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ABSTRACT

Gökçeada Island, which is situated west of Biga Peninsula, has widespread magmatism with 
variable ages.  Lower-Middle Eocene Dağiçitepe volcanics are the oldest volcanic unit in the 
island and consist of lavas, tuff-tuffites. They are influenced by alteration and almost all minerals, 
except quartz, are transformed into other minerals.  Lower Oligocene Gökçeada andesitic lava/
domes exhibiting hypocrystalline porphyric texture, are the products of NE-SW trending domes/
cryptodomes. The phenocrysts assemblages consist of plagioclase, hornblende, clinopyroxene ± 
biotite and quartz. Middle Miocene Eşelek volcanics, which occur as lavas and pyroclastic rocks, 
exhibit hypocrystalline porphyric and intersertal textures. They are composed of plagioclase, 
hornblende and clinopyroxene crystals.    Rhyolitic Dağiçitepe volcanics and andesitic Gökçeada 
lava/domes have calc-alkaline, andesitic Eşelek volcanics have tholeiitic character. They have 
geochemical features similar to subduction-related magmas. Lower-Middle Eocene Dağiçitepe 
volcanics are the products of syn-collisional magmas that have undergone processes of crustal 
contamination due to thickened crust. Whereas, Lower Oligocene Gökçeada andesitic lava/domes are 
the products of post-collisional magmas and were derived from metasomatized lithospheric mantle. 
Middle Miocene Eşelek volcanics were also derived from lithospheric mantle but, the mantle source 
generating Eşelek volcanics were relatively depleted over time. Geochemical data demonstrate the 
decreasing role of subduction signature and crustal contamination during the genesis and evolution 
of Gökçeada volcanics from Lower-Middle Eocene to Middle Miocene.
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1. Introduction

Northward subduction and the following closure of 
the northern branch of Neo-Tethys ocean beneath the 
Sakarya continent, a continental collision between the 
Anatolide-Tauride blocks and the Sakarya continent 
occurred (Şengör and Yılmaz, 1981; Okay and Tüysüz, 
1999). This continent-continent collision, which 
caused the formation of the Izmir-Ankara-Erzincan 
suture zone, occurred in the early Paleocene in the 

west (Okay and Tüysüz, 1999). Following the collision 
between the Sakarya continent and the Anatolide-
Tauride blocks in the Late Cretaceous in northwestern 
Anatolia, a widespread magmatism from Eocene to 
Pliocene has developed, and the Tertiary magmatism 
has occurred in the region as a result of this collision 
(Şengör and Yılmaz, 1981; Yılmaz, 1989; Harris et 
al., 1994; Genç and Altunkaynak, 2007; Altunkaynak 
and Genç, 2008; Karacık et al., 2008; Yılmaz Şahin et 
al., 2010; Altunkaynak et al., 2012a, b; Altunkaynak 
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Figure 1- Geological map of Gökçeada (from Sarı et al., 2015).

and Dilek, 2013; Gülmez et al., 2013; Aysal, 2015). 
The Gökçeada volcanism, which is the subject of this 
study, is the product of magmatic activity that took 
place during Tertiary. Tertiary magmatism, which is 
exposed in Gökçeada, began in the Lower Eocene 
and its activity has continued until Middle Miocene 
in various phases.

In this study, the petrographical and geochemical 
features of Lower-Middle Eocene Dağiçitepe, Lower 
Oligocene Gökçeada lava/domes and the Middle 
Miocene Eşelek volcanic rocks are presented and the 
magmatic processes in the genesis and evolution of 
Gökçeada volcanic rocks are introduced with trace 
element ratio diagrams and petrogenetic models.   
Gökçeada has been investigated by various researchers 
in terms of geological and stratigraphic features 
(Akartuna, 1950; Akartuna and Atan, 1978; Temel 
and Çiftçi, 2002; Kesgin and Varol, 2003; Ilgar et al. 
2008; Sarı et al., 2015).  As a widespread volcanism 
was occurred on the island, recent studies have mainly 

focused on the geochronological, geochemical and 
petrological characteristics of these magmatic rocks 
(Elmas et al., 2017; Aysal et al., 2018).

