
 

        Celal Bayar University Journal of Science  

        Volume 15, Issue 1, 2019, p 9-15  
        Doi: 10.18466/cbayarfbe.416583                                                                                                                  İ. Baştürk 

 

9 

 

Evaluation of Energy-Efficiency Problem in Orthogonal Frequency 

Division Multiple Access Cellular Networks 
 

İlhan Baştürk* 

 

Department of Electrical-Electronics Engineering, Aydın Adnan Menderes University, Aydın, Turkey  
*ilhan.basturk@adu.edu.tr 

 

Received: 18 April 2018 

Accepted: 29 January 2019 

DOI: 10.18466/cbayarfbe.416583 

 

Abstract 

In this study, the energy-efficiency (EE) problem is investigated for downlink Orthogonal Frequency 

Division Multiple Access (OFDMA) cellular networks. The EE maximization problem is defined under 

certain prescribed per-user quality-of-service (QoS) demands and maximum system power limit. EE 

metric that aims to maximize the system data rate and minimize the total power consumption at the same 

time is used as the objective function of the defined problem. In this form the optimization problem 

belongs to a broad class of problems called mixed-integer non-linear programming problem (MINLP), 

that is difficult to solve in its original form in such a multi-carrier, multi-user networks. Hence, we have 

decomposed the original problem into two parts and presented a solution that performs subchannel 

allocation and power allocation parts separately. Simulation results are obtained to confirm the 

performance of the presented scheme in terms of energy-efficiency and total data rate. 

Keywords: Energy-Efficiency, OFDMA, Cellular Networks. 

 

1. Introduction 

The number of mobile users and mobile devices are 

increasing enormously and according to some 

researches, by the last quarter of 2017, total mobile 

subscriptions reached to 7.8 billion and they are 

growing around 4 percent year-on-year [1]. Not only the 

number of mobile broadband subscriptions is increasing 

but also the expectation of these users about ubiquitous 

access to the high-data rate wireless services such as  

video streaming, online gaming etc. is increasing. This 

case causes rapidly booming energy consumption which 

is a big problem for the next generation wireless 

networks. It is also reported that mobile operators are 

already among the top energy consumers that is about 

3% of the worldwide energy consumption and 

contributed to about 2% of the global carbon dioxide 

emissions [2]. Thus, energy-efficient communication, 

also well-known as Green Communication has thereby 

been proposed as an effective solution and is becoming 

the mainstream for future wireless network design. To 

reach the targets of the Green Communication, two 

different and effective ways are used in the literature. 

The first way is harvesting energy from the surrounding 

environment including solar, wind and radio frequency 

(RF) signals [3,4]. The second way is designing energy-

efficient communication systems to maximize the 

number of transmitted information bits per unit of 

energy [5]. The second way, in which system capacity 

should be enlarged and system energy consumption 

should be reduced at the same time has been adopted as 

one of the new obligatory evaluation metrics in 5th 

generation (5G) systems [6].  

OFDMA is one of the key technologies used to meet the 

mobile users’ increasing expectations for ubiquitous 

access to the high-data rate wireless services. The main 

advantages of the OFDMA can be listed as robustness 

against frequency-selective fading, high spectral 

efficiency and flexible resource allocation. In OFDMA, 

the frequency spectrum is divided into a number of 

subcarriers and then subsets of these subcarriers also 

called subchannels are allocated to different users by 

exploiting multiuser diversity. It is popularly used in 4th 

generation (4G) wireless systems of broadband 

communications such as 3rd Generation Partnership 

Project (3GPP) Long Term Evolution (LTE), LTE 

Advanced, Worldwide Interoperability for Microwave 

Access (WiMAX). 

