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Abstract 

In this study we consider a third order linear differential equation with variable coefficients characterizing 

spherical curves according to Frenet frame in Euclidean 4-Space 𝐸4. This equation whose coefficients are 

related to special function, curvature and torsion, is satisfied by the position vector of any regular unit 

velocity spherical curve. These type equations are generally impossible to solve analytically and so, for 

approximate solution we present a numerical method based on Taylor polynomials and collocations points 

by using initial conditions. Our method reduces the solution of problem to the solution of a system of 

algebraic equations and the approximate solution is obtained in terms of Taylor polynomials. 

Keywords: Curves in Euclidean Space, Spherical curves; Taylor matrix method; Frenet frame; 

Linear differential equations; Matrix and collocation method. 

 

1. Introduction 

The concept of curve defined by Euler in the plane was 

moved by Fujiwara to the three-dimensional Euclidean 

space [1, 2]. Shortly after this work, the space curves of 

constant breadth was definited on the sphere [3].  Wong 

gave a global formulation of the condition that a general 

curve is lie on a sphere [4]. And this formula has taken 

place in books written on differential geometry as a 

necessary and sufficient condition for a curve to lie on a 

sphere. Reuleaux, in his work in the same years, showed 

kinematic and engineering applications of these curves 

[5]. The work by Gluck brought into the world of 

geometry the high-grade curvatures of the curves in 

Euclidean space [6]. The explicit solvability of the 

differential equation characterizing a spherical curve is 

shown and this solution is expressed in terms of the 

curvature radius and torsion of the curve [7]. Dannon 

worked on the integral characterization of curves [8].  

Sezer gave integral characterizations of a system of 

differential equations like Frenet obtained for curves of 

constant breadth and spherical curves and he used these 

characterizations to determine a criterion for the 

closeness (periodicity) of a space curve [9]. 

At the same time, in the studies up to now, systems of 

differential equations related to spherical curves have 

been transformed into nonlinear differential equations 

and integral equations, but exact solutions have not been 

reached [10, 11]. 

Since spherical curves are used to operate various 

mechanisms, the results of this work can be used in field 

studies such as mechanical engineering, com design and 

kinematics. In addition, the solutions obtained for these 

curves in this study will fill an important gap in the 

literature. 

2. Material and Methods 

In this work, we firstly developed a Taylor matrix 

collocation method using Taylor polynomials to find 

approximate solutions of third order, linear differential 

equations with variable coefficients. We then have 

obtained differential equations characterizing unitary-

speed spherical curves in 4-dimensional Euclidean space. 

We then reached approximate solutions of these 

equations using the Taylor matrix-collocation method 

developed by us.  

3. Preliminaries 

In this section, we give some basic concepts on 

differential geometry of space curves and spherical 

curves in Euclidean 3-space. A differentiable α function, 

defined as α: I ⊆ R → En for I = {t: a < t < b}, is called 

a curve defined by coordinate neighborhood (I, α) in En. 

The variable t ∈ I is called the parameter of the α curve. 

If the derivative dα(t) dt⁄  of this curve differs from zero 

everywhere, this curve is called a regular curve [12]. 

 

Theorem 3.1.  If α is a regular curve in En, then Frenet 

formulaes 

  

V1 
′ (s) = k1 (s)V2 (s) 

Vi 
′(s) = −ki−1(s)Vi−1 (s) + ki(s)Vi+1 (s), 1 < i < r  

Vr 
′ (s) = −kr−1 (s)Vr−1 (s) 
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where ki is the curvature function of the curve α, s ϵ I is 

arc length parameter of the curve α, respectively [12]. 

 

The velocity vector of a regular curve α(t) at t = t0 is the 

derivative dα(t) dt⁄  evaluated at t = t0 . The velocity 

vector field is the vector valued function dα(t) dt⁄  . The 

speed of α(t) at t = t0 is the lenght of the velocity vector 

at t = t0 , |α
′(t0)| [13].  

 

4. Obtaining Differential Equation characterizing 

Spherical Curves in Euclidean 4-Space  

  

In the simplest sense, the concept of spherical curve is 

defined as "the curve lying on a sphere" [14].  

 

Theorem 4.1. Let α be a frenet frame curve of class C4 

in E3 with τ ≠ 0 everywhere. Then α lies on a sphere if 

and only if the following equation holds. 