2. Regional Geology

Gökçeada, which is the largest island of Turkey, 
is located at 20 km west of the Biga Peninsula. 
Metamorphic, magmatic and sedimentary rocks 
ranging from Mesozoic to Quaternary formed on the 
island (Figure 1). However, the geology is dominated 
by magmatic rocks, occupying large areas. Late 
Ediacaran/Early Paleozoic Çamlıca metamorphic 
rocks (Okay et al., 1990; Tunç et al., 2002) are the 
oldest rocks of the island and consist of sericitic-
schist, chloritic-schist, slate and marble. Lower 
Eocene Karaağaç formation that is composed of 
submarine fan deposits unconformably overlies the 
Çamlıca metamorphics. The altered rhyolitic volcanic 
rocks outcropping in the NW of Gökçeada were 
first named by Sarı et al. (2015) as the “Dağiçitepe 
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volcanite member”. The unit consisting of rhyolitic 
lava and tuff-tuffites is the oldest volcanic unit of 
the island. Elmas et al. (2017) defined these rhyolites 
and granitic plutons exposing in NW of the island as 
Marmaros Magmatic Assemblage and obtained an age 
of 26.2 ± 1.5 Ma from a rhyolite sample by the U-Pb 
LA-ICP-MS method. In the first stage of volcanic 
activity, the tuffs and then the lavas were erupted. The 
lavas of Dağiçitepe volcanic rocks were emplaced 
onto the Karaağaç formation by cutting Çamlıca 
metamorphic rocks. It is thought that they are Lower-
Middle Eocene in age as the tuffs forming the unit are 
intercalated with the Karaağaç formation and lavas cut 
these deposits. Middle Eocene Koyunbaba formation, 
which is composed of shallow marine sandstones, 
unconformably overlies the Karaağaç formation and 
conformably underlies the reefal limestones. Middle-
Upper Eocene Ceylan formation, which is formed by 
claystone-sandstone-shale alternation and deposited 
due to turbiditic currents in deep marine environment, 
conformably overlies the Soğucak formation. The unit 
is conformably overlain by the Mezardere formation. 
Lower Oligocene Mezardere formation (Ilgar et al., 
2008) consists of the alternation of conglomerate 
with lesser amount of sandstone, siltstone and marl 
and it conformably overlies the Ceylan formation. 
Mezardere formation cut by the Gökçeada domes, 
is covered by the Gökçeada ignimbirite, and is cut 
and covered by the Eşelek volcanic rocks, too. The 
Mutludere intrusion, which is intruded into the 
sediments of the Karaağaç and Ceylan formations, has 
quartz-monzonite, diorite-porphyry composition (Sarı 
et al., 2015). As the Mutludere intrusion cut through 
the Upper Eocene sediments, it can be considered 
that the intrusion have been settled in the region 
after Eocene (Sarı et al., 2015). Andesite and diorite 
porphyry volcanic rocks occupying large areas on the 
island was named as the “Gökçeada domes” by Sarı 
et al. (2015). In this study, the domes will be called 
as the “Gökçeada andesitic lava/domes”. Gökçeada 
andesitic lava/domes were emplaced into the 
Eocene sedimentary units in NE-SW trending dome-
cryptodome and small lava flows in places. Gökçeada 
andesitic lava/domes were settled in Oligocene and 
their ages were detected as 28.6 ± 0.8 My by Sarı et 
al. (2015), and as 30.4 My and 34.3 My by Ercan et 
al. (1995) with radiometric age determinations using 
K/Ar method. These ages indicate that the magmatic 
activity occurred in the Lower Oligocene. However, 
Aysal et al. (2018) found that the U-Pb LA-ICP-MS 

zircon ages of the Gökçeada volcanic rocks were 25.66 
± 0.43 My and 26.0 ± 0.26 My. Pumice flows observed 
in east and south of Gökçeada were first named by Sarı 
et al. (2015) as the “Gökçeada ignimbrite”. Gökçeada 
ignimbrite, which unconformably overlies the Ceylan 
and Mezardere formations, is unconformably overlain 
by Kesmekaya and Eşelek volcanic rocks. As the 
Gökçeada ignimbrite flows over the Lower Oligocene 
Mezardere formation and underlies the Middle 
Miocene Eşelek volcanic rocks, it is considered that 
the volcanic activity forming the ignimbrite occurred 
in the Upper Oligocene (Sarı et al., 2015). Lower 
Miocene Kesmekaya volcanic rocks composed of lava 
and block-and-ash flows are located on the Gökçeada 
ignimbrite. The andesitic lavas and pyroclastic rocks, 
which spread over large areas to the east of Gökçeada, 
were first mapped by Sarı et al. (2015) and named as 
the “Eşelek volcanic rocks”. The pyroclastic deposits 
of the Eşelek volcanic rocks consist of lahar and block- 
and-ash flow deposits. Eşelek volcanic rocks overlies 
the Mezardere formation, Gökçeada ignimbrite 
and Kesmekaya volcanic rocks and unconformably 
underlies the Upper Miocene Çanakkale formation. 
Therefore, it is considered that the unit was formed 
in Middle Miocene. The Upper Miocene Çanakkale 
formation (Şentürk and Karaköse, 1987; Atabey et 
al., 2004) consists of less consolidated conglomerate, 
sandstone, siltstone and marl intercalations. The 
Quaternary deposits consist of debris flow and loose, 
unconsolidated conglomerate, sandstone, siltstone and 
mudstones unconformably overlie all formerly units.

