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Abctract 

The present study provides the necessary and sufficient conditions for the matrix characterizations of 𝐿- and 𝑀-

weakly compact operators which are defined on certain classical sequence spaces as Banach lattices. It is known 

that these operators may coincide with both weakly compact and compact operators on Banach lattices. Our 

study offers a different alternative to some known results for the matrix characterizations of compact and 

weakly compact operators which are presented in terms of L- and M-weakly compactness.  

Keywords: Matrix transformation, Weakly compact operator, Compact operator, L-weakly compact operator, 

M-weakly compact operator. 

 

Klasik Dizi Uzayları Üzerinde Tanımlı Operatörlerin Matris Temsilleri Üzerine 

Öz 
Sunulan çalışma, Banach örgüsü yapısına sahip bazı klasik dizi uzayları üzerinde tanımlı olan L-zayıf ve M-

zayıf kompakt operatörlerin matris temsilleri için gerekli ve yeterli koşullar sağlar. Bu operatör sınıflarının, 

Banach örgüleri üzerinde tanımlı zayıf kompakt ve kompakt operatörlerle çakışabildiği bilinmektedir. Böylece 

kompakt ve zayıf kompakt operatörler için bilinen bazı sonuçlar L-zayıf ve M-zayıf kompaktlık açısından farklı 

bir alternatif olarak sunulmuş oldu. 

Anahtar Kelimeler: Matris dönüşümleri, Zayıf kompakt operatör, Kompakt operatör, L-zayıf kompakt 

operatör, M-zayıf kompakt operatör. 

1. Introduction 

A bounded linear operator which is defined 

between classical sequence spaces has an 

infinite matrix representation. It is hence 

important to find necessary and sufficient 

conditions of entries of this matrix  

representation. There is a huge number of 

studies in the literature on this subject. 

Matrix maps of the bounded operators can be 

found in the survey paper Stieglitz and Tietz 

(1977). Besides, it is also interesting to 

characterize the special subclasses of the 

bounded operators, such as compact 

operators; see (Sargent, 1966; Djolovic I. 

2003; Jarrah and Malkowsky, 2003). A good 

tool used for matrix representations of 

compact operators is the Hausdorff measures 

of noncompactness. Further results 

concerning compact operators and matrix 

representations can be found in Djolovic 

(2003), Djolovic and Malkowsky,  (2008), 

Malkowsky (2013), İlkhan and Kara (2018), 

as well as many other studies. In our study, 

the main objective is to reveal the matrix 

characterizations for M- and L-weakly 

compact operators, which are subclasses of 

weakly compact operators, and are defined 

between certain classical real sequence 

spaces. Since we only use characteristics of 

these operators, our approach here is 

different. 

A sequence space will be used to mean a 

linear subspace of the space ℝℕ and the 

classical sequence space ℓ∞, c, c0 and φ 

consists of all bounded, convergent, null and 

finitely non-zero sequences, respectively. For 

1 < p < ∞, ℓp denotes the set {(xk)k∈ℕ ∈

ℝℕ: ∑ |xk|p∞
k=0 < ∞}. For k ∈ ℕ, ek denotes 

the sequence (0, . . .0,1,0, . . . ) with 1 in the k 

th place. 

https://orcid.org/0000-0001-8488-359X
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In the rest of this article, an “operator” means 

a “linear map” between two real vector 

spaces and the notations ℒ(X, Y),  𝒲(X, Y), 

𝒲L(X, Y),  𝒲M(X, Y) and  𝒦(X, Y) are used 

to show all the bounded, weakly compact, L-

weakly compact, M-weakly compact, and 

compact operators, respectively. Also, 

whenever X = Y hold, for the sake of 

simplicity, we use A(X) instead of A(X, X) 

for any operator class A(X). 

2. Premilinaries 

2.1. Operators on Banach Lattices 

Our terminology and notations are standard 

and we refer to (Aliprantis and Burkinshaw, 

1985; Meyer-Nieberg, 1991) for unexplained 

definitions and properties about Banach 

lattices and operators on them. 

The classical sequence spaces c0, c, ℓ∞, ℓp for 

1 ≤ p < ∞ are Riesz spaces with the 

ordering that (un)n∈ℕ ≤ (vn)n∈ℕ if and only 

if un ≤ vn for every n ∈ ℕ and they are 

Banach lattices with their usual supremum 

norm. A subset A of a Riesz space E is called 

solid if |x| ≤ |y| for some y ∈ A implies that 

x ∈ A. Recall that the solid hull of any subset 

A of E is the smallest solid set containing A 

and is exactly the set sol(A) = {x ∈ E: ∃y ∈
A with |x| ≤ |y|}. 

