MALTEPE JOURNAL OF MATHEMATICS ISSN: 2667-7660, URL: http://dergipark.gov.tr/mjm Volume I, Issue 1, pages 24-29, (2019)

MORE ON TRANSLATIONALLY SLOWLY VARYING SEQUENCES

DRAGAN DJURČIĆ* AND LJUBIŠA D.R. KOČINAC**

*UNIVERSITY OF KRAGUJEVAC, FACULTY OF TECHNICAL SCIENCES, SVETOG SAVE 65, 32000 ČAČAK, SERBIA **UNIVERSITY OF NIŠ, FACULTY OF SCIENCES AND MATHEMATICS, 18000 NIŠ, SERBIA

ABSTRACT. We define and study an equivalence relation in the class $\mathsf{Tr}(\mathsf{SV}_s)$ of translationally slowly varying positive real sequences and its relations with selection principles and game theory. We also prove a game-theoretic result for translationally rapidly varying sequences.

1. INTRODUCTION

Throughout the paper \mathbb{N} will denote the set of natural numbers, \mathbb{R} the set of real numbers, \mathbb{S} the set of sequences of positive real numbers.

The theory of regular variation, including in particular slow variation, was initiated in 1930 by J. Karamata [8]. Nowadays this branch of asymptotic analysis of divergent processes is known as *Karamata's theory of regular variation*. Another kind of variation, called *rapid variation*, was introduced and first studied in 1970 by de Haan [7]. These two theories are developed for functions and sequences and have various applications in several mathematical disciplines: number theory, differential and difference equations, probability theory, q-calculus, and so on. For more information about the theory of regular variation and the theory of rapid variation we refer the reader to the book [1]. In this article we are interested in two classes of sequences related to slow and rapid variations.

We recall first the definitions of slowly and rapidly varying sequences.

Definition 1.1. ([1, 2, 12]) A sequence $\mathbf{c} = (c_n)_{n \in \mathbb{N}} \in \mathbb{S}$ is slowly varying (respectively, rapidly varying) if for each $\lambda > 0$ (respectively, $\lambda > 1$) the following is satisfied:

$$\lim_{n \to \infty} \frac{c_{[\lambda n]}}{c_n} = 1, \tag{1.1}$$

(respectively,

$$\lim_{n \to \infty} \frac{c_{[\lambda n]}}{c_n} = \infty), \tag{1.2}$$

where for $x \in \mathbb{R}$, [x] denotes the greatest integer part of x.

©2019 Maltepe Journal of Mathematics.

²⁰¹⁰ Mathematics Subject Classification. Primary 26A12; Secondary 40A05, 91A05.

Key words and phrases. Rapid equivalence, Class $R_{s,\infty}$, Selection principles.

The classes of slowly varying and rapidly varying sequences are denoted by SV_s and $\mathsf{R}_{s,\infty},$ respectively.

In what follows we work with the following two classes of sequences.

Definition 1.2. ([3, 11]) A sequence $\mathbf{c} = (c_n)_{n \in \mathbb{N}} \in \mathbb{S}$ is translationally slowly varying (respectively, translationally rapidly varying) if for each $\lambda \geq 1$ the following asymptotic condition is satisfied:

$$\lim_{n \to \infty} \frac{c_{[n+\lambda]}}{c_n} = 1 \tag{1.3}$$

(respectively,

$$\lim_{n \to \infty} \frac{c_{[n+\lambda]}}{c_n} = \infty). \tag{1.4}$$

 $Tr(SV_s)$ denotes the class of translationally slowly varying sequences, and $Tr(R_{s,\infty})$ denotes the class of translationally rapidly varying sequences (see [2, 3, 4, 5]).

Observe that $R_{s,\infty} \cap \operatorname{Tr}(\mathsf{SV}_s) \neq \emptyset$, $R_{s,\infty} \setminus \operatorname{Tr}(\mathsf{SV}_s) \neq \emptyset$, $\operatorname{Tr}(\mathsf{SV}_s) \setminus \mathsf{R}_{s,\infty} \neq \emptyset$, and $\operatorname{Tr}(\mathsf{R}_{s,\infty}) \subset \mathsf{R}_{s,\infty}$.

In this paper we define and study a new equivalence relation in the class $Tr(SV_s)$, in particular its relations with selection principles and game theory. We also provide a game-theoretic result concerning the class $Tr(R_{s,\infty})$.

2. Results

We begin this section with definitions of concepts we use in this article.