3. Petrographical Features

Almost all of the samples from rhyolitic lavas of 
the Dağiçitepe volcanic rocks have been subjected 
to hydrothermal activity. All minerals, except quartz, 
were altered and transformed into other minerals. 
Only the external crystal forms of the original 
mineral are remained due to alteration (Figure 2a). 
Hornblende and biotite were completely opacified. 
While the great majority of the plagioclases were 
altered to sericite minerals, some of them were altered 
to pyrophyllite minerals (Figure 2a). The amount of 
glass in the groundmass is quite low. This is probably 
due to the subsequent development of secondary 
mineral formations. In addition to the silicification 
and carbonatization, the spherulites having a radiating 
structure that resulted from the intergrowth of quartz 
and feldspars due to silicification and devitrification, 
are observed (Figure 2a). 
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Figure 2- Photomicrographs of the Gökçeada volcanic rocks (Qz: quartz, Pl: plagioclase, Ab: 
albite, Hbl: hornblende, Cpx: clinopyroxene, Bt: biotite, Chl: chlorite, Ep: epidote, 
Cal: calcite and Po: pyrophyllite), a) quartz, sericitized plagioclase and secondary 
muscovite minerals in the devitrified groundmass, cross-polarized, Dağiçitepe volcanic 
rock Ş-5 sample, b) quartz, hornblende and albitized plagioclase phenocrysts in the 
silicified groundmass, cross-polarized, Gökçeada andesitic lava/domes Ş-9 sample, c) 
hydrothermally altered hornblende mineral, plane-polarized, Gökçeada andesitic lava/
domes, d) relict clinopyroxene-based hornblende crystal and biotite minerals aligning 
in one direction, plane-polarized, Gökçeada andesitic lava/domes Ş-10 sample, e) 
pseudomorph epidote, calcite and chlorite aggregates, formed by hydrothermal alteration 
of sericitized plagioclase and clinopyroxene in silicified groundmass, cross-polarized, 
Gökçeada andesitic lava/domes Ş-1 sample, f) plagioclase with dusty zone, clear and 
euhedral clinopyroxene, resorbed quartz and hornblende minerals, plane-polarized, 
Gökçeada andesitic lava/domes Ş-10 sample, g) clear hornblende, plagioclase and 
partially chloritized biotite minerals, plane-polarized, Gökçeada andesitic lava/domes 
G15-J1, h) clear clinopyroxene, zoned plagioclase with glass inclusion, and partially 
or fully opacitized hornblende minerals, plane-polarized, Eşelek volcanic rock EŞ-2 
sample.
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Gökçeada andesitic lava/domes are andesitic 
volcanic products emplaced as NE-SW trending 
dome-cryptodome. Gökçeada andesitic lava/domes 
have hypocrystalline-porphyritic texture and their 
phenocrysts content vary between   40-75%. In general, 
the hydrothermal alteration is common and secondary 
minerals were formed. The groundmass significantly 
remained under the influence of silicification and 
carbonatization. For this reason, quartz minerals 
formed in the fractures and calcite are observed. There 
are three types of mineral assemblages in Gökçeada 
andesitic lava/domes; (1) plagioclase, hornblende, 
clinopyroxene ± quartz (crystal amount; 40-55%); 
(2) plagioclase, hornblende, clinopyroxene, biotite, 
quartz (crystal amount; 50-65%) and (3) plagioclase, 
hornblende, biotite ± quartz (crystal amount; 60-75%).

Plagioclase usually exhibits zoning and it 
was altered by sericitization, carbonatization and 
albitizations (Figure 2b). In plagioclase where 
alteration is less common, honeycomb textures and 
dusty zones are remarkable. Some plagioclase crystals 
are clustered as aggregate to form glomeroporphyric 
texture. The clear plagioclases exhibiting no alteration, 
zoning and inclusion, are rare.

Hornblende, particularly in the second and third 
assemblages, often occurs as clear crystals but it was 
also partially opacified along margins and cleavage 
planes. Whereas, almost all of the hornblendes in the 
first assemblage were either opacitized or carbonated 
(Figure 2c). Some hornblendes reaching up to 7 mm 
in grain size in the second assemblage contain relict 
pyroxene and biotite crystals occurred along the 
cleavage planes (Figure 2d).

Clinopyroxene, in the first assemblage, was 
subjected to intense alteration. Although it maintains 
its external crystal form, almost all of them are 
formed from secondary epidote, chlorite and calcite 
aggregates (Figure 2e). Except these samples, they 
commonly occur as clear crystals (Figure 2f).

Biotite, is usually seen as clear crystals, some have 
partially or completely altered to chlorite (Figure 2g).

Quartz occurs as anhedral aggregates, and present 
in the groundmass in large quantities. Some quartz 
have resorbed and rounded corners, some occur as 
subhedral crystals in the fractures.

Groundmass is mainly composed of anhedral 
quartz and plagioclase microlites and hornblende, 
clinopyroxene and opaque microcrystals as well. 
The amount of glass is low and the carbonatization, 
silicification and argillization are observed. Zircon 
and apatite are accessory minerals.

