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Abstract: Selecting an appropriate cognitive diagnostic model (CDM) for 
data analysis is always challenging. Studies have explored several model fit 
indices for CDMs. The common results of these studies indicate that Q-
matrix misspecifications lead to poor performance of the model fit indices 
in the context of CDMs. Thus, this study explored whether model fit indices 
improve performance with a modified Q-matrix. The average class size has 
reduced to 23 students in Taiwan because of the low birth rate; therefore, 
the study sought the effect of sample size on the performance of model fit 
indices. The results showed that Akaike’s information criterion (AIC) was 
an excellent model fit index in small samples. Model fit indices with the 
modified Q-matrix presented superior performance. 

1. INTRODUCTION 

Recently, cognitive diagnostic models (CDMs) (DiBello, Roussos, & Stout, 2007) have been 
extensively studied in educational research (Jiao, 2009). CDMs are psychological models that 
are used to examine whether a subject is proficient in a skill or possesses a particular character 
(Chen, de la Torre, & Zhang, 2013) in order to provide more precise information regarding the 
subject (Ma, Iaconangelo, & de la Torre, 2016). When applying CDMs to analyze testing data 
to obtain diagnostic information regarding a subject, one must select the analytical model and 
define the Q-matrix of the test (Tatsuoka, 1983). Recently, CDMs have been developed in 
accordance with their applicable circumstances for different cognitive situations, such as the 
deterministic inputs, noisy “and” gate model (DINA; Junker & Sijtsma, 2001); the deterministic 
inputs, noisy “or” gate model (DINO; Templin & Henson, 2006); and the generalized 
deterministic inputs, noisy “and” gate model (GDINA; de la Torre, 2011). To ensure that valid 
diagnostic information is obtained from the model analytics, the model–data fit must be 
considered. Researchers can directly adopt the saturation model for data analysis and routinely 
have a high degree of fit; however, the complexity of the saturation model requires larger 
samples to produce accurate estimates (de la Torre & Lee, 2013). Practitioners are often unable 
to obtain sufficient samples; therefore, the application of CDMs to small sample sizes is critical. 
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For example, the average class size has reduced to 23 students in Taiwan because of the low 
birth rate. 

In addition to selecting the correct CDM, the correct Q-matrix is equally critical in CDM 
analysis. Studies have confirmed that a misspecified Q-matrix negatively affects the recovery 
of parameters and the classification of subjects (Kunina- Habenicht, Rupp, & Wilhelm, 2012; 
Rupp & Templin, 2008). Kunina-Habenicht (2012) indicated that with 30% misspecification of 
the Q-matrix at a sample size of 1000, the accurate classification rate was only 64%, even if the 
number was increased to 10,000 (10 times) under the same conditions. 

Model fit indices were developed to select the appropriate model for data analysis. The indices 
are mainly divided into two types: absolute and relative fit indices. Common absolute fit indices 
are pair proportion correct, pair transformed correlation, and pair log-odds. According to Chen 
(2013), the pair proportion correct rate is a single-variable absolute fit index, and the 
performance of this indicator is poor; thus, it is not employed in this study. This study explored 
the performance of pair transformed correlation (hereinafter referred to as r) and pair log-odds 
indices (l) to correctly reject wrong models with the modified Q-matrix. 

Relative fit indices are another type of model fit indices. More than two models can fit the same 
data set. To select the most appropriate models, relative model fit indices are required. Relative 
model fit indices are used for model comparisons and maximum log-likelihood (for example, 
−2 log-likelihood or −2LL). The two most commonly used are the Akaike information criterion 
(AIC; Akaike, 1974) and the Bayesian information criterion (BIC; Schwarzer, 1976). This study 
explored the performance of AIC and BIC with the modified Q-matrix.  

2. BACKGROUND 

Studies have noted that Q-matrix misspecification affects model parameters (Rupp & Templin, 
2008; de la Torre, 2008) and the accuracy of examinees’ classifications (Chiu & Douglas, 
2013). If a q-vector of an item was misspecified, the estimated item parameters and the 
examinees’ classifications were significantly biased.  

For this reason, researchers have focused on the development of Q-matrix correction methods. 
de la Torre (2008) developed the sequential δ method for the DINA model to perform item-by-
attribute Q-matrix modification. According to de la Torre, if an item must be included in a 
particular attribute, the difference in the correct answering probability of the group with and 
without the particular attribute is maximized (de la Torre indicated the difference value as δ). 
Therefore, under the item level, we first assume the q-vector of the item as a zero vector and 
compare the δ values of each attribute (or a combination of attributes) to include the attribute 
with the maximum δ value into the q-vector. 

de la Torre simulated 5000 examinees with uniform attribute distribution to explore the 
performance of the modification method (δ method) with different types of Q-matrix 
misspecification: overspecified (an attribute that is originally not measured but included in the 
q-vector), underspecified (an attribute that is originally measured but excluded in the q-vector), 
and mixed misspecification (both overspecified and underspecified in the same q-vector). The 
results showed that an appropriate cutting value would lead to an excellent modified Q-matrix 
(same as the original Q-matrix) regardless of the Q-matrix misspecification. However, there are 
numerous restrictions to this application; the method is only for the DINA model, and the fitting 
model must be known prior. 