Radio resource management (RRM) schemes such as 

subchannel allocation and power allocation can be used 

to meet the certain demands of the users and service 

providers. Once the optimization problem has been 

established according to the different objective 

functions (rate maximization, power minimization, 

energy-efficiency maximization) and different 

optimization constraints, the problem can be solved 

optimally or in a heuristic manner.  The RRM problem 

who aims rate maximization and power minimization in 

OFDMA based cellular networks is studied in many 

works [7-12]. However, these works disregarded the 

energy consumption of the system which is being a 

huge problem for the information and communication 
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technology industries. Thus, recently, more attention 

has been paid to RRM problems whose target is 

maximizing the EE in OFDMA cellular networks [13-

18]. Contrary to rate maximization and power 

minimization problems, EE maximization problems 

belong to a class of optimization problems called 

fractional programs which make them difficult to solve. 

In [13], energy-efficiency and spectral-efficiency trade-

off is discussed for the downlink OFDMA networks. In 

[14], while the weighted EE maximization problem is 

explored for the downlink transmission, the minimum 

individual EE maximization problem is studied for the 

uplink transmission. In [15], the authors focused on 

system fairness issue in energy-efficient design for 

downlink OFDMA systems, and proposed energy-

efficient downlink resource allocation by taking 

instantaneous fairness into account. Contrary to [13-15], 

in [16] a different EE metric that is defined as the ratio 

of total consumed power to the total data rate is used. In 

[17], instead of traditional energy-efficiency definition, 

a metric called effective energy efficiency (EEE) is 

defined. In this metric, effective capacity concept which 

characterizes the maximum throughput of a system 

subject to statistical delay-QoS requirements is used 

instead of Shannon's channel capacity. In [18], the 

authors investigated the EE resource allocation problem 

of the downlink transmission of OFDMA while 

considering discrete power levels. In the literature, the 

EE problem is examined in different forms under 

different assumptions. According to the definition of the 

problem, the solution approaches have also changed.  

In this study, we have defined the EE maximization 

problem which considers not only energy-efficiency of 

the system but also QoS demands of the users for the 

downlink OFDMA cellular networks. Since the problem 

is a MINLP which is difficult to tackle, a solution that 

decomposes the original problem into two parts and 

perform disjoint subchannel and power allocation is 

presented in order to make the problem more tractable. 

Simulation results are obtained to reveal the advantages 

of the presented scheme.  

The rest of the paper is organized as follows. System 

model is given in Section 2. In Section 3, problem 

definition and problem solution are presented. 

Performance evaluation and Conclusions are given in 

Section 4 and 5 respectively. 

2. System Model  

In this study, an OFDMA-based downlink cellular 
network model, which contains a BS in the middle of the 
cell and 𝑀 mobile devices scattered around it, is used as 
shown in Figure 1. All mobile devices and the BS are 
running in the single antenna mode. The cellular area is 
thought to be partitioned into two areas in terms of 
proximity to the cell-center. The first area is bounded 
between the cell-center and half of the cell radius, 𝑅 and 
the second area that is shown in grey shaded is far from 
the half of the cell radius 𝑅. The mobile device density 
in the first area is assumed higher than the second area 

since it is known that the BSs are placed to the regions 
where more users are. The BS communicates with the 
mobile devices through a direct link by using the 
allocated subchannels which composed of a set of 
adjacent Orthogonal Frequency Division Multiplexing 
(OFDM) subcarriers. There are 𝑁 subchannels to be 
allocated in the BS as illustrated in Figure 1. It is 
assumed that one subchannel is exclusively allocated to 
maximum one user in order to avoid intra-cell 
interference. Each subchannel has a bandwidth 𝛶 and 
total system bandwidth is 𝐵 = 𝑁 × 𝛶. The resource 
allocation such as subchannel allocation and power 
allocation is performed at the BS so all channel state 
information (CSI) between the BS and each mobile 
device is perfectly known at the BS. 

 

Figure 1. OFDMA Cellular Network Model. 

3. Problem Definition and Solution 

In this part, EE maximization problem for the OFDMA 

based downlink cellular networks will be defined and a 

solution methodology will be presented for the defined 

problem.   