Eşelek volcanic rocks, represented by lava and 
pyroclastics in the east of Gökçeada, were first mapped 
and named by Sarı et al. (2015). The phenocryst 
amount of the andesitic lava samples from the Eşelek 
volcanic rocks is about 70%. All of them show 
hypocrystalline-porphyritic and intersertal texture. It 
consists of plagioclase, hornblende and clinopyroxene 
minerals.

Plagioclase; zoning, honeycomb textures and 
dusty zones, reflecting unstable conditions, are seen in 
the plagioclase crystals (Figure 2h).

Hornblende; the great majority of the hornblende 
crystals are completely opacitized, just the core of the 
coarse grains appear clear (Figure 2h).

Clinopyroxene; occur as clear pale green crystals.

The groundmass consists of microcrysts of 
clinopyroxene, hornblende, opaque minerals and 
plagioclase microlites. The glass amount is lower than 
crystals.

4. Analytical Techniques

Major-oxide, trace and rare earth element analyses 
were performed in the Department of Mineral Analysis 
and Technology of the General Directorate of Mineral 
Research and Exploration (MTA), Ankara, Turkey. 
The major-oxide analyses were determined on pressed 
pellets weighing approximately 3 gr sample, which 
are obtained by mixing cellulose as a binder (0.9 gr) 
and pressing under 40 kN pressure using the Thermo 
ARL brand XRF apparatus. Major element analyses 
were determined in the form of oxide % (SiO2, Al2O3, 
Fe2O3 = total iron, MgO, CaO, Na2O, K2O, MnO, 
TiO2, P2O5). The amount of loss on ignition (LOI) 
was determined as weight % of the sample calcified 
for 4 hours in an oven at 1050 ± 10 °C from the dried 
sample at 105 ± 5 °C for at least 4 hours.

Trace and rare earth element analyses were 
performed on the THERMO ICAP Q brand ICP-MS 
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device. 0,25 g of the sample were dissolved with 
HCl, HNO3, HClO4 and HF acids and the dissolved 
sample was analysed by completing it to 50 ml. The 
Certified Reference Material JG-1a was used for the 
quality control of analyses. The measured values of 
the certified standard reference material during the 
analysis are given in table 1.

5. Geochemical Features

Major-oxide, trace and rare earth element analyses 
of the Lower-Middle Eocene Dağiçitepe, Lower 
Oligocene Gökçeada lava/domes and Middle-Miocene 
Eşelek volcanic rocks are given in table 1. The major-
oxide results have been normalized to 100% on 
an anhydrous basis and then these data are plotted 
on the Zr/TiO2 vs SiO2 diagram of Winchester and 
Floyd (1977) (Figure 3) in order to classify the rocks. 
According to this diagram, Dağiçitepe volcanic rocks 
fall into the rhyolitic, Gökçeada andesitic lava/domes 
and Eşelek volcanic rocks fall into the andesitic fields, 
and they generally exhibit sub-alkaline character. 
Based on the AFM diagram with calc-alkaline-
tholeiitic dividing line (Irvine and Baragar, 1971), the 
Dağiçitepe volcanic rocks and Gökçeada andesitic 
lava/domes fall into calc-alkaline, Eşelek volcanic 
rocks fall into the tholeiitic fields (Figure 3).

Major-oxide and trace element variation diagrams 
against SiO2 (Harker diagrams) are given in figure 4. 
Increasing SiO2 in Gökçeada andesitic lava/domes 
is correlated with i) decreasing Fe2O3, MgO, CaO, 
Sr and V and ii) slight increasing K2O, Na2O and 
Ba. These observed variations in Fe2O3, MgO, CaO 
and Sr elements are related to the fractionation of 
olivine, pyroxene, Ca-plagioclase and Fe-Ti minerals. 
K2O, Na2O and Ba elements also show a tendency 
to increase against SiO2. The variations between 
SiO2 and major-oxides, trace elements suggest that 
fractional crystallization processes are effective in 
the evolution of Gökçeada andesitic lava/domes. 
Increasing SiO2 in the Dağiçitepe volcanic rocks is 
slightly correlated with; i) decreasing Fe2O3, CaO and 
Sr and ii) increasing Ba. However, it is observed that 
the Eşelek volcanic rocks show a narrow variation 
against SiO2.

Primitive mantle normalized trace element 
abundances patterns for the selected samples from 