Definition 2.1. Sequences $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ and $\mathbf{d} = (d_n)_{n \in \mathbb{N}}$ from \mathbb{S} are *mutually* translationally slowly equivalent, denoted by

$$c_n \stackrel{ts}{\sim} d_n$$
, as $n \to \infty$,

if

$$\lim_{n \to \infty} \frac{c_{[n+\lambda]}}{d_n} = 1 \quad \text{and} \quad \lim_{n \to \infty} \frac{d_{[n+\lambda]}}{c_n} = 1 \tag{2.1}$$

hold for each $\lambda \geq 1$.

Definition 2.2. Sequences $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ and $\mathbf{d} = (d_n)_{n \in \mathbb{N}}$ from \mathbb{S} are *mutually* translationally rapidly equivalent, denoted by

$$c_n \stackrel{tr}{\sim} d_n$$
, as $n \to \infty$,

if

$$\lim_{n \to \infty} \frac{c_{[n+\lambda]}}{d_n} = \infty \quad \text{and} \quad \lim_{n \to \infty} \frac{d_{[n+\lambda]}}{c_n} = \infty$$
(2.2)

hold for each $\lambda \geq 1$.

Theorem 2.1. Let sequences $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ and $\mathbf{d} = (d_n)_{n \in \mathbb{N}}$ be elements from S. If $c_n \stackrel{ts}{\sim} d_n$, as $n \to \infty$, then $\mathbf{c} \in \mathsf{Tr}(\mathsf{SV}_{\mathsf{s}})$ and $\mathbf{d} \in \mathsf{Tr}(\mathsf{SV}_{\mathsf{s}})$.

Proof. For $\lambda \geq 1$ we have

$$\lim_{n \to \infty} \frac{c_{[n+\lambda]}}{c_n} = \lim_{n \to \infty} \left(\frac{c_{n+1}}{c_n}\right)^{[\lambda]}$$

if the limit on the right side exists. Further, since $c_n \stackrel{ts}{\sim} d_n$, we have

$$\lim_{n \to \infty} \frac{c_{n+2}}{c_n} = \lim_{n \to \infty} \left(\frac{c_{n+2}}{d_{n+1}} \cdot \frac{d_{n+1}}{c_n} \right) = \lim_{n \to \infty} \frac{c_{n+2}}{d_{n+1}} \cdot \lim_{n \to \infty} \frac{d_{n+1}}{c_n} = 1.$$

Therefore

$$1 = \lim_{n \to \infty} \left(\frac{c_{n+2}}{c_{n+1}} \cdot \frac{c_{n+1}}{c_n} \right) = \lim_{k \to \infty} \left(\frac{c_{k+1}}{c_k} \right)^2,$$
$$\lim_{n \to \infty} \frac{c_{n+1}}{c_n} = 1.$$

hence

$$\lim_{n \to \infty} \frac{c_{[n+\lambda]}}{c_n} = 1 \text{ for each } \lambda \ge 1 ,$$

i.e. $\mathbf{c} \in \mathsf{Tr}(\mathsf{SV}_{\mathsf{s}})$.

Similarly we prove $\mathbf{d} \in \mathsf{Tr}(\mathsf{SV}_s)$.

In a similar way, by suitable modifications in the proof, we prove the following result.

Theorem 2.2. Let $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ and $\mathbf{d} = (d_n)_{n \in \mathbb{N}}$ be sequences in \mathbb{S} . If $c_n \stackrel{tr}{\sim} d_n$, as $n \to \infty$, then $\mathbf{c} \in \mathsf{Tr}(\mathsf{R}_{\mathsf{s},\infty})$ and $\mathbf{d} \in \mathsf{Tr}(\mathsf{R}_{\mathsf{s},\infty})$.

Theorem 2.3. Relation $\stackrel{ts}{\sim}$ is an equivalence relation on $Tr(SV_s)$.

Proof. 1. (Reflexivity) Let $\mathbf{c} \in \mathsf{Tr}(\mathsf{SV}_{\mathsf{s}})$. Then $\lim_{n\to\infty} \frac{c_{[n+\lambda]}}{c_n} = 1$ for each $\lambda \geq 1$, that is $c_n \stackrel{ts}{\sim} c_n$ as $n \to \infty$, and so reflexivity holds.

2.(Symmetry) It follows from the definition of relation $\stackrel{ts}{\sim}$.

