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Abctract

The present study provides the necessary and sufficient conditions for the matrix characterizations of L- and M-
weakly compact operators which are defined on certain classical sequence spaces as Banach lattices. It is known
that these operators may coincide with both weakly compact and compact operators on Banach lattices. Our
study offers a different alternative to some known results for the matrix characterizations of compact and
weakly compact operators which are presented in terms of L- and M-weakly compactness.

Keywords: Matrix transformation, Weakly compact operator, Compact operator, L-weakly compact operator,
M-weakly compact operator.

Klasik Dizi Uzaylar1 Uzerinde Tanimhi Operatorlerin Matris Temsilleri Uzerine
Oz
Sunulan ¢aligma, Banach orgiisii yapisina sahip bazi klasik dizi uzaylar {izerinde tanimli olan L-zayif ve M-
zayif kompakt operatorlerin matris temsilleri igin gerekli ve yeterli kosullar saglar. Bu operator siniflarinin,
Banach orgiileri iizerinde tanimli zayif kompakt ve kompakt operatorlerle ¢akigabildigi bilinmektedir. Boylece
kompakt ve zayif kompakt operatorler igin bilinen bazi sonuglar L-zayif ve M-zayif kompaktlik agisindan farkl
bir alternatif olarak sunulmus oldu.

Anahtar Kelimeler: Matris doniisiimleri, Zay1f kompakt operator, Kompakt operator, L-zayif kompakt
operatdr, M-zayif kompakt operatdr.

1. Introduction Malkowsky (2013), ilkhan and Kara (2018),
as well as many other studies. In our study,
the main objective is to reveal the matrix
characterizations for M- and L-weakly
compact operators, which are subclasses of
weakly compact operators, and are defined
between certain classical real sequence
spaces. Since we only use characteristics of
these operators, our approach here is
different.

A bounded linear operator which is defined
between classical sequence spaces has an
infinite matrix representation. It is hence
important to find necessary and sufficient
conditions of entries of this matrix
representation. There is a huge number of
studies in the literature on this subject.
Matrix maps of the bounded operators can be
found in the survey paper Stieglitz and Tietz
(1977). Besides, it is also interesting to A sequence space will be used to mean a
characterize the special subclasses of the linear subspace of the space RN and the
bounded operators, such as compact classical sequence space #, c, ¢, and ¢
operators; see (Sargent, 1966; Djolovic I. consists of all bounded, convergent, null and
2003; Jarrah and Malkowsky, 2003). A good finitely non-zero sequences, respectively. For
tool used for matrix representations of 1 <p < oo, £, denotes the set {(xi)xen €
compact operators is the Hausdorff measures RN: ¥'2 [x¢|P < }. For k € N, e, denotes
of  noncompactness.  Further  results  he sequence (0,...0,1,0,...) with 1 in the k
concerning compact operators and matrix place.

representations can be found in Djolovic

(2003), Djolovic and Malkowsky, (2008),
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In the rest of this article, an “operator” means
a “linear map” between two real vector
spaces and the notations L(X,Y), W(X,Y),
WX Y), Wy(X,Y) and K (X,Y) are used
to show all the bounded, weakly compact, L-
weakly compact, M-weakly compact, and
compact operators, respectively. Also,
whenever X =Y hold, for the sake of
simplicity, we use A(X) instead of A(X,X)
for any operator class A(X).

2. Premilinaries
2.1. Operators on Banach Lattices

Our terminology and notations are standard
and we refer to (Aliprantis and Burkinshaw,
1985; Meyer-Nieberg, 1991) for unexplained
definitions and properties about Banach
lattices and operators on them.

The classical sequence spaces ¢y, ¢, £, £p, for
1<p<o are Riesz spaces with the
ordering that (uy)peny < (Vpnen if and only
if u, <v, for every n e N and they are
Banach lattices with their usual supremum
norm. A subset A of a Riesz space E is called
solid if |x| < |y| for some y € A implies that
x € A. Recall that the solid hull of any subset
A of E is the smallest solid set containing A
and is exactly the set sol(A) = {x € E:3y €
A with x| < |y|}.