Let X and Y be normed spaces. It is well 

known that ℒ(X, Y) is a normed space with 

the operator norm defined by ‖T‖ =

sup{‖Tx‖: x ∈ X and ‖x‖ ≤ 1} and is a 

Banach space whenever Y is a Banach space. 

T ∈ ℒ(X, Y) is said to be a compact operator 

whenever for every norm bounded sequence 

(xn)n∈ℕ of X the sequence (Txn)n∈ℕ has a 

norm convergent subsequence in Y. The 

collection 𝒦(X, Y) of all compact operators 

from X into Y forms a norm closed vector 

subspace of ℒ(X, Y). Recall that T ∈ ℒ(X, Y) 

is said to be weakly compact if for every 

norm bounded sequence (xn)n∈ℕ of X the 

sequence (Txn)n∈ℕ has a weakly convergent 

subsequence in Y. If X and Y are Banach 

spaces, then the collection 𝒲(X, Y) of all 

compact operators from X into Y forms a 

norm closed vector subspace of ℒ(X, Y). 

Clearly, every compact operator is weakly 

compact. 

Let E and F be Banach lattices. A bounded 

subset A of E is said to be L-weakly compact 

if ‖xn‖ → 0 as n → ∞ for every disjoint 

sequence (xn) in the solid hull of A. A 

bounded linear operator T: X → E is called L-

weakly compact if T(BX) is L-weakly 

compact in E, where BX denotes the closed 

unit ball of the Banach space X. A bounded 

linear operator T: E → X is M-weakly 

compact if ‖Txn‖ → 0 as n → ∞ for every 

disjoint sequence (xn) in BE. 𝒲M(E, F) and 

𝒲L(E, F) under the operator norm are closed 

subspaces of ℒ(E, F) (Aliprantis and 

Burkinshaw, 1985). 

It is worth to remember that L- and M-

weakly compact operators are subclasses of 

𝒲(E, F), whereas weakly compact operators 

need no L-weakly or M-weakly compactness 

property. For example, the identity operator 

I: ℓ2 → ℓ2 is weakly compact which is not L- 

or M-weakly compact. However, if F is an 

AL-space (resp. E is an AM-space), then 

𝒲L(E, F) = 𝒲(E, F) (resp. 𝒲M(E, F) =

𝒲(E, F)). In general, our operators and 

compact operators are of different classes. 

For instance, the operator T: ℓ1 → ℓ∞, 

defined by T(αn) = (∑ αn
∞
n=1 , ∑ αn

∞
n=1 , . . . ), 

is clearly compact, which is not L- or M-

weakly compact. Similarly, for 2 > p > 1, 

the natural embedding i: L2[0,1] → Lp[0,1] is 

an L- and M-weakly compact, which is not 

compact. 

A Banach lattice E has an order continuous 

norm if xα ↓ 0 in E implies ‖xα‖ ↓ 0. For 

example, 𝑐0 and ℓ𝑝 (1 ≤ 𝑝 < ∞) have order 

continuous norm, whereas ℓ∞ and c (with 

their usual norm) do not. The order 



On the Matrix Representations of Operators on the Classical Sequence Spaces 

 
 491 

 

continuous part of a Banach lattice E is 

defined 

Ea = {x ∈ E: |x| ≥ xα ↓ 0 ∥ xα ∥→ 0} 

For example, (ℓ∞)a = ca = c0. Order 

continuous part is very important for our 

operators. Ea is a closed order ideal and 

contains all L-weakly compact subsets of E; 

see Proposition 2.4.10, Proposition 3.6.2 of 

(Meyer-Nieberg, 1991). Thus, L-weakly 

compact operators take value in Ea. 

An element u in the Riesz space E is called a 

discrete provided that the order ideal 

generated by u coincides with the vector 

space generated by u and if all discrete 

elements are order dense in E, then E is 

called discrete. For instance, c0, c and ℓp for 

1 ≤ p ≤ ∞ are discrete. 

2.2. Matrix Transformations 

In this part, we give some basic notations and 

well–known results about matrix 

transformations. We refer to (Maddox, 1971 

and 1980; Wilansky, 1984; Mursaleen, 2014) 

for unexplained definitions and properties 

about matrix classes. 