Chiu (2013) developed the minimum residual sum of squares (RSS) method to improve the 
limits of the δ method (the fitting model must be known prior). The RSS method is based on 
nonparametric classification (Chiu & Douglas, 2013) to obtain examinees’ attribute patterns 
and the theoretical response (ηij) of examinees’ attribute patterns and the Q-matrix. The squared 
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value of the difference between the actual and theoretical responses is calculated with equation 
(1). Chiu argues that if the q-vector is correctly defined, theoretical responses are similar to 
actual responses, and the RSS value is minimized. The next step is to calculate the RSS value 
of each q-vector in the item level and choose the q-vector with the minimum RSS value as the 
new q-vector of the corresponding item. 

 2

1

N

i ij ij
i

RSS X 


        (1) 

There were two data-generating models (DINA and noisy input, deterministic “and” gate [NIDA]), two 
attribute numbers (K = 3 and 5), three attribute pattern distributions (uniform, multivariate normal 
threshold, and higher order), three sample sizes (100, 500, and 1000), four item qualities (s = g = 0.2, 
0.3, 0.4, and 0.5), and two Q-matrix misspecification rates (random misspecification 10% or 20%). The 
criteria were to compare the recovery rates of the true and corrected Q-matrices. A higher recovery rate 
indicated the superior correction performance of the RSS method. The results showed that 
despite the small sample size, in the case of   or 0.3, the recovery rate was at least 88% if the 
Q-matrix misspecification was 10% and at least 75% if the Q-matrix misspecification was 20%.  

Unlike the previous δ index which is only applied for the DINA model and required assuming 
about the fitting model, de la Torre and Chiu (2016) developed another more generalized Q-matrix 
modification method; they called this index ζ2 (de la Torre & Chiu, 2016). The new modification method
－ζ2, used the GDINA model to exceed the limits of the δ method, which was only applied with the 
DINA model. However, the GDINA model is a complex model because of the estimation of many 
parameters. In other words, a large sample size is required to obtain accurate estimates. The sample 
size in the study of de la Torre & Chiu (2016) was 2000; the performance of smaller samples 
has rarely been explored. Therefore, this study mainly focuses on small sample sizes and 
explores the performance of ζ2 indicators. 

As showed in Chiu’s (2013) study, the performance of the RSS method with the data generated 
from the DINA and NIDA models was excellent with small sample sizes. Nevertheless, the 
performance of the RSS method under the GDINA model was rarely discussed in literatures. In this 
case, we compare the performance of the RSS method and the ζ2 method under the GDINA model. 

3. METHOD 

3.1. Research Purposes and Questions 

The purposes of the study are as follows: 

1. To explore the performance of the RSS method and the ζ2 method with the setting sample 
sizes and Q-matrix misspecifications. 

2. To explore the performance of model fit indices (AIC, BIC, r, l) with small sample sizes with 
the original and modified Q-matrix. 

3. To compare the performance of the model fit indices with the original and modified Q-matrix. 

3.2. Study I: Simulation design 

This research was divided into two studies. In study I, both Q-matrix modification methods 
were compared, and the superior one would be used in the second study. Figure 1 presents the 
flow chart of study I. 

Data generations and analyses were conducted using R software (R Core Team, 2017). The R 
package GDINA (Ma & de la Torre, 2018) was used to generate data sets. The item parameters 
were setting as s=g=0.1 for all items. We assumed the examinees’ attribute patterns were 
uniform. The number of attributes varied with the coverage of test; thus, we assumed that the 
smaller domain contained fewer attributes (K = 3), and the larger domain contained more 
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attributes (K = 5). Test length was set to 30 items. Meanwhile, Taiwan currently averages 23 
students per class and 3.3 classes per grade in elementary schools. Therefore, we set the sample 
sizes to 50 (approximately two classes), 75 (three classes), 100, and 200. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Experimental flow chart for study I. 

A total of six Q-matrix misspecification situations (three misspecification types × two 
misspecification rates) were studied; the three misspecification types were overspecified 
(overQ), underspecified (underQ), and mix-specified (mixQ) Q-matrices. The 
misspecifications were randomly altered. OverQ meant that the item did not require the 
attribute, but the coding of the attribute was changed to 1 from 0 to become a requiring attribute; 
underQ meant that the item required the attribute, but the coding of the attribute was altered to 
0; mixQ meant that in the same item, one required attribute was coded as 0 and another one not 

Data generation model：
GDINA 

The dimensions of (K)： 

K=3、K=5 

Test length (J)： 
J=30 

Misspecified Q-matrix： 

True Q、(over-Q、under-Q、mixQ)  (5%、10%) 

Sample sizes (N)： 

N=50、75、100、200 

RSS method ζ2 method 

Evaluation criteria: 

Compare the Q-matrix recovery rate of both methods, and choose the method 
with the highest recovery rate as the Q-matrix modification method for study II.  
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required attribute was coded as 1. Misspecification rates were 5% and 10%. For example, 
5%overQ meant 5% erroneous coding elements overspecified in the Q-matrix 

In this study, we compared the Q-matrix recovery rates of both modification methods (RSS 
method and ζ2 method) with the six Q-matrix misspecifications and eight simulation conditions. 
We simulated each of the 48 combinations in this study and replicated each conditions 30 times. 
The results were displayed with the mean Q-matrix recovery rate. 