3.1. Problem Definition 

The optimization problem considering the EE metric 

takes into account not only the maximization of the 

system capacity but also the minimization of the total 

consumed power. Thus, before giving the optimization 

problem, total system data rate and total consumed 

power can be formulated. Let ℕ = {1,2, … , 𝑛, … , 𝑁} be 

set of subchannels and 𝕄 = {1,2, … , 𝑚, … , 𝑀} be set of 

mobile devices, respectively. When, we assume that the 

distributed power of user m on subcarrier n is 𝑃𝑚
𝑛 and 

the bandwidth of each subchannel is 𝛶,  the achievable 

data rate of user m on subchannel n is; 

𝑅𝑚
𝑛 = 𝛶𝑙𝑜𝑔2(1 + 𝑃𝑚

𝑛𝛤𝑚
𝑛)                     (𝟑. 𝟏) 

where 𝛤𝑚
𝑛 =

|ℎ𝑚
𝑛 |2

𝑁0𝛶
 is the channel-to-noise ratio. ℎ𝑚

𝑛  is the 

channel coefficient between BS and any user 𝑚 that 
includes path-loss and multipath fading and 𝑁0 is the 
noise spectral density. Consequently, the overall system 
data rate and the total consumed transmit power can be 
formulated as follows; 

𝑅𝑇 = ∑

𝑀

𝑚=1

∑

𝑁

𝑛=1

𝜌𝑚
𝑛 𝑅𝑚

𝑛                                (𝟑. 𝟐) 
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R

R/2

1 2 3 4 ... N

Subchannels

1

4

N



 

        Celal Bayar University Journal of Science  

        Volume 15, Issue 1, 2019, p 9-15  
        Doi: 10.18466/cbayarfbe.416583                                                                                                                  İ. Baştürk 

 

11 

 

𝑃𝑇 =   𝑃𝐶  +  𝑃𝑑                                   (𝟑. 𝟑) 

In these equations 𝜌𝑚
𝑛   is the binary subchannel 

allocation indicator that shows if subchannel 𝑛 is 

allocated to any user 𝑚 or not. As given in Equation 

(3.3), the total consumed power is defined as the 

summation of two different power values, as constant 

power 𝑃𝐶  and dynamic power which is 𝑃𝑑 =
Ω(∑𝑀

𝑚=1 ∑𝑁
𝑛=1 𝜌𝑚

𝑛 𝑃𝑚
𝑛). The 𝑃𝐶  is the power consumed 

by the electronic circuits such as mixers, filters and 

digital-to-analog converters. This value is ignored in 

some of the works but this is not realistic. The dynamic 

part of the power, 𝑃𝑑 depends on the data transmission 

on the contrary to the constant term and it is the 

multiplication of the total transmit power with a 

constant parameter Ω that represents the reciprocal of 

drain efficiency of the power amplifier.  

Hence, the EE maximization problem can be defined 

mathematically as follows; 

𝑚𝑎𝑥
𝜌𝑚

𝑛 ,𝑃𝑚
𝑛

 
𝑅𝑇(𝜌𝑚

𝑛 , 𝑃𝑚
𝑛) 

𝑃𝑇(𝜌𝑚
𝑛 , 𝑃𝑚

𝑛)
                           (𝟑. 𝟒) 

                                                                 

subject to;   

𝜌𝑚
𝑛 ∈ {0,1}, ∀𝑚, ∀𝑛                (𝟑. 𝟓) 

∑

𝑀

𝑚=1

𝜌𝑚
𝑛 = 1,        ∀𝑛                        (𝟑. 𝟔) 

  ∑

𝑀

𝑚=1

∑

𝑁

𝑛=1

𝜌𝑚
𝑛 𝑃𝑚

𝑛 ≤ 𝑃𝑚𝑎𝑥                           (𝟑. 𝟕) 

𝑃𝑚
𝑛  ≥ 0,               ∀𝑚, ∀𝑛                (𝟑. 𝟖) 

∑

𝑁

𝑛=1

𝜌𝑚
𝑛 𝑅𝑚

𝑛 ≥ 𝑅𝑚
𝑚𝑖𝑛 ,   ∀𝑚                (𝟑. 𝟗) 

In (3.5), the constraint shows that the subchannel 

allocation indicators are binary variables. If the 

subchannel 𝑛 is allocated to the user 𝑚 then 𝜌𝑚
𝑛 = 1, 

otherwise 𝜌𝑚
𝑛 = 0. The constraint in (3.6) guarantees 

that each subchannel will be given to at most one user to 

eliminate the intra-cell interference. Constraint (3.7) 

limits the maximum transmit power at the source. 