3. (Transitivity) Let $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$, $\mathbf{d} = (d_n)_{n \in \mathbb{N}}$ and $\mathbf{e} = (e_n)_{n \in \mathbb{N}}$ be elements from $\mathsf{Tr}(\mathsf{SV}_{\mathsf{s}})$ such that $c_n \stackrel{ts}{\sim} d_n$, $n \to \infty$, and $d_n \stackrel{ts}{\sim} e_n$, $n \to \infty$. Then we have

$$\lim_{n \to \infty} \frac{c_{n+2}}{e_n} = \lim_{n \to \infty} \frac{c_{n+2}}{d_{n+1}} \cdot \lim_{n \to \infty} \frac{d_{n+1}}{e_n} = 1.$$

We conclude

$$1 = \lim_{n \to \infty} \left(\frac{c_{n+2}}{e_{n+1}} \cdot \frac{e_{n+1}}{e_n} \right).$$

Because of $\mathbf{e} \in \mathsf{Tr}(\mathsf{SV}_s)$, we obtain

$$\lim_{n \to \infty} \frac{c_{n+1}}{e_n} = 1.$$

It follows from here that for each $\lambda \ge 1$ it holds

$$\lim_{n \to \infty} \frac{c_{[n+\lambda]}}{e_n} = 1$$

In a similar way one proves

$$\lim_{n \to \infty} \frac{e_{[n+\lambda]}}{c_n} = 1, \ \lambda \ge 1,$$

which means $c_n \stackrel{ts}{\sim} e_n$.

Remark. Let a sequence $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ belong to the class $\mathsf{Tr}(\mathsf{SV}_s)$ and let $\mathbf{d} = (d_n)_{n \in \mathbb{N}} \in \mathbb{S}$ be such that $c_n \stackrel{ts}{\sim} d_n$. Then

$$\lim_{n \to \infty} \frac{c_n}{d_n} = \lim_{n \to \infty} \left(\frac{c_n}{c_{n+1}} \cdot \frac{c_{n+1}}{d_n} \right) = 1$$

and we conclude that sequences **c** and **d** are strongly asymptotically equivalent (see, for instance. [1, 6]), i.e. $\lim_{n\to\infty} \frac{c_n}{d_n} = 1$.

26

Recall the definition of selection principles, which we need in what follows (see [9, 10]).

Definition 2.3. Let \mathcal{A} and \mathcal{B} be subfamilies of the set \mathbb{S} . The symbol $\alpha_i(\mathcal{A}, \mathcal{B})$, $i \in \{2, 3, 4\}$, denotes the following selection hypotheses: for each sequence $(A_n)_{n \in \mathbb{N}}$ of elements from \mathcal{A} there is an element $B \in \mathcal{B}$ such that:

- (1) $\alpha_2(\mathcal{A}, \mathcal{B})$: the set $\operatorname{Im}(A_n) \cap \operatorname{Im}(B)$ is infinite for each $n \in \mathbb{N}$;
- (2) $\alpha_3(\mathcal{A}, \mathcal{B})$: the set $\operatorname{Im}(A_n) \cap \operatorname{Im}(B)$ is infinite for infinitely many $n \in \mathbb{N}$;

(3) $\alpha_4(\mathcal{A}, \mathcal{B})$: the set $\operatorname{Im}(A_n) \cap \operatorname{Im}(B)$ is nonempty for infinitely many $n \in \mathbb{N}$,

where Im denotes the image of the corresponding sequence.

The following infinitely long game is related to α_2 (see [9, 10]).

Definition 2.4. Let \mathcal{A} and \mathcal{B} be nonempty subfamilies of \mathbb{S} . The symbol $\mathsf{G}_{\alpha_2}(\mathcal{A}, \mathcal{B})$ denotes the following infinitely long game for two players, I and II, who play a round for each natural number n. In the first round I chooses an arbitrary element $\mathbf{A}_1 = (A_{1,j})_{j \in \mathbb{N}}$ from \mathcal{A} , and II chooses a subsequence $y_{r_1} = (A_{1,r_1(j)})_{j \in \mathbb{N}}$ of the sequence A_1 . At the k^{th} round, $k \geq 2$, I chooses an arbitrary element $A_k = (A_{k,j})_{j \in \mathbb{N}}$ from \mathcal{A} and II chooses a subsequence $y_{r_k} = (A_{k,r_k(j)})_{j \in \mathbb{N}}$ of the sequence A_k , such that $\operatorname{Im}(r_{k(j)}) \cap \operatorname{Im}(r_{p(j)}) = \emptyset$ is satisfied, for each $p \leq k - 1$. II wins a play

$$A_1, y_{r_1}; \ldots; A_k, y_{r_k}; \ldots$$

if and only if all elements from $Y = \bigcup_{k \in \mathbb{N}} \bigcup_{j \in \mathbb{N}} A_k, r_{k(j)}$, with respect to second index, form a subsequence $\mathbf{y} = (y_m)_{m \in \mathbb{N}} \in \mathcal{B}$.