Q-matrix recovery rates = 1 − ቤ
∑ ∑ ୯ౠౡ

౥౨౥ౝ౟౤౗ౢ
ି୯ౠౡ

ౙ౥౨౨౛ౙ౪౛ౚే
ౡసభ

ె
ౠసభ

୎×୏
ቤ             (2) 

J: test length 

K: numbers of attributes 

q୨୩
୭୰୭୥୧୬ୟ୪

 : original coding in item j and attribute k 

q୨୩
ୡ୭୰୰ୣୡ୲ୣୢ : corrected coding in item j and attribute k 

Many researches have shown that a misspecified Q-matrix affects the estimation of item 
parameters (de la Torre, 2008; Rupp & Templin, 2008; Kuninan-Habenicht et al., 2012). To 
prevent confounding effects on the study results caused by the structure of the Q-matrix, we 
made the Q-matrix as balanced as possible. The balanced design maintained the number of 
attributes measured by an item (mean item complexity) and the number of items measuring 
each attribute (attribute information) approximately the same. 

Table 1 shows the correct Q-matrix of K = 5 (hereinafter referred to as True Q, TQ). The 
attribute information is the same (each attribute is measured by 12 items). There are 10 single-
attribute items, 10 double-attribute items, and 10 triple-attribute items. Table 2 is the TQ of K 
= 3. 

Table 1. True Q-matrix for K = 5 

 α1 α2 α3 α4 α5   α1 α2 α3 α4 α5 

Item01 1 0 0 0 0  Item16 0 1 0 1 0 
Item02 0 1 0 0 0  Item17 0 1 0 0 1 
Item03 0 0 1 0 0  Item18 0 0 1 1 0 
Item04 0 0 0 1 0  Item19 0 0 1 0 1 
Item05 0 0 0 0 1  Item20 0 0 0 1 1 
Item06 1 0 0 0 0  Item21 1 1 1 0 0 
Item07 0 1 0 0 0  Item22 1 1 0 1 0 
Item08 0 0 1 0 0  Item23 1 1 0 0 1 
Item09 0 0 0 1 0  Item24 1 0 1 1 0 
Item10 0 0 0 0 1  Item25 1 0 1 0 1 
Item11 1 1 0 0 0  Item26 1 0 0 1 1 
Item12 1 0 1 0 0  Item27 0 1 1 1 0 
Item13 1 0 0 1 0  Item28 0 1 1 0 1 
Item14 1 0 0 0 1  Item29 0 1 0 1 1 
Item15 0 1 1 0 0  Item30 0 0 1 1 1 
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Table 2. True Q-matrix for K = 3 

 α1 α2 α3   α1 α2 α3 

Item01 1 0 0  Item16 0 1 0 

Item02 0 1 0  Item17 0 0 1 

Item03 0 0 1  Item18 1 1 0 

Item04 1 1 0  Item19 1 0 1 

Item05 1 0 1  Item20 0 1 1 

Item06 0 1 1  Item21 1 1 1 

Item07 1 1 1  Item22 1 0 0 

Item08 1 0 0  Item23 0 1 0 

Item09 0 1 0  Item24 0 0 1 

Item10 0 0 1  Item25 1 1 0 

Item11 1 1 0  Item26 1 0 1 

Item12 1 0 1  Item27 0 1 1 

Item13 0 1 1  Item28 1 1 1 

Item14 1 1 1  Item29 1 1 1 

Item15 1 0 0  Item30 1 1 1 

3.2.1. Q-matrix misspecification design 

In the case of 5%overQ, there were 150 elements with 5% misspecifications. The researcher 
randomly selected 7 elements that originally coded as 0 and altered them to 1. In the case of 
5%underQ, 8 elements that originally coded as 1 were altered to 0. In the case of 5%mixQ, 7 
items were selected; the elements that originally coded as 0 were altered to 1, and the elements 
that originally coded as 1 were altered to 0 under the same item. In the case of K = 3, 4 elements 
were altered in 5%overQ, 5 elements were altered in 5%underQ, and 4 items were altered in 
5%mixQ. 