Constraint in (3.8) is the non-negative power constraint. 

(3.9) is the QoS constraint and it ensures that each user 

is satisfied by getting their minimum required data rate.  

3.1 Problem Solution 

The defined problem in the previous subsection is very 

difficult to solve optimally because of the coupled 

integer and continuous variables with nonlinear 

functions. Moreover, the fractional form of the objective 

function makes the problem much more difficult to 

tackle. Hence, to make this challenging problem more 

tractable one, we have decomposed original problem 

into two parts and solved subchannel allocation and 

power allocation problems separately. The proposed 

solution for the defined optimization problem is given in 

detail in the following parts. 

3.1.1 Subchannel Allocation 

In this part, a two-step heuristic solution is presented to 

allocate the subchannels to the users by assuming the 

power is distributed equally among the subchannels. In 

the first step of the algorithm, QoS demands of the users 

are satisfied. First of all, the user whose minimum data 

rate requirement is maximum is selected and the 

achievable data rate of this user for all unallocated 

subchannels are calculated. Then, the absolute value of 

difference of the achievable data rate and required data 

rate for each unallocated subchannel is determined and 

minimum valued subchannel is assigned to the related 

user. After that, the data rate requirement of the user is 

updated and if it is zero or smaller than zero, this user is 

removed from the unsatisfied user set and added to the 

satisfied user set. Finally, the total data rate and total 

transmit power values are updated. This step is stopped 

when all users are satisfied or subchannel set is empty. 

In the second step of the algorithm, the remaining 

subchannels are allocated to the users according to the 

maximum EE metric. This step is terminated when the 

subchannel set is empty. The heuristic subchannel 

allocation algorithm is outlined below in detail. 

Subchannel Allocation under equal power case   

 Let 𝕄 is the set of total users, 𝕊 and 𝕌 are the set of 

satisfied and unsatisfied users, respectively.  

 ℕ = {1,2, … , 𝑁},  𝑅𝑇 = 0, 𝑃𝑑 = 0, 𝕊 = ∅,   𝕌 = 𝕄 

 𝑝𝑠𝑢𝑏 = 𝑃𝑚𝑎𝑥 /𝑁,   𝜏𝑚 = 𝑅𝑚
𝑚𝑖𝑛    ∀𝑚 ∈ 𝕄.  

 

Step1  

while  𝕌 ≠ ∅ and ℕ ≠ ∅ 

 Find the user, 𝑚∗ = arg max 
𝑚∈𝕌 

(𝜏𝑚) 

 Calculate 𝑅𝑚∗
𝑛  , ∀𝑛 ∈ ℕ by using Equation (3.1). 

 Find the subchannel 𝑛′ that satisfies  

𝑛′ = arg min 
𝑛∈ℕ 

|𝑅𝑚∗
𝑛 − 𝜏𝑚∗| 

 Update 𝜏𝑚∗ = 𝜏𝑚∗ − 𝑅𝑚∗
𝑛′

 and if 𝜏𝑚∗ ≤ 0 then, 

𝕊 ← 𝕊 ∪  {𝑚∗},  𝕌 ← 𝕌 \  {𝑚∗}.  

 Set 𝜌𝑚∗
𝑛′

=  1 and ℕ ← ℕ \  {𝑛′}.   

 Update 𝑅𝑇 = 𝑅𝑇 + 𝑅𝑚∗ 
𝑛′

,  𝑃𝑑 = 𝑃𝑑 + Ω𝑝𝑠𝑢𝑏. 

end while 

Step2  

while  ℕ ≠ ∅ 

- For 𝑛 ∈ ℕ, calculate 𝑅𝑚
𝑛  and the EE metric  𝜔𝑚 =

𝑅𝑇+𝑅𝑚
𝑛

𝑃𝐶+𝑃𝑑+Ω𝑝𝑠𝑢𝑏
  , ∀𝑚 ∈ 𝕄 

- Determine the user, 𝑚+ = arg max 
𝑚∈𝕄 

(𝜔𝑚). 