Gökçeada are presented in figure 5. Gökçeada 
volcanic rocks are enriched in large ion lithophile 
elements (LILE: Cs, Rb, Ba, K, Th, U) relative to 
the primitive mantle. In general, all volcanic rocks 
exhibit similar trace element distribution patterns. 
As seen in diagrams, all samples have remarkable 
negative Nb, Ta and Ti, and positive Th, U, Pb and 
K anomalies. However, the Dağiçitepe volcanic rocks 
are distinguished from Gökçeada andesitic lava/
domes and Eşelek volcanic rocks with their low Sr, 
P and Ti anomalies. This is due to fractionated nature 
and acidic character of the Dağiçitepe volcanic rocks, 
since Sr and P elements are taken up by Ca-plagioclase 
and apatite minerals during fractional crystallization. 
Therefore, the negative Sr and P anomalies in the 
Dağiçitepe volcanic rocks can be explained by Ca-
plagioclase and apatite fractionation. Trace element 
patterns of Eşelek volcanic rocks show similar trends 
to those of Gökçeada andesitic lava/domes. The 
Eşelek volcanic rocks show different variations in 
Zr and Hf elements with respect to the Dağiçitepe 
volcanic rocks and Gökçeada andesitic lava/domes. 
Negative anomalies observed in Nb, Ta and Ti, and 
the positive anomalies in Th, U and Pb elements are 
typical geochemical characteristics of subduction-
related magmas. In addition, contamination by crustal 
rocks during magma ascent to surface causes such 
anomalies (Gill, 1981; Thompson et al., 1983; Fitton 
et al., 1988).

Chondrite normalized rare earth element (REE) 
distribution diagrams (McDonough and Sun, 1995) of 
Gökçeada volcanic rocks are given in figure 6.

REE distribution patterns of the Gökçeada volcanic 
rocks show similar trends. The chondrite normalized 
(La/Yb)n ratios (McDonough and Sun, 1995) of the 
Dağiçitepe volcanic rocks, Gökçeda andesitic lava/
domes and Eşelek volcanic rocks vary between 
11,50-14,59, 13,82-18,17 and 8,23-8,68, respectively. 
This ratio points out the fractionated nature of the 
Dağiçitepe volcanic rocks and Gökçeada andesitic 
lava/domes, however, the fractionation is not effective 
in the Eşelek volcanic rocks as they have a lower 
(La/Yb)n ratio than others. Besides, slight depletion 
in heavy rare earth elements (HREE) in Dağiçitepe 
volcanic rocks relative to other volcanics in the study 
area and the presence of negative Eu anomalies are 
due to fractionated nature of these rhyolitic rocks.
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6. Discussion

6.1. Source Characteristics

Trace and rare earth element geochemistry 
demonstrate that subduction and/or crustal 
contamination processes (low Nb, Ta and Ti; high Th, 
U and Pb contents) are effective in the genesis and 
evolution of the Gökçeada volcanism. Therefore, trace 
element ratio and tectonic discrimination diagrams are 
drawn in order to clarify the tectonic setting and source 
characteristics of the Gökçeada volcanism. Elmas et 
al. (2017)’s data of Gökçeada volcanic rocks are also 
plotted onto diagrams. Ba/La vs Nb/La diagram is used 
to distinguish within-plate volcanism from orogenic 
volcanisms, because high Ba/Nb (>28) and Ba/Ta 
(>450) ratios are the characteristics of subduction-
related magmas (Gill, 1981; Fitton et al., 1988) and 
high Nb/La (>1,5) ratio is the typical characteristic of 
within-plate volcanism subjected no and/or negligible 
crustal contamination (Haase et al., 2000). Gökçeada 
volcanic rocks have very high Ba/Nb (112-334) and 
Ba/Ta (1452-3608) ratios. As can be seen from Figure 
7a, the Gökçeada volcanic rocks are located in the 
region represented by orogenic andesites. While the 

vertical trend observed in the Rb/Y vs Nb/Y diagram 
(Figure 7b) indicates the crustal contamination and/or 
subduction zone enrichment, within-plate enrichment 
results from a positive relationship between Rb and 
Nb (Edwards et al., 1991). Gökçeada volcanic rocks 
show a vertical trend in the direction of subduction 
enrichment and fall close to the field represented by 
Andean volcanic rocks. Also in Th/Ta vs Yb diagram, 
it is seen that the samples are concentrated in the field 
represented by arc magmatism (Figure 7c). 

In (Nb/Zr)n vs Zr diagram (Figure 7d), while 
Dağiçitepe volcanic rocks are plotted in the collisional 
zone, Gökçeada andesitic lava/domes and Eşelek 
volcanic rocks are plotted in the subduction related 
zone. Additionally, all samples are plotted within 
the field of volcanic arc and syn-collisional granite 
field in Nb vs Y tectonic discrimination diagram of 
Pearce et al. (1984) suggested for granitic rocks 
(inset diagram in figure 7d). However, as the tectonic 
setting of granitic rocks falling at the intersection of 
within-plate granites (WPG), volcanic-arc granites 
(VAG), and syn-collisional granites (syn-COLG) is 
still controversial, this intersection field is regarded 

Figure 3- Zr/TiO2 vs SiO2 diagram of the Gökçeada volcanic rocks (Winchester and Floyd, 1977). The inset figure is the 
representation of sub-alkaline samples in the AFM diagram (Irvine and Baragar, 1971).
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Figure 4- The major-oxide and trace element vs SiO2 variation diagrams of the Gökçeada volcanic rocks.
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as post-collisional granite (post-COLG) field (Pearce, 
1996). According to this diagram, Dağiçitepe volcanic 
rocks and Gökçeada andesitic lava/domes slightly 
shifted from the field of post-collisional granite 
to volcanic arc granite (VAG) and syn-collisional 
granite (syn-COLG) field, Eşelek volcanic rocks are 

located in the post-collisional granite field (Figure 
7d). According to the trends in figure 7d, it can be 
suggested that Dağiçitepe volcanic rocks are the 
products of collisional magmas, Gökçeada andesitic 
lava/domes and Eşelek volcanic rocks are the products 
of post-collisional magmas.