3.3. Results of Study I: Performance of Q-matrix Modification Methods 

The performance of the ζ2 index under the condition of K = 3 is shown in Table 3. The lowest 
recovery rate (0.815) was shown in N = 50; this indicates 18.5% type I error. The highest 
recovery rate (0.956) was shown in N = 200; this indicates 4.4% type I error. The lowest 
recovery rate under the condition of K = 5 (0.516) was shown in N = 50; this indicates 48.4% 
type I error. The highest recovery rate (0.620) was shown in N = 200; this indicates 38% type 
I error. De la Torre and Chiu (2016) used the ζ2 index to modify the data generated from the 
GDINA model with fixed sample size (N = 2000), test length (J = 30), attribute numbers (K = 
5), and random Q-matrix misspecification rates (5%). The result showed that type I error was 
2%, and the Q-matrix recovery rate was 0.971. By comparison, the results of the current study 
showed much higher type I error and a much lower Q-matrix recovery rate. The effect of sample 
size on the performance of the ζ2 method was notable. The results of the current study were 
quite different from those of de la Torre and Chiu (2016) under the same K = 5 simulation 
conditions. This may be caused by the sample size. The ζ2 method requires item parameters and 
examinees’ attribute patterns for Q-matrix modification. The largest sample size in this study 
(N = 200) was only one tenth of that in the study of de la Torre and Chiu; therefore, the estimated 
parameters were less accurate and led to poor modification results. This can be partially 
supported by the simulation result of K = 3. Because of the decreased number of attributes (K 
= 3), the estimated parameters were decreased, and the accuracy of parameter estimation was 
improved. Therefore, the modification performance of the ζ2 index method was improved. 
Despite the sample size of only 200, type I error was reduced to below 5%, and the Q-matrix 
recovery rate was increased to 0.95. 
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The results of the RSS method in the case of K = 3 are shown in Table 4. The recovery rate of 
RSS for TQ was approximately 0.77, and the type I error was approximately 23%. Under K = 
5, the lowest recovery rate (0.812) was shown in N = 50; this indicates that the type I error was 
18.8%. The highest recovery rate (0.835) was shown in N = 200; this indicates that the type I 
error was 16.5%. The ζ2 method exhibited lower type I error in K = 3; the RSS method exhibited 
lower type I error in K = 5. 
For K = 3, 5% Q-matrix misspecification, and N = 200, the recovery rate of the ζ2 method 
exceeded 0.95; that is, the misspecification rates of the modified Q-matrix were lower than 5%. 
In the case of 10% Q-matrix misspecification and N = 100, the recovery rate of the ζ2 method 
exceeded 0.9. According to the results of K = 3 and N = 200, the misspecification rate of the 
modified Q-matrix was lower than that of the original Q-matrix. This indicates that the ζ2 
method is an effective modification method. However, in the case of K = 5, the performance of 
the ζ2 method was not acceptable. For K = 5, the Q-matrix recovery rates were all lower than 
0.7; that is, the misspecification rate of the modified Q-matrix was higher than the settings. 
Therefore, the ζ2 method is not suitable for K = 5 and N < 200. 

Table 3. Q-Matrix Recovery Rates of the ζ2 Method 

K=3 TQ overQ underQ mixQ 

N  5% 10% 5% 10% 5% 10% 

50 0.815 0.817 0.813 0.816 0.820 0.810 0.801 

75 0.865 0.864 0.860 0.864 0.866 0.865 0.852 

100 0.902 0.899 0.900 0.902 0.900 0.897 0.901 

200 0.956 0.953 0.952 0.954 0.952 0.954 0.952 

K=5 TQ overQ underQ mixQ 

N  5% 10% 5% 10% 5% 10% 

50 0.516 0.511 0.504 0.531 0.546 0.525 0.538 

75 0.512 0.499 0.498 0.522 0.549 0.522 0.542 

100 0.516 0.510 0.506 0.536 0.550 0.541 0.550 

200 0.620 0.608 0.596 0.638 0.653 0.631 0.637 
Note: N = sample size; TQ = True Q-matrix, the Q-matrix used for data generation; overQ = overspecified Q-
matrix; underQ = underspecified Q-matrix; mixQ = mix-misspecified Q-matrix; 5% = 5% of entries of the Q-
matrix were changed; 10%= 10% of entries of the Q-matrix were changed. 

Table 4. Q-Matrix Recovery Rates of the RSS Method 

K=3 TQ overQ underQ mixQ 

N  5% 10% 5% 10% 5% 10% 

50 0.778 0.776 0.776 0.777 0.778 0.778 0.769 

75 0.773 0.771 0.769 0.772 0.774 0.774 0.773 

100 0.773 0.773 0.773 0.773 0.774 0.774 0.771 

200 0.776 0.777 0.775 0.774 0.774 0.776 0.774 

K=5 TQ overQ underQ mixQ 

N  5% 10% 5% 10% 5% 10% 

50 0.812 0.805 0.788 0.816 0.809 0.797 0.757 

75 0.822 0.819 0.793 0.822 0.824 0.812 0.777 

100 0.829 0.826 0.821 0.823 0.825 0.816 0.782 

200 0.835 0.836 0.833 0.833 0.831 0.833 0.816 
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3.3.2. The effect of sample size 

In the case of K = 3, the Q-matrix recovery rates of the ζ2 method increased with the sample 
size; by contrast, the recovery rates of the RSS method were fixed at approximately 0.77, and 
no increasing trend was observed. Additionally, under the condition of K = 3, the Q-matrix 
recovery rates of the ζ2 method were higher than those of the RSS method; and the difference 
in recovery rates between the ζ2 and RSS methods increased with sample size. 