Let X and Y be normed spaces. It is well
known that £(X,Y) is a normed space with
the operator norm defined by ||T| =
sup{||Tx|l:x € Xand ||x]| <1} and is a
Banach space whenever Y is a Banach space.
T € L(X,Y) is said to be a compact operator
whenever for every norm bounded sequence
(Xp)nen Of X the sequence (Txp)pey has a
norm convergent subsequence in Y. The
collection K (X,Y) of all compact operators
from X into Y forms a norm closed vector
subspace of L(X,Y). Recall that T € L(X,Y)
is said to be weakly compact if for every
norm bounded sequence (x,)ney Of X the
sequence (Tx,),en has a weakly convergent

subsequence in Y. If X and Y are Banach
spaces, then the collection W(X,Y) of all
compact operators from X into Y forms a
norm closed vector subspace of L(X,Y).
Clearly, every compact operator is weakly
compact.

Let E and F be Banach lattices. A bounded
subset A of E is said to be L-weakly compact
if ||xyll >0 as n— oo for every disjoint
sequence (x,) in the solid hull of A. A
bounded linear operator T: X — E is called L-
weakly compact if T(Byx) is L-weakly
compact in E, where By denotes the closed
unit ball of the Banach space X. A bounded
linear operator T:E - X is M-weakly
compact if ||Tx,|| = 0 as n —» o for every
disjoint sequence (x,) in Bg. Wy(E, F) and
W, (E, F) under the operator norm are closed
subspaces of L(E,F) (Aliprantis and
Burkinshaw, 1985).

It is worth to remember that L- and M-
weakly compact operators are subclasses of
W(E, F), whereas weakly compact operators
need no L-weakly or M-weakly compactness
property. For example, the identity operator
I. 4, — ¢, is weakly compact which is not L-
or M-weakly compact. However, if F is an
AL-space (resp. E is an AM-space), then
WL(EF)= W(EF) (resp.Wy(EF) =
W(E,F)). In general, our operators and
compact operators are of different classes.
For instance, the operator T:¢; — £,
defined by T(a,) = (Xnz1 0, Xnz1 Oy --- ),
is clearly compact, which is not L- or M-
weakly compact. Similarly, for 2 >p > 1,
the natural embedding i: L2[0,1] — LP[0,1] is
an L- and M-weakly compact, which is not
compact.

A Banach lattice E has an order continuous
norm if x, L 0 in E implies ||x,|| { 0. For
example, ¢y and £, (1 < p < o) have order
continuous norm, whereas ¢, and c (with
their usual norm) do not. The order
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continuous part of a Banach lattice E is
defined

E2={x€E: x| =2x,!0 |l x4 = 0}

For example, (£,)?=c?=c,. Order
continuous part is very important for our
operators. E? is a closed order ideal and
contains all L-weakly compact subsets of E;
see Proposition 2.4.10, Proposition 3.6.2 of
(Meyer-Nieberg, 1991). Thus, L-weakly
compact operators take value in E2.

An element u in the Riesz space E is called a
discrete provided that the order ideal
generated by u coincides with the vector
space generated by u and if all discrete
elements are order dense in E, then E is
called discrete. For instance, c,, c and ¢, for

1 < p < oo are discrete.
2.2. Matrix Transformations

In this part, we give some basic notations and
well-known results about matrix
transformations. We refer to (Maddox, 1971
and 1980; Wilansky, 1984; Mursaleen, 2014)
for unexplained definitions and properties
about matrix classes.

Let X and Y be sequence spaces and A =
(@ni)nk=0 e an infinite matrix of real
numbers. By A, = (anx)r=o We denote the
sequence in the n-th row of A, and for x =
(X1 ) peo € X we write A,(x) = Yo Xk
for n=01,.. and A(x)=(4.(x)) _,
provided that for each n € N, the series
converges. Hence, we map the sequence x €
X into the sequence A(x) € Y. Then, it is
said that A defines a matrix mapping from X
into Y if A(x) existsand is inY for every x €
X. (X,Y) denotes the class of all matrices A
that map X into Y.

