurity caused from the hardened steel milling vial.

References