Let 𝑋 and 𝑌 be sequence spaces and 𝐴 =
(𝑎𝑛𝑘)𝑛,𝑘=0

∞  be an infinite matrix of real 

numbers. By 𝐴𝑛 = (𝑎𝑛𝑘)𝑘=0
∞  we denote the 

sequence in the 𝑛-th row of 𝐴, and for 𝑥 =
(𝑥𝑘)𝑘=0

∞ ∈ 𝑋 we write 𝐴𝑛(𝑥) = ∑ 𝑎𝑛𝑘𝑥𝑘
∞
𝑘=0  

for 𝑛 = 0,1, . .. and 𝐴(𝑥) = (𝐴𝑛(𝑥))
𝑛=0

∞
 

provided that for each 𝑛 ∈ ℕ, the series 

converges. Hence, we map the sequence 𝑥 ∈

𝑋 into the sequence 𝐴(𝑥) ∈ 𝑌. Then, it is 

said that 𝐴 defines a matrix mapping from 𝑋 

into 𝑌 if 𝐴(𝑥) exists and is in 𝑌 for every 𝑥 ∈

𝑋. (𝑋, 𝑌) denotes the class of all matrices 𝐴 

that map 𝑋 into 𝑌. 

On the other hand, every linear bounded 

operator does not need to have a matrix 

representation as follows: 

Example 2.2.1. (Wilansky, 1985) Define the 

linear operator T: c → c by T(xn) =
(limxn, 0,0, . . . ). Suppose that T determines a 

matrix (ank)n,k=1
∞ . Hence, for each k ∈ ℕ 

T(ek) = (∑ aniδi
k∞

i=1 )
n∈ℕ

= (ank)n∈ℕ = 0.  

This shows that (ank)n,k=1
∞  is a zero matrix 

since (ank)n∈ℕ is k. column in (ank)n,k=1
∞ . 

But, T(1,1, . . . ) = e1 ≠ 0. 

BK spaces are the most effective theory in 

the characterization of matrix mappings 

between sequence spaces. X is called a BK-

space if X is a Banach sequence space with 

continuous coordinates 𝑃𝑘: 𝑋 → ℂ, 𝑃𝑘(𝑥) =

𝑥𝑘 where 𝑘 = 0,1,2, … and  𝑥 = (𝑥𝑘) ∈ 𝑋. 

The best known examples for the classical 

sequence spaces are ℓ∞, 𝑐, 𝑐0, ℓ𝑝 (1 ≤ 𝑝 <

∞). 

Theorem 2.2.2. (Maddox, 1980) Any matrix 

map between BK spaces is continuous. 

The above theorem shows that if 𝑋 and 𝑌 are 

𝐵𝐾 spaces, then every matrix 𝐴 ∈ (𝑋, 𝑌), 

where (𝑋, 𝑌) consists of all infinite matrices 

𝑇 that maps X into Y, defines an operator 

𝑇𝐴 ∈ ℒ(𝑋, 𝑌) by 𝑇𝐴(𝑥) = 𝐴(𝑥) for all 𝑥 ∈ 𝑋, 

namely (𝑋, 𝑌) ⊂ ℒ(𝑋, 𝑌). Conversely, it is 

natural to ask whether an operator 𝑇 ∈

ℒ(𝑋, 𝑌) can be given by an infinite matrix 𝐴, 

in which case we write ℒ(𝑋, 𝑌) ⊂ (𝑋, 𝑌). But 

first we need to give a definition of 𝐴𝐾 

property. 

A BK space X ⊃ φ is said to have AK if we 

have 

x = ∑ xkek

∞

k=0
= lim

n→∞
∑ xkek

n

k=0
 

for every sequence x = (xk) ∈ X. The spaces 

c0 and ℓp (1 ≤ p < ∞) have AK. 

Theorem 2.2.3. (Jarrah and Malkowsky, 

2003) If X and Y are BK spaces and X have 

AK,  then ℒ(X, Y) ⊂ (X, Y). 
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Definition 2.2.4. The β-dual or ordinary 

Köthe-Toeplitz dual of the sequence space X 

is defined by 

Xβ = {

a = (ak) ∈ ℝℕ:

∑

∞

k=0

akxk converges for all x = (xk) ∈ X
}. 

Note that (ℓ∞)β = cβ = c0
β

= ℓ1, (ℓ1)β =

ℓ∞ and (ℓp)
β

= ℓq such that 1 < p, q < ∞ 

with  p−1 + q−1 = 1. 

Theorem 2.2.5. (Wilansky, 1984) Let X, Z 

be BK spaces with AK, Y = Zβ. Then 

(X, Y) = (Xββ, Y) and A ∈ (X, Y) if and only 

if AT ∈ (Z, Xβ). 

The result of the previous theorem is 

sustained if X is any one of ℓ∞, c, c0,

ℓp (1 ≤ p < ∞). The theorem given covers 

the cases when X is an AK space. Also, by 

previous theorem, 

(ℓ∞, Y) = (c, Y) = (c0, Y) 

and A ∈ (c0, Y) if and only if AT ∈ (Z, ℓ1); 

thus, Theorem 2.2.5. holds for X = ℓ∞, c; see 

Theorem  8.3.10 of (Wilansky, 1984). 