- Set  𝜌𝑚+
𝑛 =  1 , ℕ ← ℕ \ {𝑛} 

- Update  𝑅𝑇 = 𝑅𝑇 + 𝑅𝑚+
𝑛 , 𝑃𝑑 = 𝑃𝑑 + Ω𝑝𝑠𝑢𝑏  

end while 

 

3.1.2 Power Allocation 

The original problem given in Equation (3.4), is 

recovered from unknown integer variables after 
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allocating subchannels to the users. From now on, the 

problem unknowns are only continuous power 

variables. Thus, the original optimization problem is 

reorganized and the new problem is defined as given 

below;  

 

𝑚𝑎𝑥
𝑃𝑚

𝑛
 
𝑅𝑇

′ (𝑃𝑚
𝑛)

𝑃𝑇
′ (𝑃𝑚

𝑛)
                                 (𝟑. 𝟏𝟎) 

   

subject to; 

∑

𝑀

𝑚=1

∑ 𝑃𝑚
𝑛

𝑛∈𝑆𝑚

≤ 𝑃𝑚𝑎𝑥                               (𝟑. 𝟏𝟏) 

𝑃𝑚
𝑛  ≥ 0, ∀𝑚, ∀𝑛,                   (𝟑. 𝟏𝟐) 

∑ 𝑅𝑚
𝑛

𝑛∈𝑆𝑚

≥ 𝑅𝑚
𝑚𝑖𝑛 ,   ∀𝑚                    (𝟑. 𝟏𝟑) 

 

where 𝑆𝑚 represents the subchannel set allocated to the 

user 𝑚 in the first part of the solution. Moreover, the 

new total data rate and total power values are 𝑅𝑇
′ =

∑𝑀
𝑚=1 ∑ 𝑅𝑚

𝑛
𝑛∈𝑆𝑚

  and 𝑃𝑇
′ = 𝑃𝐶 + Ω(∑𝑀

𝑚=1 ∑ 𝑃𝑚
𝑛

𝑛∈𝑆𝑚
).  

 

The defined problem in Equation (3.10) is in a fractional 

form and non-convex. This problem can be solved by 

transforming it to an equivalent parametric form by 

using the theorem given below [19]; 

Theorem: The maximum EE, 𝜔∗ = 𝑚𝑎𝑥
𝑃𝑚

𝑛

𝑅𝑇
′ (𝑃𝑚

𝑛 ) 

𝑃𝑇
′ (𝑃𝑚

𝑛 )
    is 

obtained if and only if; 𝑚𝑎𝑥
𝑃𝑚

𝑛
(𝑅𝑇

′ (𝑃𝑚
𝑛) − 𝜔∗𝑃𝑇

′ (𝑃𝑚
𝑛)) =

𝑅𝑇
′ (𝑃𝑚

𝑛∗) − 𝜔∗𝑃𝑇
′ (𝑃𝑚

𝑛∗) = 0   where 𝑃𝑚
𝑛∗

 denotes the 

optimum power values.  

 

According to this theorem, an equivalent optimization 

problem exists with an objective function in the 

subtractive form for a fractional optimization problem, 

as 𝑅𝑇
′ (𝑃𝑚

𝑛) − 𝜔∗𝑃𝑇
′  (𝑃𝑚

𝑛). The parametric version of the 

problem given in (3.10) is mathematically represented 

as shown below; 

 

𝑚𝑎𝑥
𝑃𝑚

𝑛
 (𝑅𝑇

′ (𝑃𝑚
𝑛) − 𝜔𝑃𝑇

′  (𝑃𝑚
𝑛) )                (3.14) 

 

subject to;  

(3.11), (3.12) and (3.13). 

 

The problem defined in (3.14) can be solved by using an 

iterative algorithm known as Dinkelbach method [19] 

which is outlined in the following algorithm. 