On the other hand, every linear bounded
operator does not need to have a matrix
representation as follows:

Example 2.2.1. (Wilansky, 1985) Define the
linear operator T:c—>c by T(x,) =
(limx,, 0,0,...). Suppose that T determines a
matrix (anx)y k=1- Hence, foreach k € N

T(ex) = (Zfil ani8§()neN = (ank)neN = 0.

This shows that (apg)p=1 IS @ Zero matrix
since (ap)nen IS k. column in (api)yk=1-
But, T(1,1,...) = e; # 0.

BK spaces are the most effective theory in
the characterization of matrix mappings
between sequence spaces. X is called a BK-
space if X is a Banach sequence space with
continuous coordinates Py: X — C, P,(x) =
x;, Where k =0,1,2,... and x = (x;) € X.
The best known examples for the classical
sequence spaces are £, ¢, ¢p, £ (1 <p <

).

Theorem 2.2.2. (Maddox, 1980) Any matrix
map between BK spaces is continuous.

The above theorem shows that if X and Y are
BK spaces, then every matrix A € (X,Y),
where (X,Y) consists of all infinite matrices
T that maps X into Y, defines an operator
T, € L(X,Y) by T,(x) = A(x) for all x € X,
namely (X,Y) c L(X,Y). Conversely, it is
natural to ask whether an operator T €
L(X,Y) can be given by an infinite matrix A4,
in which case we write L(X,Y) c (X,Y). But
first we need to give a definition of AK
property.

A BK space X D ¢ is said to have AK if we
have

[ee] n
X = Z Xrex = lim XK€k
k=0 n—co k=0

for every sequence x = (xi) € X. The spaces
co and £, (1 < p < o) have AK.

Theorem 2.2.3. (Jarrah and Malkowsky,
2003) If X and Y are BK spaces and X have
AK, then L(X,Y) c (X, Y).
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Definition 2.2.4. The f-dual or ordinary
Kothe-Toeplitz dual of the sequence space X
is defined by

a= (ay) € RV:

(oo}

z ayxy converges for all x = (x) € X|°
=0

Note that (£,)P=cP=cP=1r, (£)F=

., and ({’p)B = ¢4 such that 1 < p,q < oo
with p~1 +q71 = 1.

XP =

Theorem 2.2.5. (Wilansky, 1984) Let X, Z
be BK spaces with AK, Y =1ZF. Then
(X,Y) = (XPR,Y) and A € (X,Y) if and only
if AT € (,XP).

The result of the previous theorem is
sustained if X is any one of £, ¢, c,
t, (1 < p < ). The theorem given covers

the cases when X is an AK space. Also, by
previous theorem,

(eoo:Y) = (C, Y) = (COJY)

and A € (co,Y) if and only if AT € (Z,¢,);
thus, Theorem 2.2.5. holds for X = ¢, c; see
Theorem 8.3.10 of (Wilansky, 1984).

3. Main Results

This  section  presents the  matrix
representations of our operators together with
their relations with the weakly compact and
compact operators. The property, which is
used very often, is duality relation between
our operators and is expressed as follows: an
operator is M-weakly (L-weakly) compact if
and only if its dual operator is L-weakly (M-
weakly) compact.  Another  important
property of L-weakly compact operators is
that they take values in order continuous part.
Hence, Wy (E,F) = Wy (E, F?) holds.

The next lemma, which is obtained from the
proof of Theorem 2.6 in (Chen and
Wickstead, 1999), has a key role for our
results.

Lemma 3.1. If E is a Banach lattice and
T:#, - E is a bounded operator such that
ITexl| » 0 as k » co where {ex:k € N} is
the natural basis of #;, then T € Wy (¢4, E).