A strategy σ for the player II is a *coding strategy* if II remembers only the most recent move by I and by II before deciding how to play the next move.

Observe, that if II has a winning strategy in the game $\mathsf{G}_{\alpha_2}(\mathcal{A},\mathcal{B})$, then the selection principle $\alpha_2(\mathcal{A},\mathcal{B})$ is true. Also, $\alpha_2(\mathcal{A},\mathcal{B}) \Rightarrow \alpha_3(\mathcal{A},\mathcal{B}) \Rightarrow \alpha_4(\mathcal{A},\mathcal{B})$.

Let $\mathbf{c} = (c_n)_{n \in \mathbb{N}} \in \mathbb{S}$. Then we define

$$[\mathbf{c}]_{ts} = \{ \mathbf{d} = (d_n)_{n \in \mathbb{N}} \in \mathbb{S} : c_n \overset{^{\mathsf{LS}}}{\sim} d_n, n \to \infty \}$$
(2.3)

as the equivalence class of \mathbf{c} in $Tr(SV_s)$.

Theorem 2.4. For a fixed element $\mathbf{c} \in \text{Tr}(SV_s)$, the player II has a winning coding strategy in the game $G_{\alpha_2}([\mathbf{c}]_{ts}, [\mathbf{c}]_{ts})$,

Proof. (1^{st} round) : Let σ be the strategy of the player II. The player I chooses a sequence $\mathbf{x_1} = (x_{1,n})_{n \in \mathbb{N}} \in [\mathbf{c}]_{ts}$ arbitrary. Then the player II chooses the subsequence $\sigma(\mathbf{x_1}) = (x_{1,k_1(n)})_{n \in \mathbb{N}}$ of the sequence $\mathbf{x_1}$, where $\text{Im}(k_1)$ is the set of natural numbers greater of equal to $n_1 \in \mathbb{N}$ which are divisible by 2 and not divisible by 2^2 , and $1 - \frac{1}{2} \leq \frac{c_n}{x_{m,n}} \leq 1 + \frac{1}{2}$ holds for each $n \geq n_1$.

 $(m^{th} \text{ round}, m \ge 2)$: The player I chooses a sequence $\mathbf{x}_{\mathbf{m}} = (x_{m,n})_{n \in \mathbb{N}} \in [\mathbf{c}]_{ts}$. Then the player II chooses the subsequence

$$\sigma(\mathbf{x}_{\mathbf{m}}, (x_{m-1,k_{m-1}(n)})_{n \in \mathbb{N}}) = (x_{m,k_m(n)})_{n \in \mathbb{N}}$$

of the sequence $\mathbf{x}_{\mathbf{m}}$, so that $\operatorname{Im}(k_m)$ is the set of natural numbers greater of or equal to $n_m \in \mathbb{N}$, which are divisible by 2^m , and not divisible by 2^{m+1} , and $1 - \frac{1}{2^m} \leq \frac{c_n}{x_{m,n}} \leq 1 + \frac{1}{2^m}$ holds for each $n \geq n_m$.

Consider now the set $Y = \bigcup_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} x_{m,k_m(n)}$ in \mathbb{S} indexed by the second index $k_m(n)$. This set we can consider as the subsequence of the sequence $\mathbf{y} = (y_i)_{i \in \mathbb{N}}$ given by:

$$y_i = \begin{cases} x_{m,k_m(n)}, & \text{if } i = k_m(n) \text{ for some } m, n \in \mathbb{N}; \\ c_i, & \text{otherwise.} \end{cases}$$

By the construction $\mathbf{y} \in \mathbb{S}$. Also, the intersection of \mathbf{y} and $\mathbf{x}_{\mathbf{m}}$, $m \in \mathbb{N}$, is an infinite set.