 

Dinkelbach Algorithm  

 Set 𝜀 > 0 and 𝑖 = 0  where 𝜀 is the convergence 

tolerance and 𝑖 is the iteration index.  

 Initial value of EE metric, 𝜔0 is selected as 0. 

while |𝜔𝑖 − 𝜔𝑖−1| > 𝜀 

 Obtain optimal power values 𝑃𝑚
𝑛∗

 by solving the 

optimization problem in (3.14)  

 𝑖 ← 𝑖 + 1 

 𝜔𝑖 = 𝑅𝑇
′ (𝑃𝑚

𝑛∗)/𝑃𝑇
′  (𝑃𝑚

𝑛∗).   

end while 

In this algorithm, an inner optimization problem is 

solved for the given EE metric, in each iteration. The 

algorithm is finished when 𝜔𝑖 converges. This 

algorithm converges to the optimal value at a super-

linear convergence rate as proved in [19]. The inner 

optimization problem in the Dinkelbach method is 

convex so it can be solved by using convex optimization 

algorithms. Strong duality holds for this convex 

problem since the Slater’s condition is satisfied. Hence, 

we can solve the dual problem to obtain the primal 

solution with zero duality gap. The Lagrange dual  

problem is defined as; 

 

𝑚𝑖𝑛
𝜆,𝝈

𝑚𝑎𝑥
𝑃𝑚

𝑛
𝐿                                    (𝟑. 𝟏𝟓) 

 

where 𝐿 is the Lagrange function given as 𝐿 =

𝑅𝑇
′ (𝑃𝑚

𝑛) − 𝜔𝑃𝑇
′ (𝑃𝑚

𝑛) + 𝜆[𝑃𝑚𝑎𝑥 − ∑𝑀
𝑚=1 ∑ 𝑃𝑚

𝑛
𝑛∈𝑆𝑚

]  +

∑𝑀
𝑚=1 𝜎𝑚[∑ 𝑅𝑚

𝑛
𝑛∈𝑆𝑚

− 𝑅𝑚
𝑚𝑖𝑛]. 𝜆 and 𝝈 = [𝜎1, 𝜎2, … , 𝜎𝑀] 

are nonnegative Lagrange multipliers. 

 

The dual problem given in (3.15) can be solved 

iteratively by the dual decomposition technique. In each 

iteration several subproblems and a master problem are 

solved. Using the subproblems, optimal power values 

are obtained for each subchannel for given Lagrange 

multipliers. Then these power values are used as the 

input and Lagrange multipliers are updated by solving 

the master problem. The iteration lasts till the Lagrange 

multipliers converges to the desired value.  

 

In each subproblem, optimal power values are obtained 

by solving 𝑚𝑎𝑥
𝑃𝑚

𝑛
𝐿  with the given Lagrange multipliers. 

The closed-form optimal power allocation variables can 

be obtained according to the Karush-Kuhn-Tucker 

(KKT) conditions, in which state that the gradient is 

equal to zero at the optimal points, 

 
𝜕𝐿

𝜕𝑃𝑚
𝑛

= 0                                  (𝟑. 𝟏𝟔) 

 
𝛶𝛤𝑚

𝑛

(1 + 𝑃𝑚
𝑛𝛤𝑚

𝑛)
(

1 + 𝜎𝑚

ln 2
) −  𝜔Ω −  𝜆 = 0   (𝟑. 𝟏𝟕) 

1 + 𝑃𝑚
𝑛𝛤𝑚

𝑛 =
𝛶𝛤𝑚

𝑛(1 + 𝜎𝑚)

(𝜔Ω +  𝜆) ln 2
               (𝟑. 𝟏𝟖) 

 

𝑃𝑚
𝑛∗ = 𝑚𝑎𝑥 (0,

𝛶(1 + 𝜎𝑚)

(𝜔Ω +  𝜆) ln 2
−

1

𝛤𝑚
𝑛

)      (𝟑. 𝟏𝟗) 

 

After calculating the optimal power values for all 

subchannels, the Lagrange multipliers are updated by 

solving the master problem with subgradient algorithm. 

The updated variables are also presented below. 