3.  Main Results 

This section presents the matrix 

representations of our operators together with 

their relations with the weakly compact and 

compact operators. The property, which is 

used very often, is duality relation between 

our operators and is expressed as follows: an 

operator is M-weakly (L-weakly) compact if 

and only if its dual operator is L-weakly (M-

weakly) compact. Another important 

property of L-weakly compact operators is 

that they take values in order continuous part. 

Hence, 𝒲L(E, F) = 𝒲L(E, Fa) holds. 

The next lemma, which is obtained from the 

proof of Theorem 2.6 in (Chen and 

Wickstead, 1999), has a key role for our 

results. 

Lemma 3.1. If E is a Banach lattice and 

T: ℓ1 → E is a bounded operator such that 

‖Tek‖ → 0 as k → ∞ where {ek: k ∈ ℕ} is 

the natural basis of ℓ1, then T ∈ WM(ℓ1, E). 

Proof: For each disjoint sequence (xn) where 

xn = (λnk)k=1
∞ ∈ ball(ℓ1) and each ε > 0, 

there exists K > 0 such that ‖Tek‖ < ε for 

all k > K. Also the disjointness of (xn) 

implies that there exists N > 0 such that 

λnk = 0 for all n > N and 1 ≤ k ≤ K. So if 

n > N (noting that |T|(λk) = ∑ λnk|Tek|∞
k=1  

for all (λk) ∈ ℓ1), then we have 

‖|T|xn‖ = ‖∑ λnk|Tek|∞
k=1 ‖ 

         = ‖∑ λnk|Tek|∞
k=K+1 ‖ 

           < ε ∑ |λnk|∞
k=K+1 ≤ ε‖xn‖ℓ1

≤ ε 

 

which imlies that |T|xn → 0 as n → ∞, that 

is |T| is M-weakly compact, so does T. 

Note also that, if T ∈ WM(ℓ1, E), then 

‖Tek‖ → 0 always holds since (ek)k∈ℕ is an 

disjoint bounded sequence in ℓ1. Thus, we 

see that T ∈ WM(ℓ1, E) if and only if 

‖Tek‖ → 0 for the natural basis of (ek)k∈ℕ. 

On the other hand, for every Banach lattice 

E, every M-weakly compact operator from ℓ1 

into E is compact via Theorem 2.7 in (Chen 

and Wickstead, 1999). However, a compact 

operator needs no M-weakly compact as 

(ℓ1)′ has no order continuous norm. For 

example, the operator T: ℓ1 → E, defined by 

T(x) = (f ⊗ u)(x) = f(x)u, is compact but it 

is not M-weakly compact where 0 ≠ f ∈
(ℓ1)′ \c0 and 0 ≠ u ∈ E. Moreover, if E =

ℓ1, then, as a result of that ℓ1 is an AL-space 

(with Schur property), it can be seen that an 

operator T: ℓ1 → ℓ1 is compact if and only if 

it is weakly compact, so it is L-weakly 

compact by Theorem 18.11 of (Aliprantis 

and Burkinshaw, 1985). Then, we have 

𝒲M(ℓ1, ℓ1) ⊂ 𝒞(ℓ1, ℓ1) = 𝒲L(ℓ1, ℓ1) = 𝒲(ℓ1, ℓ1). 

According to (Stieglitz and Tietz, 1977), T ∈
ℒ(ℓ1, ℓ1) if and only if sup

k∈ℕ
∑∞

n=1 |ank| <
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∞. However, this condition is not sufficient 

for the bounded operator T to be an M-

weakly compact. For example, the identity 

operator I: ℓ1 → ℓ1 is not M-weakly compact 

and lim
k→∞

(∑∞
n=1 |ank|) = 1 for the matrix 

representation of I. 

Theorem 3.2. T ∈ 𝒲M(ℓ1, ℓ1) if and only if 

∑∞
n=1 |ank| → 0 for k → ∞. 

Proof: By Theorem 2.13ii of (Maddox, 

1980), T ∈ ℒ(ℓ1, ℓ1) if and only if 

sup
k∈ℕ

∑ |ank|∞
n=1 < ∞ holds. Also from Lemma 

3.1, T ∈ 𝒲M(ℓ1, ℓ1) if and only if 

‖Tek‖ℓ1
= ‖(ank)n∈ℕ‖ℓ1

→ 0, so if and only 

if lim
k→∞

(∑∞
n=1 |ank|) = 0. 