Let us prove that $y_m \stackrel{ts}{\sim} c_m$, as $m \to \infty$. Let $\varepsilon > 0$. Let m be the smallest natural number such that $\frac{1}{2^m} \leq \varepsilon$. For each $k \in \{1, 2, ..., m-1\}$ there is $n_k^* \in \mathbb{N}$, so that $1 - \varepsilon \leq \frac{c_i}{x_{k,n}} \leq 1 + \varepsilon$ for each $n \geq n_k^*$. Set $n^* = \max\{n_1^*, n_2^*, ..., n_{m-1}^*\}$. For each $i \geq n^*$ we have $1 - \varepsilon \leq \frac{c_i}{y_i} \leq 1 + \varepsilon$. Therefore, $\lim_{n \to \infty} \frac{c_i}{y_i} = 1$. It follows

$$\lim_{i \to \infty} \frac{c_{i+1}}{y_i} = \lim_{i \to \infty} \left(\frac{c_{i+1}}{c_i} \cdot \frac{c_i}{y_i} \right) = 1$$

because $\mathbf{c} \in \mathsf{Tr}(\mathsf{SV}_s)$. In a similar way we prove

$$\lim_{i \to \infty} \frac{y_{i+1}}{c_i} = 1$$

One concludes that for each $\lambda \geq 1$

$$\lim_{i \to \infty} \frac{y_{[i+\lambda]}}{c_i} = \lim_{i \to \infty} \frac{c_{[i+\lambda]}}{y_i} = 1$$

i.e. $\mathbf{y} = (y_i)_{i \in \mathbb{N}} \in [\mathbf{c}]_{ts}$. The theorem is proved.

Corollary 2.5. The selection principle $\alpha_2([\mathbf{c}]_{ts}, [\mathbf{c}]_{ts})$ holds for each fixed element $\mathbf{c} \in \text{Tr}(SV_s)$. Consequently, $\alpha_3([\mathbf{c}]_{ts}, [\mathbf{c}]_{ts})$ and $\alpha_4([\mathbf{c}]_{ts}, [\mathbf{c}]_{ts})$ also hold.

We end the paper by proving a result about mutually translationally rapidly equivalent sequences.

Let $\mathbf{c} = (c_n)_{n \in \mathbb{N}} \in \mathbb{S}$. Then we define

$$[\mathbf{c}]_{tr} = \{ \mathbf{d} = (d_n)_{n \in \mathbb{N}} \in \mathbb{S} : c_n \overset{\iota r}{\sim} d_n, n \to \infty \}.$$
(2.4)

Theorem 2.6. The player II has a winning coding strategy in the game $G_{\alpha_2}([\mathbf{c}]_{tr}, [\mathbf{c}]_{tr})$, for any fixed element $\mathbf{c} \in Tr(\mathsf{R}_{s,\infty})$.

Proof. Let σ be the strategy of II.

 $(m^{th} \text{ round}, m \ge 1)$: The player I chooses a sequence $\mathbf{x}_{\mathbf{m}} = (x_{m,n})_{n \in \mathbb{N}} \in [\mathbf{c}]_{tr}$. Then the player II chooses the subsequence

$$\sigma(\mathbf{x}_{\mathbf{m}}, (x_{m-1,k_{m-1}(n)})_{n \in \mathbb{N}}) = (x_{m,k_m(n)})_{n \in \mathbb{N}}$$

of the sequence $\mathbf{x_m}$, so that $\operatorname{Im}(k_m)$ is the set of natural numbers greater of or equal to n_m , which are divisible with 2^m , and not divisible with 2^{m+1} , $n_m \in \mathbb{N}$, and $\frac{c_{n+1}}{x_{m,n}} \ge 2^m$ and $\frac{x_{m,n+1}}{c_n} \ge 2^m$ for each $n \ge n_m$. Let $\lambda \ge 1$. Since $\mathbf{c} \in \operatorname{Tr}(\mathsf{R}_{\mathsf{s},\infty})$, we have $\frac{c_{n+1}}{c_n} \ge 1$ for sufficiently large n. Then

$$\frac{c_{[n+\lambda]}}{x_{m,n}} = \frac{c_{[n+\lambda]}}{c_{[n+\lambda]-1}} \cdot \frac{c_{[n+\lambda]-1}}{c_{[n+\lambda]-2}} \cdot \cdot \cdot \frac{c_{n+1}}{x_{m,n}} \ge 2^m$$

for each $n \ge n_m$. Since $x_{m,n} \stackrel{tr}{\sim} c_n$, as $n \to \infty$, we have $\mathbf{x_m} \in \mathsf{Tr}(\mathsf{R}_{s,\infty})$ (Theorem 2.2). In a similar way we prove $\frac{x_{m,[n+\lambda]}}{c_n} \ge 2^m$ for all $n \ge n_m$.