 

[τ−1(ϰ−1)′]′ + τϰ−1 = 0                                         (1) 

 

Using the differential equation(1), Dannon observed a 

system of differential equations like Frenet for the 

spherical curves of E3. Then  he proved the accuracy of 

observation by moving these curves to E4 [8].   

 

With this in mind, the differential equation characterizing 

spherical curves in E3 is obtained as follows. 

 

Thesis 4.2. Let α(s) be a unitary-speed Frenet curve that 

can be differentiated from class C5 in E4. And let  

ϰ(s), τ(s), μ(s) be the curvature functions of the curve 

α. In this case, there are h(s) and g(s) functions which 

can be differentiated from class C2, which provides the 

following equations. 

 

1) The α(s) curve lies on a sphere in E4 

2) For ϰ(s) ≠ 0  

ρ′ = τh  

h′ = −τρ + μg             
g′ = −μh   
 

where ρ = 1 ϰ(s)⁄  is defined as the radius of curvature 

of the curve [8].  

 

Proof 4.2. Suppose that the α (s) curve lies on a sphere 

of radius “a” around x0⃗⃗  ⃗ in E4. Let's take the Frenet vector 

fields for the α (s) curve in E4 as follows. 

 

T1
′(s) = ϰ(s)T2(s)  

T2
′(s) = −ϰ(s)T1(s) + τ(s)T3(s)   

T3
′(s) = −τ(s)T2(s) + μ(s)T4(s)  

T4
′(s) = −μ(s)T3(s).  

 

Match the x0⃗⃗  ⃗ point to the 0⃗  point. In this case it is obvious 

that a2 = 〈α(s), α(s)〉. To find the functions h(s) and 

g(s), let us use the repetitive differentiations of a2 =
〈α(s), α(s)〉. So we get the following equations. 

 

〈α(s), α′(s)〉 + 〈α′(s), α(s)〉 = 0 ⇒  〈α′(s), α(s)〉 = 0    
 〈T1(s), α(s)〉0                                                       (2)  

〈T1
′(s), α(s)〉 + 〈T1(s), α

′(s)〉 = 0 ⇒
  〈ϰ(s)T2(s), α(s)〉 = −1   
〈T2(s), α(s)〉 = −1 ϰ(s)⁄                                                (3)                                                                  

〈T2
′(s), α(s)〉 + 〈T2(s), α

′(s)〉 = −(1 ϰ(s)⁄ )′ = −ρ′(s)   
〈T3(s), α(s)〉 = −1 τ(s)ρ′(s)⁄                                      (4) 

〈T3
′(s), α(s)〉 + 〈T3(s), α

′(s)〉 = (−1 τ(s)ρ′(s)⁄ )′   
〈T4(s), α(s)〉 =
−1 μ(s)[ρ(s)τ(s) − (−1 τ(s)ρ′(s)⁄ )]⁄                (5) 

 

Then, there are functions hi = 〈−α⃗⃗ , Ti〉, i = 2, 3, 4 which 

can be differentiated from class C2as h′ = Hh. It is also 

clear that h1 = 0 . In contrast, if h′ = Hh is given by a 

system of equations like Frenet and d ds⁄ {α(s) −
∑ hiTi

4
i=2 } = 0, then α(s) = ∑ hiTi + x0⃗⃗  ⃗4

i=2  can be 

written. The equation of |α(s) − x0⃗⃗  ⃗|2 = |∑ hiTi
4
i=2 |2 = a 

(constant) can be clearly seen. Thus, the α(s) curve is 

located on the sphere with center x0⃗⃗  ⃗ and radius a. Thus 

the proof is complete. 

 

Therefore, we can come to the conclusion that the 

differential equation characterizing spherical curves in 

E4 can be obtained from this equation system like Frenet; 

 

ρ′ = τh  

h′ = −τρ + μg   (6)                                                                         

g′ = −μh   
 

we first obtain the following equation using the equation 

system (6) given above 

  

ρ2 + h2 + g2 = a2.                                               (7)   

 

We come to the conclusion that the α(s) curves 

determined by the solution set {ρ(s), h(s), g(s)} of 

equation system (6) are on the sphere (7) with radius a. 

Let us now find the solution set {ρ(s), h(s), g(s)} of this 

system of equations (6). By eliminating the functions h 

and g in this system of equations (6), we obtain the third 

order, variable coefficient, linear, homogeneous 

differential equation as follows. 