A compact operator from c0 to ℓ∞ does not 

need to be an L-weakly compact. Indeed, 

since the norm of ℓ∞ is not order continuous, 

the operator x → f ⊗ y(x) = f(x)y where f ∈
(c0)+

′  and 0 ≤ y ∈ ℓ∞ \c0 are positive 

compact operator which is not L-weakly 

compact. So, we have 

𝒲L(c0, ℓ∞) ⊂ 𝒦(c0, ℓ∞) = 𝒲M(c0, ℓ∞)        

                                          = 𝒲(c0, ℓ∞). 

 

Remark 3.3. If F = c0 or F = c, then we can 

not use Theorem 8.3.9 of (Wilansky, 1984). 

However, there is a nice property of L-

weakly compact operators. As we mentioned 

before, L-weakly compact operators take 

values in order continuous part, that is 

𝒲L(c, c0) = 𝒲L(c, c) = 𝒲L(c, ℓ∞) hold. 

Therefore, this property will help us for the 

next two cases. 

Theorem 3.4. T ∈ 𝒲L(c0, ℓ∞) =

𝒲L(c0, c) = 𝒲L(c0, c0) if and only if 

lim
n→∞

∑∞
k=1 |ank| = 0. 

Proof: From the equalities (ℓ∞)a = ca = c0, 

we have 

𝒲L(c0, c) = 𝒲L(c0, ℓ∞) = 𝒲L(c0, c0) 

By (Stieglitz and Tietz, 1977), T ∈

ℒ(c0, ℓ∞)if and only if sup
n∈ℕ

∑ |ank|∞
k=1 < ∞. 

As the adjoint of an L-weakly compact 

operator is M-weakly compact, by the help of 

Theorem 8.3.9 of (Wilansky, 1984) we have 

 (ank) ∈ 𝒲L(c0, ℓ∞) ⇔ (ank)T ∈ 𝒲M(ℓ1, ℓ1). 

Thus, the claim can be seen from the case 

(ℓ1, ℓ1). 

Let T: c0 → c0 be any bounded linear 

operator. Then, T determines a matrix 

(ank)n,k=1
∞  if and only if sup

n∈ℕ
∑ |ank|∞

k=1 < ∞ 

and ank → 0 (n → ∞, k is fixed). However, 

these conditions are not sufficient for the 

bounded operators from c0 to c0 to be an M-

weakly compact. Because, in that case, 

‖T‖ = sup
n∈ℕ

∑ |ank|∞
k=1 is satisfied; see 

Theorem 7.1 and 7.2 of (Maddox, 1971) and 

for the identity operator I: c0 → c0, which is 

not M-weakly compact, lim
n→∞

∑∞
k=1 |ank| = 1 

holds. Moreover, an L-weakly (resp. M-

weakly) compact operator is compact 

whenever E (resp. E′) is a discrete Banach 

lattice; see Theorem 3.1 and 4.1 in (Aqzzouz 

et all, 2011). 

Theorem 3.5. T ∈ 𝒲M(c0, c0) if and only if 

lim
n→∞

∑∞
k=1 |ank| = 0. 

Proof: Discreteness and order continuity of 

c0 and (c0)′ imply that 

𝒦(c0, c0) = 𝒲M(c0, c0) = 𝒲L(c0, c0) 

                                              = 𝒲(c0, c0) 

Remain of proof can be obtain from previous 

theorem. 

An operator from ℓ1 into ℓp, 1 < p < ∞ is L-

weakly compact if and only if it is compact 

since ℓp is discrete Banach lattice with order 

continuous norm. So, the following 

inclusions hold. 
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𝒲M(ℓ1, ℓp) ⊂ 𝒦(ℓ1, ℓp) = 𝒲L(ℓ1, ℓp) 

                                                ⊂ 𝒲(ℓ1, ℓp) 

For the inclusion operator 𝑖: ℓ1 → ℓ𝑝, 𝑝 > 1, 

which is not 𝑀-weakly compact, the equality  

𝑙𝑖𝑚
𝑘→∞

(∑∞
𝑛=1 |𝑎𝑛𝑘|) = 1 holds. This shows that 

the condition, T ∈ ℒ(ℓ1, ℓp) where ∞ > p >

1 if and only if sup
k∈ℕ

∑∞
n=1 |ank|p < ∞, is not 

sufficient for the bounded operator 𝑇 to be an 

𝑀-weakly compact. 

Theorem 3.6. T ∈ 𝒲M(ℓ1, ℓp) where 1 <

𝑝 < ∞ if and only if ∑∞
n=1 |ank|p → 0 for 

k → ∞. 