 

𝜆𝑡+1 = 𝑚𝑎𝑥 (0, 𝜆𝑡 − 𝛼𝑡 (𝑃𝑚𝑎𝑥 − ∑

𝑀

𝑚=1

∑ 𝑃𝑚
𝑛

𝑛∈𝑆𝑚

)  )  (𝟑. 𝟐𝟎) 
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𝜎𝑚
𝑡+1 = 𝑚𝑎𝑥 (0, 𝜎𝑚

𝑡 − 𝛽𝑡 ( ∑ 𝑅𝑚
𝑛

𝑛∈𝑆𝑚

− 𝑅𝑚
𝑚𝑖𝑛)) , ∀𝑚 ∈ 𝑀 

(3.21)  
 

where 𝑡 represents the iteration index, 𝛼𝑡, and 𝛽𝑡 are the 

positive constant step sizes.  

 

4. Performance Evaluations 

In this section, we will evaluate the performance of the 

EE maximization solution, which is performed in two 

parts, in terms of energy-efficiency and total data rate 

values. The EE maximization scheme that is presented 

for the OFDMA based cellular networks will also be 

compared with the existing rate maximization scheme 

by changing the parameters such as total system power, 

total number of users, cell-radius and the minimum data 

rate requirements of the users to observe the effects of 

these parameters. The downlink single cell network 

topology that we consider in this work is illustrated in 

Figure 1. The radius of the cell 𝑅 is set to 800𝑚.  As 
mentioned in Section 2, the cellular area is formed by 
using two areas and the user density in the first area is 

assumed higher than the second area. The percentage of 

the users are selected as 80% and 20% for the first and 

second areas respectively. If it is not stated elsewhere, 

one user from the first area and one user from the 

second area will have a minimum data rate requirement 

constraint which can be thought as the  QoS constraint. 

A summary of the other simulation parameters are also 

listed in Table 1.  

 

In Figures 2 and 3, the presented EE maximization 

scheme and the well-known rate maximization scheme 

are compared in terms of energy-efficiency and total 

data rate, respectively. In these figures, minimum data 

rate requirement value  𝑅𝑚𝑖𝑛 is set to 0.5𝑀𝑏𝑝𝑠 and total 

number of users, 𝑀 is set to 20. Moreover, different 

maximum transmit power values, 𝑃𝑚𝑎𝑥 are used to 

evaluate the EE and total data rate of the system. In 

Figures 2 and 3, it is observed that the EE and the total 

data rate values are almost the same for both compared 

schemes up to a threshold 𝑃𝑚𝑎𝑥  value which is 

measured as 35𝑑𝐵𝑚 in this work. However, after this 

value the EE and total data rate trends of both schemes 

change completely. Although, the EE and total data rate 

values reach to their maximum values for the presented 

EE maximization scheme, the EE value for the rate 

maximization scheme is decreasing deeply and total 

data rate value is increasing linearly.  It can be 

commented on that the rate maximization scheme 

continues to allocate more power in order to achieve a 

higher total data rate and this case causes the 

degradation of the energy- efficiency. 

 

In Figures 4 and 5, the EE and total data rate values of 

both EE and rate maximization schemes are compared 

for different number of users in the cellular area. In 

these figures, 𝑅𝑚𝑖𝑛  is set to 0.25𝑀𝑏𝑝𝑠 and total 

transmit power 𝑃𝑚𝑎𝑥  is set to 50𝑑𝐵𝑚. Both figures 

show us that not only EE but also total data rate for both 

schemes are increased by using more number of users 

because of the multi-user diversity increment of the 

system.  

 

Table 1. Simulation Parameters. 

Parameter Value 

Frequency 2𝐺𝐻𝑧 

Bandwidth 5𝑀𝐻𝑧 

Number of subchannels 25 

Noise spectral density, 𝑁0 -174𝑑𝐵𝑚/𝐻𝑧 

Static power consumption,𝑃𝐶 100𝑊 

Efficiency of the power 

amplifiers,  Ω 
2.6 

UEs min. distance to BS 35𝑚 

Multipath Model Extended Pedestrian 

A 

Path-loss Model 128.1 +  
37.6 𝑙𝑜𝑔10 𝑑(𝑘𝑚) 

Number of channel realizations 1000 

 

 

 
Figure 2. Energy Efficiency vs 𝑃𝑚𝑎𝑥 . 