 

(1 τμ⁄ )ρ′′′ + [(1 τμ⁄ )′ + (1 τ⁄ )′ 1 μ⁄ ]ρ′′ +
{[(1 τ⁄ )′ 1 μ⁄ ]′ + τ μ⁄ + μ τ⁄ }ρ′+(τ μ⁄ )′ρ = 0     (8)       

 

5. Taylor Matrix Collocation Method 

 

In this section, to obtain the Taylor polynomial solution 

of the differential equation defined by 

∑Pk(s)

3

k=0

λ(k)(s) = F(s),                 0 ≤ s ≤ b        (9) 

 

about the point s = 0, under the initial conditions 

λ(0)  =  λ0 

λ′(0) =  λ1                                                                  (10) 

λ′′(0)  =  λ2 
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we develop the Taylor matrix method based on 

collocation points, which is given by Sezer [11]. Here λ0, 

λ1, λ3 and b appropriate constants. 

 

Firstly, let us assume that the desired solution λ(s) can 

be expanded to Taylor series about s = 0 in the form, for 

N ≥ 3   

λ(s) = λN(s) = ∑ an 

N

n=0

sn,           0 ≤ s ≤ b         (11) 

 

where  an  (n = 0,1, … , N) are the coefficients to be 

determined. 

 

Now, we can convert the truncated Taylor series solution 

λ(s)defined by (11) and its derivatives λ(k)(s), k =
0,1,2,3 to matrix forms; 

 

λ(s) = S(s)A,          

λ(k)(s) = S(k)(s)A,   k = 0,1,2,3,    
 

where 

 

S(s) = [ 1 s s2   …   sN ]1𝑥(𝑁+1) 

A = [a0 a1 a2 …   aN]t. 
 

Also, it is clear that the relation between the matrix S(s) 

and its derivative S′(s) is S′(s) = S(s)B; where 

 

B =

[
 
 
 
 
0 1 0 ⋯ 0
0 0 2 ⋯ 0
⋮
0
0

⋮
0
0

⋮
0
0

⋱
⋯
0

⋮
𝑁
0]
 
 
 
 

(𝑁+1)𝑋(𝑁+1)

 

 B0 = [

1 0 ⋯ 0
0 1 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
1

]

(𝑁+1)𝑋(𝑁+1)

 

 

By repeating this process, we get the matrix relation as 

follows: 

 

S′(s) = S(s)B  

 S′′(s) = S′(s)B = S(s)B2    

S′′′(s) = S′′(s)B = S(s)B3  

⋮ 
S(k)(s) = S(s)Bk,           k = 0,1,2,3                   (12) 

 

From the matrix relations (11) and (12), it follows that 

 

λ(k)(s) ≅ S(k)(s)A = S(s)BkA,   k = 0,1,2,3     (13) 

 

We now ready to construct the fundamental 

corresponding to equation (9). For this purpose, by 

substituting the matrix relation (13) into equation (9) and 

by using the collocation points defined by  

 

si =
b

N
i,          i = 0,1, … , N 

 

we get the system of the matrix equations 

 

{∑ Pk(si)S(si)B
k}A = F(si)                                

3

k=0

 

 

or briefly the fundamental matrix equation.   

 

{∑ PkSB
k}A = F                                                    (14)

3

k=0

 

 

Where 

 

Pk = [

Pk(s0) 0 ⋯ 0
0 Pk(s1) ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
Pk(sN)

]

(𝑁+1)𝑥(𝑁+1)

, 

 

S = [

S(s0)

S(s1)
⋮

S(sN)

] =

 
 
 
 
1 s0 s0

2

1 s1 s1
2

⋮
1

⋮
sN

⋮
sN

2

    

… s0
N

… s1
N

⋱
…

⋮
sN

N 
 
 
 

(𝑁+1)𝑥(𝑁+1)

, 

  

F = [

F(s0)

F(s1)
⋮

F(sN)

],   A = [

a0

a1

⋮
aN

] 

 

Hence the equation (14) can be written in the form 

 

WA = F   or  [W  ;   F]                                        (15) 

 

W = [wpq],   p, q = 0,1, … , N, 

 

where 

W = [wpq] = ∑PkSB
k 

3

k=0

 

 

and B0 unit matrix. On the other hand, we can obtain the 

following matrix forms for the initial conditions (10), by 

means of the relation (13); 