Figure 5- Primitive mantle-normalized (Sun and McDonough, 1989) trace element distribution patterns of Gökçeada 
volcanic rocks.

Figure 6-  Chondrite normalized rare earth element distribution diagram of the Gökçeada volcanic rocks (McDonough 
and Sun, 1995).
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Figure 7-  a) Ba/La vs Nb/La; b) Rb/Y vs Nb/Y (Edwards et al., 1991); c) Th/Ta vs Yb (from Zak et al., 2011 and Qian et al., 2013); d) (Nb/Zr)
n vs Zr (Thiéblemont and Tegyev, 1994) diagrams of the Gökçeada volcanic rocks (inset figure from Pearce et al., 1984 and Pearce, 
1996). Abbreviations: E-MORB: Enriched-Mid Ocean Ridge Basalt; N-MORB: Normal Mid Ocean Ridge Basalt; OIB: Ocean 
Island Basalts; post-COLG: Post-Collisional Granites; syn-COLG: syn-Collisional Granites; VAG: Volcanic Arc Granites; WPG: 
Within-plate Granites; ORG: Ocean Ridge Granites. The data of the Andean volcanic rocks are from Hickey et al. (1986; 1989) and 
Bryant et al. (2006).

6.2. Crustal Contamination

In order to determine the role of crustal 
contamination and fractional crystallization process 
in the evolution of Gökçeada volcanism, the AFC 
(assimilation - fractional crystallization) model 
of De Paolo (1981) has been applied in a Th/Y vs 
Nb/Y diagram. In the modeling, MORB (Mid Ocean 
Ridge Basalt) (Hofmann, 1988) and upper crust 
(UC) (McLennan, 2001) have been used as the initial 
starting composition and concomitant end-members, 
respectively. The ratios of the rate of assimilation to 
the rate of crystallization (-r values) are -0,1 and 0,7 
(Figure 8). Gökçeada andesitic lava/domes and Eşelek 
volcanic rocks are shifted from the AFC trajectories 
in the direction of high Th/Y with almost constant 

Nb/Y ratios. This could be possibly due to the source 
characteristics rather than the involvement of crustal 
material to magmas during their ascent to the surface. 
However, the Dağiçitepe volcanic rocks are located 
close to the r=0,7, indicating the involvement of 
crustal material during their rise. Additionally, it can 
be concluded that the magmas generating Gökçeada 
volcanism retain the geochemical features of the 
subduction-related magmas, since almost all samples 
are located within the field of Andean volcanic rocks.

Low Ce/Pb ratio is one of the most characteristic 
features of the crustal contamination and/or sediment 
contamination to the mantle material, because 
the Pb content in crustal materials is remarkably 
higher than the mantle. Hofmann et al. (1986) have 
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shown that OIB and MORB (Ocean Island Basalt 
& Mid Ocean Ridge Basalt) mantle have a high and 
relatively constant Ce/Pb ratio (~25). On the other 
hand, the upper crust and GLOSS (Global Subducting 
Sediment) have low Ce/Pb values (~3,8 and ~2,9) 
(Taylor and McLennan, 1985; Plank and Langmuir, 
1998; McLennan, 2001). The AFC modeling in the 
Th/Y and Nb/Y diagram indicates that high Th and 
low Nb contents in the Gökçeada volcanic rocks can 
be related to the source characteristics rather than 
the crustal contamination, since higher Th contents 
already indicate the involvement of subducted 
sediment  (Plank, 2005; Labanieh et al., 2012). 
Therefore, in order to assess the reasons of high Th 
and Pb contents in the Gökçeada volcanic rocks and to 
reveal the role of sediment involvement in the genesis 
of volcanic rocks, binary mixing model of Langmuir 
et al. (1978) has been performed and a mixing curve 
has been calculated in a Ce/Pb vs Pb diagram between 
‘MORB’ and ‘sediment’, with an average Pb content 
(0,7) and Ce/Pb ratio (25,7) for MORB (Normand and 
Garcia, 1999) and Pb content (27) and Ce/Pb ratio 
(2,2) for the gravity core sediment sample (N17/30) 
from Kermadec-Hikurangi volcanic arc system 
(Gamble et al., 1996) (Figure 9a). The Gökçeada 

volcanic rocks generally lie on the mixing curve in 
the direction of ‘sediment’ end-member. Accordingly, 
it can be concluded that the contribution of sediment 
having arc signatures plays an important role. 