 
Figure 3. Total data rate vs 𝑃𝑚𝑎𝑥 . 

 

To see the QoS constraint effect on the problem, we 

have relaxed this constraint which means that 𝑅𝑚𝑖𝑛 = 0. 
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In Tables 2 and 3, the EE maximization and rate 
maximization schemes are compared in terms of EE and  

total data rate for 𝑅𝑚𝑖𝑛 = 0 and 𝑅𝑚𝑖𝑛 = 0.5𝑀𝑏𝑝𝑠. To 

form these tables, total number of users is selected as  

𝑀=20. When the two tables are examined, it is seen that 

the EE and total data rate values are increased by 

relaxing the QoS constraint as expected. The EE and 

total data rate values are upper bounded with the results 

that are obtained for the relaxed QoS case for both 

schemes. 

 
Figure 4. Energy Efficiency vs Total users. 

Figure 5. Total data rate vs Total users. 

 

 
Figure 6. Energy Efficiency vs Cell radius (R). 

 
Figure 7. Total data rate vs Cell radius (R). 

 

 

 

Table 2. Energy-Efficiency Values (Mbits/Joule). 

 EE maximization Scheme Rate maximization Scheme 

𝑷𝒎𝒂𝒙 (dBm) Relaxed QoS 𝑹𝒎𝒊𝒏 = 𝟎. 𝟓𝑴𝒃𝒑𝒔 Relaxed QoS 𝑹𝒎𝒊𝒏 = 𝟎. 𝟓𝑴𝒃𝒑𝒔 

20 0.1979     0.17651 0.1956     0.1785     

25 0.2135     0.19853 0.2135     0.1986     

30 0.2295     0.21509 0.2315     0.2160     

35 0.2353     0.22214 0.2360     0.2224     

40 0.2353     0.22214 0.2180     0.2098     

45 0.2353     0.22214 0.1622     0.1592     

50 0.2353     0.22214 0.0876 0.0853 

 

Table 3. Total Data Rate Values (Mbits/sec). 

 EE maximization Scheme Rate maximization Scheme 

𝑷𝒎𝒂𝒙 (dBm) Relaxed QoS 𝑹𝒎𝒊𝒏 = 𝟎. 𝟓𝑴𝒃𝒑𝒔 Relaxed QoS 𝑹𝒎𝒊𝒏 = 𝟎. 𝟓𝑴𝒃𝒑𝒔 

20 19.641 17.797 19.606 17.798 

25 21.527 20.016 21.526 20.122 

30 23.429 22.068 23.548 22.165 

35 25.26 24.08 25.28 24.0 

40 25.26 24.08 27.467 26.032 
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45 25.26 24.08 29.556 28.013 

50 25.26 24.08 31.54 30.09 

Finally, we have compared the EE and total data rate 
values of both schemes under the different cell-radius, 𝑅 
values by relaxing the QoS constraints and setting the 
total number of users to 20. The EE results are given in 
Figure 6 and total data rate results are illustrated in 
Figure 7. According to these figures, it is observed that 
the EE and total data rate values are decreasing when the 
cell-radius is increasing.  

5. Conclusion 

In this paper, we have focused on the energy-efficiency 

problem in OFDMA downlink cellular networks. The 

EE maximization problem is defined under the QoS and 

maximum transmit power constraints. Since, the defined 

optimization problem is MINLP which is very difficult 

to solve in its original form, we have presented a two-

part solution to make it more tractable. The presented 

EE maximization solution is compared to the rate 

maximization scheme which aims to increase the data 

rate of the system and dominates the conventional 

cellular network design. The effect of different system 

parameters such as total number of users, QoS 

parameters, cell radius and transmit power values on the 

energy-efficiency and system data rate are explored and 

the results are presented with the simulations. 
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