 

λ(0)  = λ0 ⇒ S(0)B0A =  λ0 

λ′(0) = λ1 ⇒ S(0)BA =  λ1 

λ′′(0) = λ2 ⇒ S(0)B2A =  λ2 
 

or briefly 

  

UiA = [λi] ⇒ [Ui; λi],          i = 0,1,2                   (16) 

 

where 

 

Ui = [ ui0  ui1  ⋯     uiN  ] = S(0)Bi,   i = 0,1,2. 
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Finally, to obtain the solution of the equation (9) with the 

conditions (10), by replacing the 3 row matrics (16) by 

the last 3 rows (or appropriate 3 rows) of the augmented 

matrix (15) we have the required augmented matrix 

  

[ W̃ ;   F̃]                                                              (17) 

 

or clearly 

 

[
 
 
 
 
 
 

w00 w01 …
w10 w11 …
⋮

wN−3,0

u00

u10

u20

⋮
wN−3,1

u01

u11

u21

⋱
⋯…
…
…

     

w0N ; F(s0)
w1N ; F(s1)

⋮
wN−3,N

u0N

u1N

u2N

⋮
;
;
;
;

⋮
F(sN−3)

λ0

λ1

λ2 ]
 
 
 
 
 
 

. 

 

If rank W̃= rank[ W̃ ;   F̃] = N + 1 then we can write A =

(W̃)−1F̃. Thus the matrix A (thereby the coefficients 

a0, a1, … , aN) is uniquely determined. Also the equation 

(9) with the initial conditions (10) has a unique solution. 

This solution is given by the truncated Taylor series (11). 

Thus we get the Taylor polynomial solution as 

 

λN(s) = ∑ ans
n

N

n=0

. 

6. The Solution of Differential Equation 

Characterizing Spherical Curves in E4 

 We can arrange the equation (8) characterizing spherical 

curves in E4 as fallows; 

 

P3(s)λ
′′′ + P2(s)λ

′′ + P1(s)λ
′ + P0(s)λ = 0      (18) 

 

and 

∑Pk(s)λ
(k)(s) = F(s)                                         (19)

3

k=0

 

 

so that 

 

P3(s) = 1 τμ⁄ , 

P2(s) = (1 τμ⁄ )′ + (1 τ⁄ )′ 1 μ⁄ ,  

P1(s) = [(1 τ⁄ )′ 1 μ⁄ ]′ + τ μ⁄ + μ τ⁄ ,   

P0(s) = (τ μ⁄ )′ and ρ = λ 

 

It is clear that the expression (19) is equivalent to the 

differential equation (18) for F(s)=0. Suppose that an 

approximate solution of this the equation (18) for 0 ≤
s ≤ 2π  under the conditions given. This solution has the 

form of the truncated Taylor series as fallows  

 

λ(s) = ∑ an 

N

n=0

sn .                                                     (20) 

 

Here we will take N=4 for simplicity. We show the 

expression (19) in the matrix form as follows; 

 

λ(s) = S(s)A 

 

where S(s)and A matrices are defined as 

 

 S(s) = [ 1 s s2     s3 s4 ]   
A = [a0 a1 a2    a3 a4]t  
 

On the other hand, the matrices B,  B2 and B3 alaong with 

the matrices the derivatives of λ(s)    are defined as 

follows:  

 

λ′(s) = S(s)BA    

λ′′(s) = S(s)B2A   

λ′′′(s) = S(s)B3A  
 

B =

[
 
 
 
 
 0 1 0     0 0
 0 0 2     0 0
 0 0 0     3 0
 0 0 0     0 4
 0 0 0     0 0 ]

 
 
 
 

, 

B2 =

[
 
 
 
 

 0 0 2     0 0
 0 0 0     6 0

   0 0 0     0 12
 0 0 0     0 0
 0 0 0     0 0 ]

 
 
 
 

,  

B3 =

[
 
 
 
 

 0 0 0     6 0
   0 0 0     0 24
 0 0 0     0 0
 0 0 0     0 0
 0 0 0     0 0 ]

 
 
 
 

 . 

 

If we put all these expressions in the equation (18), we 

get following equation. 