Proof: By Theorem 2.13(ii) in (Maddox, 

1980), T ∈ ℒ(ℓ1, ℓp) if and only if 

sup
k∈ℕ

∑ |ank|p∞
n=1 < ∞ holds. By Lemma 3.1, 

T ∈ 𝒲M(ℓ1, ℓp) if and only if ‖Tek‖ℓp
=

‖(ank)n∈ℕ‖ℓp
→ 0, so if and only if 

lim
k→∞

(∑∞
n=1 |ank|p) = 0. 

A compact operator from ℓ1 to ℓ∞ do not 

need to be L-weakly compact or M-weakly 

compact as (ℓ1)′ = ℓ∞ ⊃ (ℓ∞)a = c0. 

However, since ℓ1 is an AL-space (resp. c 

and ℓ∞ are AM-spaces) every M-weakly 

compact (resp. L-weakly compact) operator 

is compact. On the other hand, L-weakly and 

M-weakly compact operators are different 

classes, that is 𝒲M(ℓ1, ℓ∞) ⊄ 𝒲L(ℓ1, ℓ∞) 

and 𝒲L(ℓ1, ℓ∞) ⊄ 𝒲M(ℓ1, ℓ∞). As a result, 

we have 

𝒲M(ℓ1, ℓ∞) ⊂ 𝒦(ℓ1, ℓ∞) ⊂ 𝒲(ℓ1, ℓ∞), 

and  

𝒲L(ℓ1, ℓ∞) ⊂ 𝒦(ℓ1, ℓ∞) ⊂ 𝒲(ℓ1, ℓ∞). 

Considering the bounded compact operator 

T: ℓ1 → ℓ∞, defined by T(αn) =
(∑ αn

∞
n=1 , ∑ αn

∞
n=1 , . . . ), which is not M-

weakly compact, it can be seen 

lim
k→∞

(sup
n∈ℕ

|ank|) = 1. This shows that the 

condition sup
n,k∈ℕ

|ank| < ∞ indicated in 

(Stieglitz and Tietz, 1977) is not sufficient 

for the operator T ∈ ℒ(ℓ1, ℓ∞) to be M-

weakly compact. 

Theorem 3.7. T ∈ 𝒲M(ℓ1, ℓ∞) if and only if 

lim
k→∞

(sup
n∈ℕ

|ank|) = 0. 

 

Proof: By Theorem 2.13(i) in (Maddox, 

1980), T ∈ ℒ(ℓ1, ℓ∞) if and only if 

sup
n,k∈ℕ

|ank| < ∞. By the Lemma 3.1, T ∈

𝒲M(ℓ1, ℓ∞) if and only if 

‖Tek‖ℓ
∞ = ‖(ank)n∈ℕ‖ℓ

∞ → 0 

that is lim
k→∞

(sup
n∈ℕ

|ank|) = 0. 

 

A compact operator from ℓ1 to c need not to 

be L-weakly compact or M-weakly compact 

as (ℓ1)′ ≠ (ℓ∞)a = c0 = ca ≠ c. However, 

since ℓ1 is an AL-space (resp. c is an AM-

space) every M-weakly compact (resp. L-

weakly compact) operator is compact. On the 

other hand, L-weakly and M-weakly compact 

operators are different classes for the case 

(ℓ1, c). Thus, we have 

 𝒲M(ℓ1, c) ⊂ 𝒦(ℓ1, c) ⊂ 𝒲(ℓ1, c) and  

𝒲L(ℓ1, c) ⊂ 𝒦(ℓ1, c) ⊂ 𝒲(ℓ1, c). 

According to (Stieglitz and Tietz, 1977), T ∈
ℒ(ℓ1, c) if and only if sup

n,k∈ℕ

|ank| < ∞ and 

lim
n→∞

ank exists for all k ∈ ℕ. However, the 

previous example also shows that these 

conditions are not sufficient for the bounded 

operator to be an M-weakly compact. 

Theorem 3.8. T ∈ 𝒲M(ℓ1, c) if and only if 

the following statements hold  

1.  lim
n→∞

ank exists for all k ∈ ℕ, 

2.  lim
k→∞

(sup
n∈ℕ

|ank|) = 0. 
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Proof: Proof is similar with the previous case 

since the norms of c, ℓ∞ are same. 

L-weakly compactness and compactness 

coincide for the operator from ℓ1 into 𝑐0 

since 𝑐0 is a discrete Banach lattice with 

order continuous norm. In this way, the 

following inclusions hold. 

𝒲𝑀(ℓ1, 𝑐0) ⊂ 𝒦(ℓ1, 𝑐0) = 𝒲𝐿(ℓ1, 𝑐0) 

                        ⊂ 𝒲(ℓ1, 𝑐0). 

Theorem 3.9. T ∈ 𝒲M(ℓ1, c0) if and only if 

the following statements hold. 