Figure 9b displays the Rb/Ba vs Rb/Sr diagram 
with binary mixing curve between ‘basalt-derived 
melt’ and ‘pelite-derived melt’ (Slyverster, 1998). It is 
clear from this figure that the Eşelek volcanic rocks and 
Gökçeada andesitic lava/domes are distributed close 
to the ‘basalt-derived melt’ end-member, indicating 
derivation from a mantle source rather than crustal 
melting, because ‘basalt-derived melt’ and ‘pelite-
derived melt’ end-members in the diagram represent 
mantle and crustal source, respectively  (Sylvester, 
1998; Li et al., 2015; Chen et al., 2017). Whereas, 
Dağiçitepe volcanic rocks shift to higher Rb/Sr ratios 
with no corresponding change in Rb/Ba. This could be 
because the fractionated and contaminated nature of 
the Dağiçitepe samples. This case is also supported by 
the variations observed in the Th/Y-Nb/Y diagram for 
Dağiçitepe volcanic rocks (Figure 8). 

Consequently, the geochemical evaluations reveal 
that the Gökçeada volcanism have geochemical 

Figure 8-  AFC modeling for the Th/Y vs Nb/Y diagram between Mid Ocean Ridge Basalts (MORB, Hofmann, 
1988) and the upper crustal end-members. (Andean volcanic rocks are from Hickey et al. (1986; 1989) 
and Bryant et al., 2006). The r (the ratio of the rate of assimilation to the rate of crystallization) is shown 
as trajectories on the diagram.  
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variations similar to that of subduction-related 
magmatism and subduction processes in their 
genesis have played a major role (Figure 7). Further, 
the Dağiçitepe volcanic rocks are the products 
associated with collision-related magmas, and they 
have subjected to the crustal contamination during 
their ascent through the thickened crust.  Gökçeada 
andesitic lava/domes and Eşelek volcanic rocks are 
the products of post-collisional magmas retaining 
subduction signatures. 

6.3. Petrological Modeling

In order to determine the source mineralogy and 
melting depth of the Gökçeada volcanism, the non-
modal batch-melting model of Shaw (1970) has 
been realized. In the model, the enriched lithospheric 
mantle component from McDonough (1990) has been 
chosen as the initial component (C0). Garnet bearing 
amphibole-peridotite for the source composition and 
has been used, and the non-modal batch melting 

Figure 9- a) Ce/Pb vs Pb binary mixing diagram (Langmuir et al., 1978) (MORB 
and sediment values are from Normand and Garcia (1999) and Gamble 
et al. (1996), respectively); b) Rb/Ba vs Rb/Sr diagram of the Gökçeada 
volcanic rocks. (The mixing curve between the basalt-derived melt and 
pelite-derived melt from Sylvester (1998). 
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calculations have been performed. The mineral/melt 
partition coefficient (Kd) values for basaltic melts of 
the REEs are from Rollinson (1993), McKenzie and 
O’Nions (1991) and Adam and Green (2006; 2010). 
The modal mineralogy (X) and melting mode (Pi) 
values of the garnet-bearing amphibole peridotite 
melting facies and La, Sm and Yb concentrations of 
the enriched lithospheric mantle component are from 
McDonough (1990) and Ersoy et al. (2012). The data 
used in the modeling calculations are given in table 
2. It can be concluded from the figure 10 that the 
Gökçeada andesitic lava/domes were derived from 
a garnet bearing amphibole-peridotite via variable 
degrees of partial melting, since they are clearly plotted 
on the melting curve drawn for the 3%, 5% and 7% 
garnet-bearing amphibole peridotite (Figure 10). The 
Eşelek volcanic rocks, on the other hand, represent a 
relatively depleted source with low La/Yb, Sm/Yb and 
(Tb/Yb)n ratios. The petrogenetic modeling diagrams 
show that metasomatic processes play a dominant 
role in the Lower Oligocene Gökçeada andesitic lava/
domes. However, the mantle source generating the 
Middle Miocene Eşelek volcanic rocks became more 
depleted over time.

Table 2- Data used in the non-modal batch melting calculations. 
Abbreviations: Opx: orthopyroxene; Cpx: 
Clinopyroxene.

Amphibole bearing garnet peridotite

Source Mode (X) Melting 
Mode (Pi)

7% 5% 3%
Olivine 0,54 0,54 0,54 0,05
Opx 0,21 0,21 0,21 0,05
Cpx 0,12 0,14 0,15 0,3
Garnet 0,07 0,05 0,03 0,2
Amphibole 0,06 0,06 0,06 0,4

Initial 
concentration 

(C0)

Bulk Partition 
Coefficient (D0)

Melting 
Mode (P)

La 2,6 0,0082 0,0292
Sm 0,47 0,0659 0,2284
Tb 0,07 0,127 0,5116
Yb 0,26 0,2282 1,1489

6.4. Geodynamic Effects

Late Cretaceous-Early Eocene tectonic evolution 
of the Western Anatolia is represented by the ophiolite 
emplacement, high pressure/low temperature 
metamorphism, subduction, arc magmatism and 
continent-continent collision (Okay et al., 2001). 