 

{P3(s)S(s)B
3 + P2(s)S(s)B

2 + P1(s)S(s)B +
P0(s)S(s)}A = F(s).                                          (21) 

 

Now, we use collocation points s = si , i = 0,1, … ,4, 

defined by  

s0 = 0, s1 = π 2⁄ , s2 = π, s3 = 3π 2⁄ , s4 = 2π  and  

k = 0,1,2,3  in the  equation (21) and we determine the 

fundamental matrix equation as 

 

{P3SB
3 + P2SB

2 + P1SB + P0S}A = F;                                           

 

Pk =

[
 
 
 
 
Pk(0)

0
0
0
0

0
Pk(π 2⁄ )

 
0
0
0

0
0

 
Pk(π)

0
0

0
0

 
0

Pk(3π 2⁄ )
0

 

0
0
0
0

Pk(2π)]
 
 
 
 

, 

 

S =

[
 
 
 
 1
1
1
1
1

  

0
(π 2⁄ )

 

(π)

(3π 2⁄ )
(2π)

  

0
(π 2⁄ )2

 

(π)2

(3 π 2⁄ )2

(2π)2

  

0
(π 2⁄ )3

 

(π)3

(3π 2⁄ )3

(2π)3

   

0
(π 2⁄ )4

(π)4

(3π 2⁄ )4

(2π)4 ]
 
 
 
 

, 
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F = [F(0)   F(π 2⁄ )   F(π)    F(3π 2⁄ ) )   F(2π)]T . 

 

If we get as  

 

P3SB
3 + P2SB

2 + P1SB + P0S = W,   
 

the equation (8) can be converted to 

  

WA = F →  [W  ;   F].                                        (22)   

 

We now consider the initial conditions defined by 

 

λ(0)  =  λ0 

λ′(0) =  λ1                                                         (23) 

λ′′(0) =  λ2. 
 

Then, using the procedure section 4, we obtain matrix 

forms of the conditions (23) as 

 

λ(0)  = S(0)A =  λ0 

λ′(0) = S(0)BA =  λ1                                     (24) 

λ′′(0) = S(0)B2A =  λ2. 

 

So, the  augmented matrix forms (24) of the conditions 

(23) become  fallows as; 

 

[U0; λ0 ] = [ 1 0 0     0    0  ;   λ0  ] 
[U1; λ1] = [ 0 1 0     0    0  ;   λ1  ] 
[U2; λ2] = [ 0 0 2     0    0  ;   λ2  ] 
 

or 

[U; λ  ] = [

 1 0 0     0    0  ;   λ0  

0 1 0     0    0  ;   λ1

 0 0 2     0    0   ;   λ2  

] . 

 

Here the following equality can be written, 

briefly, 

 

UA = λ   →  [ U   ;    λ ].                                          (25) 

 

Consequently, we get  W∗A = F∗from  (22) and (25): 

 

[ W∗ ;   F∗]

=  

[
 
 
 
 

 w00 w01 w02     w03    w04  ;   F(0)
      w10 w11 w12     w13    w14  ;   F(π 2⁄ )

 1     0     0          0           0   ;   λ0  

0     1     0           0           0   ;   λ1  

0     0     2           0           0   ;   λ2  ]
 
 
 
 

 

 

where, wij  (i = 0,1  j = 0,1, … ,4) are obtained as 

follows; 

 w00 = P0(0),w01 = P1(0), w02 = 2P2(0),        

 w03 = 6P3(0), w04 = 0, w10 = P0 (
π

2
), 

w11 =
π

2
P0 (

π

2
) + P1 (

π

2
) 

w12 = (
π

2
)

2

P0 (
π

2
) + πP1 (

π

2
) + 2P2 (

π

2
) 

w13 = (
π

2
)

3

P0 (
π

2
) + 3 (

π

2
)

2

P1 (
π

2
) + 3πP2 (

π

2
)

+ 6P3 (
π

2
) 

w14 = (
π

2
)

4

P0 (
π

2
) + 4 (

π

2
)

3

P1 (
π

2
) + 12 (

π

2
)

2

P2 (
π

2
)

+ 12πP3 (
π

2
)    

 

Thus the matrix of the unknown coefficients is obtained 

for F(0) = 0 and F(π 2⁄ ) = 0, A = W∗−1
F∗  

 

A =

[
 
 
 
 
 λ0  

λ1

λ2 2⁄
K
M ]

 
 
 
 

 

 

Here we calculate a3 =K and a4 =M as follows: 

K =
(w00w14−w10w04)p0  +(w01w14−w11w04) p1+(w02w14−w12w04)p2  2⁄

w13w04−w03w14
  

M =
(w10w03−w00w13)p0  +(w11w03−w01w13) p1+(w12w03−w02w13)p2 2⁄

w13w04−w03w14
  

 

If we put the unknown coefficients   an  in (20), we get 

the Taylor polynomial solution 

 

ρ(s) = λ(s) = λ0  + λ1s + λ2  s
2 + a3s

3 + a4s
4. 