However, under the condition of K = 5, the performance of the methods was considerably 
different. The Q-matrix recovery rates of the RSS method were significantly higher than those 
of the ζ2 method. The difference in both methods was the largest at N = 50 and the smallest at 
N = 200. In other words, with larger sample sizes, the recovery rates became more similar. 

3.3.3. The effect of Q-matrix misspecification rates 

Under the condition of K = 3, the Q-matrix recovery rates of both methods did not reduce with 
the increase in misspecification rates. For example, the recovery rate of the ζ2 method was 0.817 
at 5%overQ and 0.813 at 10%overQ. The recovery rates were almost the same even though the 
misspecification rate increased from 5% to 10%. Furthermore, the recovery rate of the RSS 
method was 0.776 at 5%overQ and 10%overQ with no difference between the misspecification 
rates. In the case of K = 5, the Q-matrix recovery rates of the ζ2 and RSS methods decreased 
slightly due to the increase in misspecification rates, but it is was not significant 

3.3.4. The effect of Q-matrix misspecification types 

The difference in the recovery rates was not distinct among the three Q-matrix misspecification 
types for the ζ2 and RSS methods. For example, in the case of K = 3, N = 200, and 10% 
misspecification, the recovery rates of the ζ2 method were 0.952 for overQ, underQ, and mixQ; 
meanwhile, the recovery rates of the RSS method were 0.775, 0.774, and 0.774, respectively. 
The results imply that the Q-matrix misspecification type has a minor effect on both methods. 

For K = 3, the ζ2 method exhibited superior modification performance; by contrast, the RSS 
method exhibited superior modification performance for K = 5. Given these results, the ζ2 
method was applied to Q-matrix modification for K = 3, and the RSS method was applied for 
K = 5 in study II. 

3.4. Study II: Simulation design 

The simulation data are the same as those used for study I. Study II compared the performance 
of model fit indices with the true Q-matrix, misspecification Q-matrix, and the corresponding 
modified Q-matrix. Figure 2 presents the flow chart of study II. 

3.5. Results of Study II 

For the readability, the results of K=5 were shown in the appendix page. 

3.5.1. The performance of relative indices with original Q-matrix 

As shown in Table 5, under the condition of K = 3, AIC always correctly selected the GDINA 
(the correct data-generating model) as the fitting model; the performance of BIC in correct 
model selection varied with the misspecification type. In the cases of overQ and underQ, the 
selection rate of GDINA was much higher than that of the other two models in BIC, except for 
underQ at N = 50; in the case of 10%mixQ, the selection rate of GDINA was much higher than 
that of the other two models at N = 100 and N = 200. The results implied that in the case of K 
= 3, BIC was considerably affected by Q-matrix misspecification types. 

Under the condition of K = 5, the selection rate of GDINA in AIC was much higher than that 
of the other two models for all simulation conditions. Different from that in the K = 3 scenario, 
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the performance of model selection in BIC was affected by sample size for K = 5. Only for N 
= 200 was the selection rate of GDINA in BIC much higher than that of the other two models. 

The results showed that the correct model selection rate of AIC was high under various 
conditions. BIC was affected by the Q-matrix misspecification type under the condition of K = 
3 and by sample size under the condition of K = 5. These results were similar to the results of 
Hu et al. (2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Experimental flow chart for study II. 
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Data generation model：
GDINA 

The dimensions of (K)： 

K=3、K=5 

Test length (J)： 
J=30 

Sample size (N)： 

N=50、75、100、200 

Evaluation criteria: 
AIC、BIC：Compare the selection rates of the correct model  

r、l：Compare the rejection rates of incorrect models 

Model fit index： 
AIC、BIC、r、l 

Analytic models: 
DINA、DINO、GDINA 
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Table 5. Selection Rates of the Relative Indices Under Various Simulation Conditions. 