Proof: For each disjoint sequence (x,,) where
Xn = (Ap)pe; € ball(#;) and each &> 0,
there exists K> 0 such that ||Tey|| < € for
all k> K. Also the disjointness of (x,)
implies that there exists N > 0 such that
AMk=0foralln>Nand 1 <k<K. Soif
n > N (noting that |T|(Ax) = Yz Ankl|Texl
for all (Ax) € #;), then we have

ITIxall = [ Xxz1 Ankl Texl |l
= || Xkk+1 Ankl Texlll
< &Xpek+1lAnkl < ellxnlly, <

which imlies that |T|x, - 0 as n — oo, that
is |T| is M-weakly compact, so does T.

Note also that, if T € Wy(¢4,E), then
||Tex|| = 0 always holds since (ey)ken IS an
disjoint bounded sequence in #;. Thus, we
see that T e Wy(£,E) if and only if
||Tex|l = 0 for the natural basis of (ey)xen-
On the other hand, for every Banach lattice
E, every M-weakly compact operator from ¢,
into E is compact via Theorem 2.7 in (Chen
and Wickstead, 1999). However, a compact
operator needs no M-weakly compact as
(#1)" has no order continuous norm. For
example, the operator T: ¥, — E, defined by
T(x) = (f® u)(x) = f(x)u, is compact but it
is not M-weakly compact where 0+ f€
(#1)"\co and 0 # u € E. Moreover, if E =
¢4, then, as a result of that ¢, is an AL-space
(with Schur property), it can be seen that an
operator T: ¢, — ¥, is compact if and only if
it is weakly compact, so it is L-weakly
compact by Theorem 18.11 of (Aliprantis
and Burkinshaw, 1985). Then, we have

Wy (1, 41) € C(£1,41) = W (£1,41) = W({y,£4).

According to (Stieglitz and Tietz, 1977), T €
L(£4,¢,) if and only if supXor; lapkl <
keN
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oo, However, this condition is not sufficient
for the bounded operator T to be an M-
weakly compact. For example, the identity
operator I: ; — ¢; is not M-weakly compact
and &Lrg(z;?zl lagk]) =1 for the matrix

representation of I.

Theorem 3.2. T € Wy (#4,¢,) if and only if
Y= lankl = 0 fork — oo.

Proof: By Theorem 2.13ii of (Maddox,
1980), T e€ L(#,¢,) if and only if
sup Yon=qlapk| < o holds. Also from Lemma
KeN

31, Tewy(,?,) if and only if
ITexlls, = ll(@nidnenlle, = 0, so if and only

if lim (521 lanl) = 0.

A compact operator from c, to ¢, does not
need to be an L-weakly compact. Indeed,
since the norm of £, is not order continuous,
the operator x - f @ y(x) = f(x)y where f €
(c)y and 0<ye€el,\c, are positive
compact operator which is not L-weakly
compact. So, we have

WL(C0! Eoo) c K(CO! Eoo) = WM (COP Eoo)
= W(Co, ﬁOO)

Remark 3.3. If F = ¢, or F = ¢, then we can
not use Theorem 8.3.9 of (Wilansky, 1984).
However, there is a nice property of L-
weakly compact operators. As we mentioned
before, L-weakly compact operators take
values in order continuous part, that is
Wi(c,co) = Wi(c,c) = Wi(c,?o) hold.
Therefore, this property will help us for the
next two cases.

Theorem 3.4.
W, (co, ) = Wy(co, ¢o)
rlli_l;goz:lole |ank| =0.

Te WL(COI Eoo) =
if and only if

Proof: From the equalities (£,,)? = c? = ¢,
we have

W, (cy, ) = W(co, £) = W (co, o)

By (Stieglitz and Tietz, 1977), Te
L(cy, £)if and only if sup Y, lank] < .
neN

As the adjoint of an L-weakly compact
operator is M-weakly compact, by the help of
Theorem 8.3.9 of (Wilansky, 1984) we have
(ank) € WL(co, le) © (ank)" € Wiy(ly, £y).
Thus, the claim can be seen from the case
(£1,41).