 

This expression is the radius of curvature of the 

E4 spherical curve. Therefore, h(s) and g(s) functions are 

obtained through this function and its derivatives.  

 

As another way, by using the same conditions and the 

same procedure as the similar method, the function h(s) 

(or g(s)) is found. Then substitute ρ(s) and h(s) (or g(s)) 

in equation (7) to obtain g(s) (or h(s)) as follows: 

  

(λ0  + λ1s + λ2  s
2 + a3s

3 + a4s
4)2

+ (λ0  + λ1s + λ2  s
2 + m3s

3

+ m3s
4)2 + g2 = a2 

 

As a result, the set of solution {ρ(s), h(s), g(s)} of system 

of differential equations (6) like the Frenet characterizing 

E4 spherical curves is reached in terms of Taylor 

polynomials.  

 

On the other hand, the following equation is obtained by 

arranging the equation (18)  

 
[μ−1(τ−1ρ′)′ + τρμ−1]′ + τ−1ρ′μ = 0.            (26) 

 

If the curvature functions ϰ(s), τ(s), μ(s) of a unit-speed 

curve in E4 satisfy the differential equation (26), this 

curve lies on a sphere in E4. This is true in the opposite 

direction.  
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7. Conclusions and Applications 

We obtained the differential equation which 

characterizes spherical curves in E4 space using the 

system of equations (6) like the Frenet. By taking g = 0 

and μ = 0 in this system of equations and eliminating h 

and its derivatives, the curve equation is reduced to E3. 

In other words, if ρ and its derivatives are eliminated, the 

differential equation that characterizes spherical curves 

in E3 space is obtained, depending on the function h that 

determines the curve, as follows: 

1 τ(s)⁄ h′′ + (1 τ(s)⁄ )′h′ + τ(s)h = 0               (27) 

From this equation, the function h is found by Taylor 

matrix collocation method as follows. 

Example 7.1. The spherical indicator curves of the 

Frenet vector fields of a curve in space are spherical 

curves because they are formed on the sphere. 

 On the other hand, the curvature (ϰ1) and torsion (τ1) of 

the spherical indenter of the t(s) unit tangent vector in E3 

space provides the following equations.  

ϰ1 = √
ϰ2 + τ2

ϰ2
 

τ1 =
ϰτ′ − ϰ′τ

ϰ(ϰ2 + τ2)
 

Torsion is the second curvature of a curve [15]. For  

P2(s) = 1 τ1(s)⁄  

P1(s) = (1 τ1(s)⁄ )′ 

P0(s) = τ1(s) and h = λ, 

the following equation is obtained by using the 

differential equation (27) 

P2(s)λ
′′ + P1(s)λ

′ + P0(s)λ = 0                       (28) 

This is the differential equation of the spherical indicator 

curve of the t(s) unit tangent vector in E3 space.  

It is clear that for F(s)=0 the differential equation (28) is 

equal to the following expression 

∑Pk(s)λ
(k)(s) = F(s).                                        (29)

2

k=0

 

We suppose that the equation (29) has an approximate 

solution,  for 0 ≤ s ≤ 2π,  under the initial conditions  

λ(0)  =  λ0 

λ′(0) =  λ1  

This solution has the form of truncated Taylor series in 

the form  

λ(s) = ∑ am

N

m=0

sm.                                                 (30) 

Here we will take N=3 for simplicity. We show this 

expression in the matrix form as follows; 

λ(s) = S(s)A 

where S(s) and A matrices are defined as  

S(s) = [ 1 s s2   s3 ]  

A = [a0 a1 a2    a3 ]
T . 