K=3  TQ  overQ  underQ  mixQ 

       5%  10%  5%  10%  5%  10% 

N M  AIC BIC  AIC BIC  AIC BIC  AIC BIC  AIC BIC  AIC BIC  AIC BIC 

50 

DINA  0 0.167  0 0.033  0 0  0 0.267  0 0.267  0 0.333  0 0.333 

DINO  0 0.333  0 0.100  0 0.033  0 0.300  0 0.267  0 0.400  0 0.600 

GDINA  1 0.500  1 0.867  1 0.967  1 0.433  1 0.467  1 0.267  1 0.067 

75 

DINA  0 0  0 0  0 0  0 0.033  0 0.067  0 0.067  0 0.167 

DINO  0 0.033  0 0  0 0  0 0.133  0 0.067  0 0.167  0 0.467 

GDINA  1 0.967  1 1  1 1  1 0.833  1 0.867  1 0.767  1 0.367 

100 

DINA  0 0  0 0  0 0  0 0  0 0  0 0   0 0.033 

DINO  0 0  0 0  0 0  0 0  0 0  0 0.067  0 0.200 

GDINA  1 1  1 1  1 1  1 1  1 1  1 0.933  1 0.767 

200 

DINA  0 0  0 0  0 0  0 0  0 0  0 0  0 0 

DINO  0 0  0 0  0 0  0 0  0 0  0 0  0 0 

GDINA  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

Note: M = analytic model 

3.5.2. The performance of relative indices with the modified Q-matrix 
As shown in Table 6, under the condition of K = 3, AIC still correctly selected the GDINA 
model as the fitting model. The correct model selection rates of BIC with the modified Q-matrix 
were higher than those with the original Q-matrix. For example, in the case of the original 
underQ, a perfect correct selection rate of the GDINA in BIC was observed at N = 100 and N 
= 200 but observed at N = 75, 100, and 200 in the corresponding modified underQ. Under the 
situation of K = 5, AIC showed better correct selection rates at sample sizes equal to or greater 
than 75; while BIC showed better correct selection rates at sample sizes equal to 200. 

Table 6. Selection Rates for Relative Indices with the Modified Q-Matrix 

K=3, ZETA  overQ  underQ  mixQ 

   5%  10%  5%  10%  5%  10% 

N M  AIC BIC  AIC BIC  AIC BIC  AIC BIC  AIC BIC  AIC BIC 

50 

DINA  0 0.133  0 0.133  0 0.167  0 0.133  0 0.200  0 0.200 

DINO  0 0.067  0 0.067  0 0.067  0 0.067  0 0.067  0 0.067 

GDINA  1 0.800  1 0.800  1 0.767  1 0.800  1 0.733  1 0.733 

75 

DINA  0 0  0 0  0 0  0 0  0 0  0 0 

DINO  0 0  0 0  0 0  0 0  0 0  0 0 

GDINA  1 1  1 1  1 1  1 1  1 1  1 1 

100 

DINA  0 0  0 0  0 0  0 0  0 0  0 0 

DINO  0 0  0 0  0 0  0 0  0 0  0 0 

GDINA  1 1  1 1  1 1  1 1  1 1  1 1 

200 

DINA  0 0  0 0  0 0  0 0  0 0  0 0 

DINO  0 0  0 0  0 0  0 0  0 0  0 0 

GDINA  1 1  1 1  1 1  1 1  1 1  1 1 

Note: M = analytic model 
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3.5.3. The performance of absolute indices with the original Q-matrix 

According to Table 7, under the condition of K = 3, the rejection rates of three models (DINA, 
DINO, and GDINA) for mixQ were all 1 in both absolute model fit indices (r, l); the rejection 
rates of the three models increased with sample sizes in both absolute model fit indices under 
the situation of underQ. In the cases of TQ and overQ, the rejection rates of the DINA and 
DINO models increased with sample size, but the GDINA model decreased with sample size. 
These results implied that r and l tended to reject correct models for underQ and mixQ but 
tended to fail to reject correct models in the cases of TQ and overQ. These results were 
consistent with those of Chen et al., (2013) and Hu et al., (2015). Overall, when applying r and 
l, they accepted the correct model under the conditions of TQ and overQ. The results of K = 5 
were roughly similar to that of K = 3. 

Table 7. Rejection Rates of the Absolute Indices Under Various Simulation Conditions 

K=3  TQ  overQ  underQ  mixQ 

      5%  10%  5%  10%  5%  10% 

N M  r l  r l  r l  r l  r l  r l  r l 

50 

DINA  0.900 0.900  1 1  1 1  0.867 0.933  0.967 1  1 1  1 1 

DINO  0.800 0.900  1 1  1 1  0.800 0.900  1 1  1 1  1 1 

GDINA  0.067 0  0.067 0.033  0.067 0  0.533 0.567  0.867 1  1 1  1 1 

75 

DINA  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  0 0.033  0 0.033  0 0.033  0.667 0.667  1 1  1 1  1 1 

100 

DINA  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  0 0  0 0  0 0  0.767 0.833  1 1  1 1  1 1 

200 

DINA  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  0 0  0 0  0 0  0.967 0.967  1 1  1 1  1 1 

 

3.5.4. The performance of absolute indices with the modified Q-matrix 

As shown in Table 8, under the condition of K = 3, r and l tended to fail to reject the GDINA 
(rejection rates were less than 0.1), and the rejection rates of the DINA and the DINO were all 
1. These results showed that the rejection rates of the correct model could be effectively reduced 
after the Q-matrix was modified. However, there was no such finding for K = 5. It meant that 
the rejection rates of the correct model weren’t affected by the modified Q-matrix as K = 5. 
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Table 8. Rejection Rates for Absolute Indices with the Modified Q-Matrix 