Let T:cy—»c, be any bounded linear
operator. Then, T determines a matrix

(@ni)er if and only if sup Xi2ylag] < o0
neN

and ay, 2 0 (n — oo, kis fixed). However,

these conditions are not sufficient for the

bounded operators from c, to c, to be an M-

weakly compact. Because, in that case,

IT|| = sup Xx=1lanklis satisfied; see
nenN

Theorem 7.1 and 7.2 of (Maddox, 1971) and
for the identity operator I: cy — ¢, Which is
not M-weakly compact, rlll_)l‘r.}o Yheq lankl =1
holds. Moreover, an L-weakly (resp. M-
weakly) compact operator is compact
whenever E (resp. E’) is a discrete Banach
lattice; see Theorem 3.1 and 4.1 in (Agzzouz
etall, 2011).

Theorem 3.5. T € Wy (c,, co) if and only if
EILI{}OZ%l |ank| = 0.
Proof: Discreteness and order continuity of
co and (cq)" imply that
H (€, €o) = Whi(Co, co) = Wy(co, €o)
= W(Co, CO)

Remain of proof can be obtain from previous
theorem.

An operator from £, into £,, 1 < p < o is L-
weakly compact if and only if it is compact
since £ is discrete Banach lattice with order

continuous norm. So, the following
inclusions hold.
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W (€, €,) € (€1, 8,) = W0y, ¢,)
c W(ly, L)

For the inclusion operator i: £; - £,, p > 1,

which is not M-weakly compact, the equality
’gim =1 lank]) = 1 holds. This shows that

the condition, T € £(#;,¢,,) where o > p >
1 if and only if sup Y02, |ayk|P < oo, is not
keN

sufficient for the bounded operator T to be an
M-weakly compact.

Theorem 3.6. T € Wy (¢, 0,) where 1<
p <o if and only if »%_; [a|P = 0 for
k — oo,

Proof: By Theorem 2.13(ii) in (Maddox,
1980), Te L(¢y,¢,) if and only if
sup Yn=qlapk|P < oo holds. By Lemma 3.1,
KeN

T € Wy(#1,4p) if and only if [|Tegll,, =
l@nknenlle, 0, so if and only if

lim (S5, lanil?) = 0.

A compact operator from #; to ¢, do not
need to be L-weakly compact or M-weakly
compact as (1) =4x 2 (£x)? = c,.
However, since £, is an AL-space (resp. c
and ¢, are AM-spaces) every M-weakly
compact (resp. L-weakly compact) operator
is compact. On the other hand, L-weakly and
M-weakly compact operators are different
classes, that is Wy (#1,fx) € W.(£1, )
and Wy, (£1,%») € Wy (€1,€s). As a result,
we have

Wh(£1,€5) CK(#1,40) CW(#1,4),
and
Wy (£1,40) €K1, 40) € W(H1,400).

Considering the bounded compact operator

T:t; > 4o, defined by T(a,) =
Qa1 0y, 2neq Oy ,---), Which is not M-
weakly compact, it can be seen
lim (suplank|)= 1. This shows that the
—® \neN

condition  sup |ay| < o indicated in

n,keN
(Stieglitz and Tietz, 1977) is not sufficient

for the operator T € £L(#1,¢,) t0o be M-
weakly compact.

Theorem 3.7. T € Wy (¥4,%) if and only if
lim (suplankl) =0.

k—co \ e

Proof: By Theorem 2.13(i) in (Maddox,
1980), T € L(¢4,L,) if and only if

sup |ayk| <. By the Lemma 3.1, Te
n,keEN

Wy (L4, L) if and only if

ITexll¢= = l@nidnenlle= = 0

that is lim (suplankl) = 0.

% \neN

A compact operator from £, to c need not to
be L-weakly compact or M-weakly compact
as (£y) # (L) = cy = c® #c. However,
since £; is an AL-space (resp. c is an AM-
space) every M-weakly compact (resp. L-
weakly compact) operator is compact. On the
other hand, L-weakly and M-weakly compact
operators are different classes for the case
(€4, c). Thus, we have

WM(Elf C) c K(El, C) C W(El, C) and
Wy (Ly,¢) € K(Ly,c) € W(Ey,0).
According to (Stieglitz and Tietz, 1977), T €

L(y,c) if and only if sup |ayk| <o and
n,keN

limay, exists for all k € N. However, the

n—-oo

previous example also shows that these
conditions are not sufficient for the bounded
operator to be an M-weakly compact.