1.  lim
n→∞

ank = 0 for all k ∈ ℕ. 

2.  lim
k→∞

(sup
n∈ℕ

|ank|) = 0.  

Proof. According to (Stieglitz and Tietz, 

1977), it is well known that T ∈ ℒ(ℓ1, c0) if 

and only if sup
n,k∈ℕ

|ank| < ∞ and lim
n→∞

ank = 0 

for all k ∈ ℕ. Other condition can be seen 

from previous case since the norms of c0 and 

ℓ∞ are same. 

It can be easily seen that 𝒲L(ℓ1, c0) =

𝒦(ℓ1, c0) ⊂ 𝒲(ℓ1, c0) and 𝒲L(ℓ1, F) ⊂

𝒦(ℓ1, F) ⊂ 𝒲(ℓ1, F) whenever F ∈ {c, ℓ∞}. 

Moreover, again for L-weakly compact 

operators, we use the fact that all L-weakly 

compact operators take values in the order 

continuous part. Hence, we obtain 

𝒲L(ℓ1, c) = 𝒲L(ℓ1, ℓ∞) = 𝒲L(ℓ1, c0) since 

(ℓ∞)a = ca = c0. 

Theorem 3.10.T ∈ 𝒲L(ℓ1, ℓ∞) = 

𝒲L(ℓ1, c) = 𝒲L(ℓ1, c0) if and only if 

lim
n→∞

(sup
k∈ℕ

|ank|) = 0.  

 

Proof: It follows that (aij) ∈ 𝒲L(ℓ1, ℓ∞) ⇔

(aij)
T

∈ 𝒲M(ℓ1, ℓ∞) by Theorem 8.3.9 in 

(Wilansky, 1984). 

As it is well known, for every Banach space 

F, a bounded operator from ℓp to F is weakly 

compact as ℓp is reflexive. Since (ℓp)
′
 is a 

discrete Banach lattice with order continuous 

norm an operator from ℓp into F is compact 

if and only if it is M-weakly compact. 

Furthermore, ℓp (1 < p < ∞) space is BK 

space with AK, that is  

ℒ(ℓp, Y) = (ℓp, Y) 

where Y ∈ {c0, c, ℓ1, ℓp, ℓ∞}. However, for 

F ∈ {c0, c, ℓ∞}, the inclusion operator i: ℓp →

F is a bounded (so weakly compact) which is 

not compact. 

There is a positive compact operator from ℓp 

to ℓ∞, which is not L-weakly compact, 

whereas every L-weakly compact operator is 

compact since ca = (ℓ∞)a = c0 is discrete. 

Then, we have: 

𝒲L(ℓp, ℓ∞) ⊂ 𝒲M(ℓp, ℓ∞) = 𝒦(ℓp, ℓ∞)

⊂ 𝒲(ℓp, ℓ∞) = ℒ(ℓp, ℓ∞). 

 

In (Stieglitz and Tietz, 1977), it is described 

(ℓp, Y) such that T ∈ ℒ(ℓp, ℓ∞) if and only if 

sup
n∈ℕ

∑∞
k=1 |ank|q < ∞ where q =

p

p−1
. 

However, this condition is not enough for M-

weakly or L-weakly compact operators as 

follows: 

Example 3.11. Inclusion map i: ℓp → Y, 

where Y ∈ {c0, c, ℓ∞} is a bounded operator, 

which is not a M-weakly and L-weakly 

compact operator. On the other hand, if 

(ank)n=1
∞  is a matrix representation of i then 

sup
n∈ℕ

∑∞
k=1 |ank|q = 1 and lim

n→∞
ank = 0 but 

lim
k→∞

(sup
n∈ℕ

|ank|) = 1. 
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Theorem 3.12. T ∈ 𝒲L(ℓp, ℓ∞) if and only 

if ∑∞
k=1 |ank|q → 0 for n → ∞, where q =

p

p−1
.  

Proof: It follows that (ank) ∈ 𝒲L(ℓp, ℓ∞) ⇔

(ank)T ∈ 𝒲M(ℓ1, ℓq)  where q =
p

p−1
 by 

Theorem 8.3.9 in (Wilansky, 1984). 

L-weakly compact and compact operators 

from ℓp to c0 coincide since c0 is discrete 

Banach lattice with order continuous norm. 

Hence, we obtain that 

𝒲M(ℓp, c0) = 𝒦(ℓp, c0) = 𝒲L(ℓp, c0) ⊂

                                 𝒲(ℓp, c0) = ℒ(ℓp, c0). 