On the other hand, B and  B2 matrices are defined as 

follows 

B = [

0 1 0
0 0 2
0
0

0
0

0
0

    

0
0
3
0

] , B2 = [

0 0 2
0 0 0
0
0

0
0

0
0

    

0
6
0
0

] 

for derivatives of  λ′(s) = S(s)BA and λ′′(s) = S(s)B2A 

. If we put all these expressions in the equation (28), we 

get following equation 

{P2(s)S(s)B
2 + P1(s)S(s)B + P0(s)S(s)}A = F(s) (31)                                                       

Now, we use the collocation points s = si , i = 0,1,2,3,  

s0 = 0, s1 = 2π 3⁄ , s2 = 4π 3⁄ , s3 = 2π and then for 

k = 0, 1, 2 we obtain the fundamental matrix equation of 

(28): 

{P2SB
2 + P1SB + P0S}A = F ; 

Pk = [

Pk(0) 0 0

0 Pk(2π 3⁄ ) 0

0
0

0
0

Pk(4π 3⁄ )
0

    

0
0
0

Pk(2π)

] 

   S =

[
 
 
 
1 0 0
1 (2π 3⁄ ) (2π 3⁄ )2

1
1

(4π 3⁄ )
(2π)

(4π 3⁄ )2

(2π)2

    

0
(2π 3⁄ )3

(4π 3⁄ )3

(2π)3 ]
 
 
 

. 

Therefore,  briefly, this equation becomes 

WA = F →  [W  ;   F]                                         (32) 

so that 

W = P2SB
2 + P1SB + P0S, 

F = [F(0) F(2π 3⁄ )    F(4π 3⁄ ) )   F(2π)]T . 

 

On the other hand, the matrix equation of the conditions 

is obtained as follows: 

λ(0)  = S(0)A =  λ0 
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λ′(0) = S(0)BA = λ1 . 

So, the expression in the augmented matrix form of 

conditions cab be written as 

[U0; λ0 ] = [ 1 0 0     0    ;   λ0  ] 

[U1; λ1] = [ 0 1 0     0    ;   λ1  ] 
 

or 

[U; λ] = [
1 0 0     0 ;   λ0  

0 1 0     0 ;   λ1
].                   

Here the following equality can be written, 

briefly, 

 

UA = F   →  [ U   ;    F ].                                       (33) 

We get  W∗A = F∗, from (32) and (33), as  

[ W∗ ;   F∗] = [

w00 w01 w02

w10 w11 w12

1
0

0
1

0
0

    

w03    ;    0
w13   ;     0
  0     ;    λ0

  0     ;    λ1

] 

where, wij  (i = 0,1  j = 0,1, … ,3) are obtained as 

follows: for F(0) = 0 and F(2π 3⁄ ) = 0      

w00 = P0(0),   w01 = P1(0),  w02 = 2P2(0),  w03 = 0,  

w10 = P0(2π 3⁄ ),  

w11 = (2π 3⁄ )P0(2π 3⁄ ) + P1(2π 3⁄ ), 

w12 = (2π 3⁄ )2P0(2π 3⁄ ) + 2(2π 3⁄ )P1(2π 3⁄ )

+ 2 P2(2π 3⁄ ) 

w13 = (2π 3⁄ )3P0(2π 3⁄ ) + 3(2π 3⁄ )2P1(2π 3⁄ )

+ 6(2π 3⁄ )P2(2π 3⁄ ) 

Thus the matrix of unknown coefficients is obtained as  

A = W∗−1
F∗ ; 

where,  a0 = λ0  , a1 = λ1  ,   

a2 = (w00w13 − w03w10 w12w03 − w13w02⁄ )λ0   

       +(w11w00 − w01w13 w13w02 − w12w03⁄ )λ1   

a3 = (w00w12 − w10w02 w13w02 − w12w03⁄ )λ0   

        +(w01w12 − w11w02 w13w02 − w12w03⁄ )λ1. 

If we put this an unknowns in equation 

h(s) = λ(s) = ∑ am

3

m=0

sm.                                              

we get following equation 

h(s) = λ0  + λ1s + 

   [(w00w13 − w03w10 w12w03 − w13w02⁄ )λ0  + 

   (w11w00 − w01w13 w13w02 − w12w03⁄ )λ1  ]s
2 + 

   [(w00w12 − w10w02 w13w02 − w12w03⁄ )λ0  + 

   (w01w12 − w11w02 w13w02 − w12w03⁄ )λ1]s
3. 

This is the function h which determines the spherical 

indicator curve of the t(s) unit tangent vector in E3 space. 
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