Theorem 3.8. T € Wy (£4,c) if and only if
the following statements hold

1. limayy exists for all k € N,

n—-oo

2. lim (suplankl) = 0.

—% \neN
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Proof: Proof is similar with the previous case
since the norms of c, £, are same.

L-weakly compactness and compactness
coincide for the operator from ¢; into ¢,
since ¢, is a discrete Banach lattice with
order continuous norm. In this way, the
following inclusions hold.

WM(‘gl, Co) (= g{:('gl, Co) = WL(‘gll Co)
c W(#4,cp).

Theorem 3.9. T € Wy (¥4, ¢cp) if and only if
the following statements hold.

1. limay, = 0forall k € N.
n—-,oo

2. lim (suplankl) = 0.
k—oo \ heN

Proof. According to (Stieglitz and Tietz,

1977), it is well known that T € L(#4,¢cy) if

and only if sup |a k| < o0 and limay, =0
n,KeEN n—o0

for all k € N. Other condition can be seen
from previous case since the norms of ¢, and
£, are same.

It can be easily seen that Wy (#,,¢cy) =
K(£y,¢c9) ©W(#y,co) and Wy (¢,F) c
K¢, F) c W(£,F) whenever F € {c,?}.
Moreover, again for L-weakly compact
operators, we use the fact that all L-weakly
compact operators take values in the order
continuous part. Hence, we obtain
WL(#1,¢) = WL($1,€) = Wi(£1,co) Since
(£s)? = c? = c,.

Theorem 310.TE W, (£1,fx) =
WL(£1,¢) =Wp(£1,¢co) if and only if

lim (suplankl) = 0.

n—=0 \keN

Proof: It follows that (a;;) € Wy, (¢4, %) &

(ai]-)T € Wu(£1,£5) by Theorem 8.3.9 in
(Wilansky, 1984).

As it is well known, for every Banach space
F, a bounded operator from £, to F is weakly
compact as £, is reflexive. Since (¢,)" is a
discrete Banach lattice with order continuous
norm an operator from ¢, into F is compact
if and only if it is M-weakly compact.
Furthermore, £, (1 <p < o) space is BK
space with AK, that is

L(pY) = (£,Y)

where Y € {co, ¢, #1,%p, £ }. However, for
F € {co, ¢, £}, the inclusion operator i: £, -
F is a bounded (so weakly compact) which is
not compact.

There is a positive compact operator from £,
to ¢,, which is not L-weakly compact,
whereas every L-weakly compact operator is
compact since c® = (£,,)? = ¢, is discrete.
Then, we have:

WL({)plfoo) = WM(fp'foo) = x(fp'foo)
CW(lp te) = L(£p £e).

In (Stieglitz and Tietz, 1977), it is described
(¢p,Y) such that T € L(#, £, if and only if

SUp i, langl?< oo where  q=—t.
neN p-1
However, this condition is not enough for M-
weakly or L-weakly compact operators as

follows:

Example 3.11. Inclusion map i:¢, -,
where Y € {c,, ¢, s} IS a bounded operator,
which is not a M-weakly and L-weakly
compact operator. On the other hand, if
(apr)n=y is a matrix representation of i then
sup Ypeq lapk/?=1 and limay, =0 but
neN n—oo

lim (suplankl) =1.

—% \neN
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Theorem 3.12. T € Wy (¢, 4,) if and only
if Yreq lapk|/?— 0 for n - oo, where q =
p

p-1

Proof: It follows that (ap) € Wi, (), £) &
(an)T € Wy(#1,€4) Where q = ﬁ by
Theorem 8.3.9 in (Wilansky, 1984).
L-weakly compact and compact operators

from ¢, to ¢, coincide since c, is discrete

Banach lattice with order continuous norm.
Hence, we obtain that

WM(fp' Co) = %(fp' Co) = WL({)p' Co) €
W(fp, Co) = L(‘gp, Co).