The consumption of the oceanic lithosphere of 
the northern branch of Neotethys by northward 
subduction beneath the Sakarya continent caused the 
continent-continent collision between the Sakarya 
continent and the Anatolide-Tauride platform. It is 
suggested that consumption of the northern branch 
of Neotethys and subsequent collision, which caused 
the formation of İzmir-Ankara Suture Zone occurred 
in the Paleocene-early Eocene (Harris et al., 1994; 
Okay and Tüysüz, 1999; Altunkaynak et al., 2012b). 
Tertiary magmatic activity in NW Anatolia is also the 
products of this collision (Şengör and Yılmaz, 1981; 
Yılmaz, 1989; Harris et al., 1994; Yılmaz et al., 1995). 
Additionally, the stratigraphic data (Akdeniz, 1980; 
Akyürek and Soysal, 1983; Yılmaz et al., 1997) also 
reveals that the collision was earlier than the Middle 
Eocene and the Eocene magmatism corresponded to 
the post-collisional magmatism (Harris et al., 1994; 
Genç and Yılmaz, 1997; Köprübaşı and Aldanmaz, 
2004; Altunkaynak and Dilek, 2006; Altunkaynak, 
2007; Altunkaynak et al., 2012b). Gökçeada has 
a widespread magmatism with variable ages and 
compositions. The genesis and evolution of the 
Lower-Middle Eocene Dağiçitepe volcanic rocks, 
Lower Oligocene Gökçeada andesitic lava/domes and 
Middle Miocene Eşelek volcanic rocks are related to 
the Late Cretaceous-Early Eocene tectonic evolution. 
The overall geochemical variations reveal that the 
geodynamic evolution of the region has been effective 
in the genesis and evolution of the volcanism. 
Accordingly;

(i) (Nb/Zr)n vs Zr tectonic discrimination diagram 
(Figure 7d) reveals that the Dağiçitepe volcanic 
rocks were generated in a collision related setting, 
and Th/Y vs Nb/Y and Rb/Ba vs Rb/Sr diagrams in 
which the assimilation and fractional crystallization 
processes are modeled reveal the effects of crustal 
contamination in their evolution. Accordingly, the 
Lower-Middle Eocene Dağiçitepe volcanic rocks carry 
the geochemical signatures of collisional magmas as it 
corresponds to the latest stages of the collision (e.g., 
crustal contamination). 

(ii) Gökçeada andesitic lava/domes and Eşelek 
volcanic rocks are clearly fall into the subduction-
related field (Figure 7d). Moreover, since both 
volcanisms are located close to the “basalt-derived 
melt” end-member, representing the mantle source 
in the Rb/Ba vs Rb/Sr diagram, the effects of crustal 
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contamination can be negligible. The petrogenetic 
modeling diagrams (Figure 10) also pointed out that 
both volcanisms were derived from a metasomatized 
lithospheric mantle source. Considering that the 
Eocene magmatism in NW Anatolia corresponds to 
the post-collisional magmatism, it can be concluded 

that the Gökçeada andesitic lava/domes and Eşelek 
volcanic rocks were generated in a post-collisional 
setting. However, the Eşelek volcanic rocks were 
derived from a relatively depleted source which 
became depleted over time.

Figure 10- a) Sm/Yb vs La/Yb and b) (Tb/Yb)n vs (La/Yb)n diagrams of the Gökçeada volcanic rocks 
(Chondrite normalization values are from Thompson, 1982). The non-modal batch melting 
curves of garnet bearing amphibole peridotite were calculated using the equation of Shaw 
(1970). The data used in the modeling calculation are given in table 2.
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7. Conclusion

In Gökçeada Island, there is a widespread 
magmatism with variable ages and compositions. 
Lower-Middle Eocene Dağiçitepe volcanic rocks, 
Lower Oligocene Gökçeada andesitic lava/domes 
and Middle Miocene Eşelek volcanic rocks on the 
island have calc-alkaline and tholeiitic compositions, 
respectively. In the rocks, which have geochemical 
characteristics of subduction magmas, the Lower-
Middle Eocene Dağiçitepe volcanic rocks are the 
products of magmas in a collisional setting, hence 
they have experienced crustal contamination process 
is effective in the evolution of volcanic rocks. On the 
other hand, the Lower Oligocene Gökçeada andesitic 
lava/domes were derived from a metasomatized 
lithospheric mantle source in a post-collisional 
setting. The Middle Miocene Eşelek volcanic rocks 
were also derived from a lithospheric mantle, but the 
mantle source generating these volcanic rocks became 
relatively depleted over time. The geochemical data 
reveals that the effects of crustal contamination 
and subduction signatures in the evolution of the 
Gökçeada volcanism have decreased over time from 
Lower-Middle Eocene to Middle Miocene.
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