Form the set $Y = \bigcup_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} x_{m,k_m(n)}$ of positive real numbers indexed by the second index. This set is a subsequence of the sequence $\mathbf{y} = (y_i)_{i \in \mathbb{N}}$ defined by:

$$y_i = \begin{cases} x_{m,k_m(n)}, & \text{if } i = k_m(n) \text{ for some } m, n \in \mathbb{N}; \\ c_i, & \text{otherwise.} \end{cases}$$

Evidently, $\mathbf{y} \in \mathbb{S}$ and the intersection of \mathbf{y} and $\mathbf{x}_{\mathbf{m}}$, $m \in \mathbb{N}$, is an infinite set.

We prove $y_m \stackrel{tr}{\sim} c_m$, as $m \to \infty$. Let M > 0. Choose the smallest $m \in \mathbb{N}$ such that $2^m > M$. For each $k \in \{1, 2, ..., m-1\}$ there is $n_k^* \in \mathbb{N}$, so that $\frac{c_{[n+\lambda]}}{x_{k,n}} \ge M$ and $\frac{x_{k,[n+\lambda]}}{c_n} \ge M$ for each $\lambda \ge 1$ and each $n \ge n_k^*$. Let $n^* = \max\{n_1^*, \ldots, n_{m-1}^*\}$. Therefore, the inequalities $\frac{c_{[i+\lambda]}}{y_i} \ge M$ and $\frac{y_{[i+\lambda]}}{c_i} \ge M$ hold for each $\lambda \ge 1$ and each $i \ge n^*$. As M was arbitrary, one concludes $y_i \stackrel{tr}{\sim} c_i$, as $i \to \infty$. In other words, $y \in [\mathbf{c}]_{tr}$.

Corollary 2.7. The selection principle $\alpha_2([\mathbf{c}]_{tr}, [\mathbf{c}]_{tr})$ holds for each fixed element $\mathbf{c} \in \mathsf{Tr}(\mathsf{R}_{s,\infty})$, and thus $\alpha_3([\mathbf{c}]_{tr}, [\mathbf{c}]_{tr})$ and $\alpha_4([\mathbf{c}]_{tr}, [\mathbf{c}]_{tr})$ hold.

Acknowledgement. The first named author was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

References

- N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987.
- D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Some properties of rapidly varying sequences, J. Math. Anal. Appl. 327:2 (2007) 1297–1306.
- [3] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Classes of sequences of real numbers, games and selection properties, Topology Appl. 156:1 (2008) 46–55.
- [4] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, A few remarks on divergent sequences: Rates of divergence, J. Math. Anal. Appl. 360:2 (2009) 588–598.
- [5] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, A few remarks on divergent sequences: rates of divergence II, J. Math. Anal. Appl. 367:2 (2010) 705–709.
- [6] D. Djurčić, A. Torgašev, S. Ješić, The strong asymptotic equivalence and the generalized inverse, Siber. Math. J. 49:4 (2008) 786–795.
- [7] L. de Haan, On Regular Variation and its Applications to the Weak Convergence of Sample Extremes, Math. Centre Tracts, Vol. 32, CWI, Amsterdam, 1970.
- [8] J. Karamata, Sur un mode de croissance régulière des functions, Mathematica (Cluj) 4 (1930) 38–53.
- [9] Lj.D.R. Kočinac, Selected results on selection principle, In: Proc. Third. Sem. Geom. Topology, Tabriz, Iran (2004) 71–104.
- [10] Lj.D.R. Kočinac, On the α_i -selection principles and games, Cont. Math. 533 (2011) 107–124.
- [11] Lj.D.R. Kočinac, D. Djurčić, J.V. Manojlović, Regular and Rapid Variations and Some Applications, In: M. Ruzhansky, H. Dutta, R.P. Agarwal (eds.), Mathematical Analysis and Applications: Selected Topics, Chapter 12, John Wiley & Sons, Inc., (2018) 414–474.
- [12] V. Timotić, D. Djurčić, R.M. Nikolić, On slowly varying sequences, Filomat 29:1 (2015) 7–12.

Dragan Djurčić,

UNIVERSITY OF KRAGUJEVAC, FACULTY OF TECHNICAL SCIENCES, SVETOG SAVE 65, 32000 ČAČAK, SERBIA

E-mail address: dragan.djurcic@ftn.kg.ac.rs

Ljubiša D. R. Kočinac,

UNIVERSITY OF NIŠ, FACULTY OF SCIENCES AND MATHEMATICS, 18000 NIŠ, SERBIA *E-mail address:* lkocinac@gmail.com