Theorem 3.13. TEe WL(f’p, Co) =
Wu(€p o) = K (£ c0)  if

Yke1 lapnk]/? = 0 for n — co where q =

and only

b
p—-1
Proof. It follows that

Wi(£p, o) Since (£6,) = co.

WL(‘gp' Co) =

There is a positive compact operator from £,
to ¢ which is not L-weakly compact, whereas
every L-weakly compact operator is compact
since c@ = (£, )? = ¢, is discrete. Then,

WL({JP’ c)c WM({)p' c) = :K({)p' c)c
W(tp,c) = L(£p, ).

Theorem 3.14. T € W, (), ¢) if and only if
the following statements hold.

1. limapy exists forall k € N;

n—oo

2. Zlio=1 lagk|9— 0 for n — cowhere q=
p

p-1

Proof: It follows that from (Stieglitz and
Tietz, 1977) and the equality Wy, (¢,,¢) =
WL(ﬁp, Co) 8 € = cq.

Theorem 3.15.
WL(‘gooﬂCO) = WL(‘goo'C)
Yke1 lapk] = 0 forn — oo.

T (S WL({’OO,{’OO) =
if and only if

Proof: It follows that (a,k) € W (£, Po) if
and only if (a,, )T € Wy (€4, 44).

As a result of c, being an AM-space with
order continuous norm, the class of compact
operators from ¢, into ¢, coincide with the
class of L-weakly compact operators.
Besides, the dual space of £, is an AL-space,
which is not discrete, so it has positive Schur
property but it has not Schur property. Also,
we can find a sequence (g,) in the dual of
£, to be weakly null which is not norm null.
Then, by Theorem 17.5 in (Aliprantis and
Burkinshaw, 1985), the operator T: €., — cy,
defined by T(x) = (g,(x),g,(x),...), is
weakly compact, which is not compact. So,
we have

WL(goo; CO) = jc(goo; CO) - WM(fml CO) =
W(‘goo: Co) = L('goor Co).

On the other hand, in terms of regularity of
operators, since the dual (¢4)" and c, have
order continuous norm by Theorem 18.16 of
(Aliprantis and Burkinshaw, 1985), the
following is mostly true:

WE('BOOi CO) = gcr(‘gmi CO) = W]\I;[ ('goor CO)
== Wr(‘goo, Co) = ,Cr(foo, Co).

Corollary 3.16. T € W, (c, ) if and only if
rlli_{EOZﬁoq Iankl = 0.

Proof: By Theorem 8.3.10 in (Wilansky,
1984), it follows the fact that T €
WL(C;’eoo) S TE WM(‘gll'gl)'

Since F is a discrete Banach lattice with order
continuous norm we can say that an operator
from c to ¢, is L-weakly compact if and only
if it is compact. Then, the following
inclusions hold:

K (c, o) = Wn(c, cp) = Wi(c,co) =
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W(c, cyp).

Corollary 3.17. T € Wy.(c,¢cy) = Wy(c, cp)
if and only if lim )2, |layk| = 0.
n—-oo

Proof: It can be seen from the equality
Wi(c, ¢o) = Wi(c, 4o).

Since ¢ has not order continuous norm, we
can find a positive compact operator which is
not L-weakly compact. Hence, we have

Wyi(c,c) € K(c,c) = Wy(c,c) = W(c,c).

Corollary 3.18. T € W, (c,c) if and only if
AETQOZ?:l lapk| = 0.

Proof: It can be seen from the equality
Wi(c,c) =W(c,fw) = Wi(c,cp).

There are, of course, certain trivial cases that
our operator classes equal the class of all
bounded operators. This happens, for

example, for (co,€p), (£ 1), (£p,41)
whenever 1 < p < oo,
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