Theorem 3.13. T ∈ 𝒲L(ℓp, c0) =

𝒲M(ℓp, c0) = 𝒦(ℓp, c0) if and only 

∑∞
k=1 |ank|q → 0 for  n → ∞ where q =

p

p−1
 

Proof. It follows that 𝒲L(ℓp, c0) =

𝒲L(ℓp, ℓ∞) since (ℓ∞)a = c0. 

There is a positive compact operator from ℓp 

to c which is not L-weakly compact, whereas 

every L-weakly compact operator is compact 

since ca = (ℓ∞)a = c0 is discrete. Then, 

𝒲L(ℓp, c) ⊂ 𝒲M(ℓp, c) = 𝒦(ℓp, c) ⊂  

                𝒲(ℓp, c) = ℒ(ℓp, c). 

Theorem 3.14. T ∈ 𝒲L(ℓp, c) if and only if 

the following statements hold. 

1.  lim
n→∞

ank exists for all k ∈ ℕ; 

2. ∑∞
k=1 |ank|q → 0 for n → ∞where q =

p

p−1
. 

Proof: It follows that from (Stieglitz and 

Tietz, 1977) and the equality 𝒲L(ℓp, c) =

𝒲L(ℓp, c0) as ca = c0. 

Theorem 3.15. T ∈ 𝒲L(ℓ∞, ℓ∞) =

𝒲L(ℓ∞, c0) = 𝒲L(ℓ∞, c) if and only if 

∑∞
k=1 |ank| → 0 for n → ∞. 

Proof: It follows that (ank) ∈ 𝒲L(ℓ∞, ℓ∞) if 

and only if (ank)T ∈ 𝒲M(ℓ1, ℓ1).  

As a result of c0 being an AM-space with 

order continuous norm, the class of compact 

operators from ℓ∞ into c0 coincide with the 

class of L-weakly compact operators. 

Besides, the dual space of ℓ∞ is an AL-space, 

which is not discrete, so it has positive Schur 

property but it has not Schur property. Also, 

we can find a sequence (gn) in the dual of 

ℓ∞ to be weakly null which is not norm null. 

Then, by Theorem 17.5 in (Aliprantis and 

Burkinshaw, 1985), the operator T: ℓ∞ → c0, 

defined by T(x) = (g1(x), g2(x), . . . ), is 

weakly compact,  which is not compact. So, 

we have 

𝒲L(ℓ∞, c0) = 𝒦(ℓ∞, c0) ⊂ 𝒲M(ℓ∞, c0) = 

             𝒲(ℓ∞, c0) = ℒ(ℓ∞, c0). 

On the other hand, in terms of regularity of 

operators, since the dual (ℓ∞)′ and c0 have 

order continuous norm by Theorem 18.16 of 

(Aliprantis and Burkinshaw, 1985), the 

following is mostly true: 

𝒲L
r(ℓ∞, c0) = 𝒦r(ℓ∞, c0) = 𝒲M

r (ℓ∞, c0)

= 𝒲r(ℓ∞, c0) = ℒr(ℓ∞, c0). 

Corollary 3.16. T ∈ 𝒲L(c, ℓ∞) if and only if 

lim
n→∞

∑∞
k=1 |ank| = 0. 

Proof: By Theorem 8.3.10 in (Wilansky, 

1984), it follows the fact that T ∈

𝒲L(c, ℓ∞) ⇔ T ∈ 𝒲M(ℓ1, ℓ1).  

Since F is a discrete Banach lattice with order 

continuous norm we can say that an operator 

from c to c0 is L-weakly compact if and only 

if it is compact. Then, the following 

inclusions hold: 

𝒦(c, c0) = 𝒲M(c, c0) = 𝒲L(c, c0) = 
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                             𝒲(c, c0). 

Corollary 3.17. T ∈ 𝒲L(c, c0) = 𝒲M(c, c0) 

if and only if lim
n→∞

∑∞
k=1 |ank| = 0. 

Proof: It can be seen from the equality 

𝒲L(c, c0) = 𝒲L(c, ℓ∞).  

Since c has not order continuous norm, we 

can find a positive compact operator which is 

not L-weakly compact. Hence, we have 

𝒲L(c, c) ⊂ 𝒦(c, c) = 𝒲M(c, c) = 𝒲(c, c). 

Corollary 3.18. T ∈ 𝒲L(c, c) if and only if 

lim
n→∞

∑∞
k=1 |ank| = 0.  

Proof: It can be seen from the equality 

𝒲L(c, c) = 𝒲L(c, ℓ∞) = 𝒲L(c, c0).  

There are, of course, certain trivial cases that 

our operator classes equal the class of all 

bounded operators. This happens, for 

example, for (c0, ℓp), (ℓ∞, ℓ1), (ℓp, ℓ1) 

whenever 1 < p < ∞. 
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