K=3, ZETA  overQ  underQ  mixQ 

 
  5%  10%  5%  10%  5%  10% 

N 
M  r l  r l  r l  r l  r l  r l 

50 
DINA  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  0.033  0  0.033  0  0.067  0  0.067  0  0.033  0  0.067  0 

75 
DINA  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  0 0  0 0  0.033  0.033   0.033  0.033   0 0  0 0 

100 
DINA  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  0.033  0.033   0.033  0.033   0.033  0.033   0.033  0.033   0.033  0.033   0.033  0.033  

200 
DINA  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  0.033  0.033   0.033  0.033   0.033  0.033   0.033  0.033   0.033  0.033   0.033  0.033  

 

4. DISCUSSION  

Before applying CDM results, one must ensure the CDM fits the data. Enhancing the fitness of 
the data and model strengthens the validity and inferences of the results. Therefore, selecting 
an appropriate model–fit index is crucial. The decreasing birth rate in Taiwan causes the number 
of students to decrease each year; the teaching and learning style are demanding to provide 
more individualized information. Conventional single scores have been inappropriate to help 
teachers, parents, and students to understand learning results. CDMs can exactly meet the needs 
of the current education and give individual students feedback on learning strengths and 
weaknesses. Previous studies have shown that misspecified Q-matrices and model selection 
affect the performance and applicability of CDMs, but no study has designed to explore whether 
the effect of CDMs applications can be improved as the Q-matrix has been modified in advance. 
The current study not only explore the effect of CDMs applications with the modified Q-matrix, 
but also explore the effect of CDMs applications with the small sample sizes to meet the 
education field needs. 

The ζ2 index and the RSS methods of Q-matrix modification were explored in this study. 
According to the modification results, in the case of K = 3, the ζ2 mthod can effectively correct 
the misspecification of the Q-matrix. However, in the case of K = 5, the performance of both 
methods was not as good as expected. We also found that the performance RSS method was 
affected by the data generation models. In this study, for K = 3, the Q-matrix recovery rates of 
the RSS method were in the interval of 0.771 to 0.778 with the GDINA model generating data; 
while the Q-matrix recovery rates were more than 0.9 (as high as 1.0) in the case of K = 3 with 
the DINA model generating data. Even though under the same conditions (10% Q-matrix 
misspecification rate, K = 3 or K = 5), the Q-matrix recovery rate of this study underperformed 
Chiu’s. It implied that the RSS method might not be suitable for the GDINA-generated data. 

The relative index, AIC, showed excellent performance with small samples; therefore, AIC was 
an appropriate model fit index for small samples. Conversely, BIC was sensitive to Q-matrix 
misspecification type and sample size; BIC was only suitable for overQ and N ≥ 200. The 
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absolute indices of the study were sensitive to Q-matrix misspecification type and only 
displayed excellent performance in the cases of TQ and overQ. 

The results showed that in the case of K = 3, all relative and absolute model fit indices improved 
model selection with the modified Q-matrix. This implied that Q-matrix modification could 
improve the performance of model fit indices as few attributes or small domain measured. 
However, in the case of K = 5, both modification methods exhibited poor performance. It might 
be resulted from the complexity of more attribute or the generating GDINA model since the 
recovery rate of the modified Q-matrix in the case of K = 3 performed better. Meanwhile, we 
also found similar pattern on the performance of the model fit indices by using the modified Q-
matrix. Therefore, these limitations should be taken into consideration in future studies to 
expand the application of CDMs in practice. 
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6. APPENDIX 

Table A1. Selection Rates of the Relative Indices Under Various Simulation Conditions 

K=5  TQ  overQ  underQ  mixQ 

 
     5%  10%  5%  10%  5%  10% 

N 
M  AIC BIC  AIC BIC  AIC BIC  AIC BIC  AIC BIC  AIC BIC  AIC BIC 

50 
DINA  0 0.133  0 0.333  0 0.4  0 0.167  0 0.167  0 0.233  0 0.267 

DINO  0 0.867  0 0.667  0 0.6  0 0.833  0.067 0.833  0 0.767  0.067 0.733 

GDINA  1 0  1 0  1 0  1 0  0.933 0  1 0  0.933 0 

75 
DINA  0 0.033  0 0.133  0 0.3  0 0.167  0 0.067  0 0.2  0 0.167 

DINO  0 0.567  0 0.767  0 0.7  0 0.7  0.033 0.833  0 0.733  0 0.833 

GDINA  1 0.4  1 0.1  1 0  1 0.133  0.967 0.1  1 0.067  1 0 

100 
DINA  0 0  0 0.067  0 0.133  0 0  0 0.033  0 0.033  0 0.267 

DINO  0 0.2  0 0.4  0 0.667  0 0.333  0 0.567  0 0.6  0 0.733 

GDINA  1 0.8  1 0.533  1 0.2  1 0.667  1 0.4  1 0.367  1 0 

200 
DINA  0 0  0 0  0 0  0 0  0 0  0 0  0 0.067 

DINO  0 0  0 0  0 0  0 0  0 0.033  0 0  0 0.333 

GDINA  1 1  1 1  1 1  1 1  1 0.967  1 1  1 0.6 

Note: M = analytic model 

 

Table A2. Selection Rates for Relative Indices with the Modified Q-Matrix 

K=5, RSS  overQ  underQ  mixQ 

   5%  10%  5%  10%  5%  10% 

N M  AIC BIC  AIC BIC  AIC BIC  AIC BIC  AIC BIC  AIC BIC 

50 

DINA  0.600 0.933  0.600 0.967   0.433  0.967   0.633  0.933   0.600  0.967   0.567  1 

DINO  0.033 0.033  0.033 0.033   0 0.033   0.033  0.067   0 0  0 0 

GDINA  0.367 0.033  0.367 0  0.567  0  0.400 0.067  0.400 0.033  0.433  0 

75 

DINA  0.133  0.833   0.267  0.867   0.200  0.900   0.167  0.900   0.167 0.800   0.100  0.900  

DINO  0 0.033   0 0  0 0  0 0  0 0  0 0 

GDINA  0.867  0.133   0.733  0.133   0.800  0.100   0.833  0.100   0.833 0.200   0.900  0.100  

100 

DINA  0.100  0.767   0.133  0.733   0.133  0.800   0.167  0.800   0.100  0.800   0.133  0.700  

DINO  0 0  0 0  0 0  0 0  0 0  0 0 

GDINA  0.900  0.233   0.867  0.267   0.867  0.200   0.833  0.200   0.900  0.200   0.867  0.300  

200 

DINA  0.033  0.267   0.033  0.300   0.067  0.333   0 0.333   0.033  0.200   0.033  0.200  

DINO  0.033  0.033   0.033  0.033   0.033  0.033   0 0  0.033  0.033   0 0 

GDINA  1 0.767   1 0.733   0.967  0.700   1 0.667   1 0.833  0.967 0.800 
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Table A3. Rejection Rates of the Absolute Indices Under Various Simulation Conditions 

K=5  TQ  overQ  underQ  mixQ 

 
     5%  10%  5%  10%  5%  10% 

N 
M  r l  r l  r l  r l  r l  r l  r l 

50 
DINA  0.967 0.967  1 0.967  1 1  0.933 1  1 1  1 1  1 1 

DINO  0.800 0.900  0.967 1  1 1  0.867 0.967  0.967 1  1 1  1 1 

GDINA  0.033 0  0 0  0.033 0  0.667 0.800  0.967 1  1 1  1 1 

75 
DINA  0.967 1  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  0 0.033  0 0.033  0 0  0.967 0.933  1 1  1 1  1 1 

100 
DINA  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  0.967 1  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  0 0.033  0 0  0 0  0.933 0.967  0.967 0.967  1 1  1 1 

200 
DINA  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  0 0  0 0  0 0  1 1  1 1  1 1  1 1 

 

Table A4. Rejection Rates for Absolute Indices with the Modified Q-Matrix 

K=5, RSS  overQ  underQ  mixQ 

 
  5%  10%  5%  10%  5%  10% 

N 
M  r l  r l  r l  r l  r l  r l 

50 
DINA  0.467  0.600   0.467  0.633   0.333  0.467   0.400  0.600   0.500 0.600  0.700 0.767 

DINO  0.733  0.867   0.767  0.900   0.500  0.700   0.533  0.700   0.733 0.900  0.733 0.833 

GDINA  0.233  0.367   0.300  0.533   0.300  0.400   0.267  0.467   0.400 0.500  0.367 0.467 

75 
DINA  0.533  0.633   0.733  0.767   0.400  0.667   0.367  0.533   0.633 0.800  0.667 0.800 

DINO  0.733  0.800   0.833  0.933   0.600  0.700   0.600  0.767   0.800 0.800  0.833 0.900 

GDINA  0.433  0.500   0.600  0.633   0.367  0.500   0.333  0.500   0.467 0.600  0.567 0.733 

100 
DINA  0.733  0.833   0.867  0.900   0.767  0.900   0.733  0.833   0.700 0.867  0.833 0.900 

DINO  0.833  0.867   0.900  0.900   0.833  0.900   0.833  0.900   0.833 0.867  0.867 0.900 

GDINA  0.700  0.767   0.800  0.833   0.700  0.833   0.767  0.900   0.767 0.867  0.767 0.867 

200 

DINA  1 1  1 1  1 1  1 1  1 1  1 1 

DINO  1 1  1 1  1 1  1 1  1 1  1 1 

GDINA  1 1  1 1  1 1  1 1  1 1  1 1 

 


