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ABSTRACT

We introduce a class of quarter-symmetric projective conformal connections, and study the
geometrical properties of a manifold associated with this connection. The Schur’s theorem
corresponding to the quarter-symmetric projective conformal connection is derived.
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1. Introduction

Since A. Fridman and J. A. Schouten [6] first introduced the concept of the semi-symmetric linear connection,
afterwards, using [10], the metric connection with a torsion was deeply studied. K. Yano in [12] defined a semi-
symmetric metric connection and studied its geometric properties. In [18], a semi-symmetric connection that
is projectively equivalent to the Levi-Civita connection was called a projective semi-symmetric connection
and its properties were considered. In [15, 19, 20, 2, 5, 8, 9], these connections were more deeply studied. In
[16], a mutual connection and its dual connection of the semi-symmetric metric connection were considered.
And in [11] a conjugate symmetry condition of the Amari-Chentsov connection was considered. In [14], one
type of semi-symmetric non-metric connections satisfying the Schur’s theorem was investigated. K. Yano and
J. Imai [13] defined and studied a quarter-symmetric metric connection generalizing semi-symmetric metric
connection. U. C. De and S. C. Biswas [1] studied quarter-symmetric metric connection in a SP-Sasakian
manifold. Han, Ho and Zhao [7] obtained a projective invariant of quarter-symmetric metric connections.
In [4, 20, 3] the projective property of the quarter-symmetric metric connection was studied. In [17] semi-
symmetric projective conformal connection was newly defined and the semi-symmetric projective conformal
connection satisfying the Schur’s theorem was studied.

In this paper, we newly define, motivated by [1, 4, 7], the quarter-symmetric projective conformal connection
and study its properties. And the quarter-symmetric projective conformal connection satisfying the Schur’s
theorem is studied.

2. Main Results

q
On a Riemannian manifold (M, g), quarter-symmetric metric connection V satisfies the relation

(V.g)(X,Y) =0, T(X,Y)=p(X)r(Y) - p(Y)r(X).

where ¢ is (1, 1)-type tensor field and 7 is a 1-form.
Local expression of this expression is

q q
_ k _ k k
Vigij = 0, Tij =T — TPy,
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and the connection coefficient is
q
Y = {5} + mUf = mV = Uia®, (2.1)
where {¥} is the coefficient of the Levi-Civita connection and ¢! and ; are components of (1,1)-type tensor

field and 1-form 7 respectively and U;; = $(¢;; + ¢ji), Vij = 2(pi; — ;i) and 7% = gFlm([7]).

p
Definition 2.1. In a Riemannian manifold, connection V is called a quarter-symmetric projective connection,

p q
if V is projectively equivalent to a quarter-symmetric metric connection V.

v
In a Riemannian manifold, a quarter-symmetric projective connection V satisfies the relation

(Vo) (X,Y) = —20:(2)g(X,Y) — 0(X)g(Y, Z) — (Y )g(X, Z),

P

T(X,Y)=o(X)m(Y) — o(Y)7(X),
and the coefficient of % is

P
IF = {5} + ok + ;67 + mUF — mUF — Uyjn. (2.2)

C
Definition 2.2. In a Riemannian manifold, connection V is called a quarter-symmetric conformal connection,

c q
if V is conformally equivalent to a quarter-symmetric metric connection V.

C
In a Riemannian manifold, a quarter-symmetric conformal connection V satisfies the relation

C

(V.9)(X,Y) = 2205(X,Y), T(X,Y)=o(X)n(Y) - p(¥)r(X),

where
3(X,Y) = e*@g(X,Y).

And the coefficient of % is

Pfj = {f’]} — O'Z(S;C — crjéf +§Z—j0k -+ ’i'('le-’C — Wi‘/vjk — Uij’]'rk. (23)

0
where {};} is the coefficient of the Levi-Civita connection V of conformal metric g;; = @ g, and o; = d;0.

Definition 2.3. In a Riemannian manifold, connection V is called a quarter-projective conformal connection, if

q
V is projective and conformal equivalent to a quarter-symmetric metric connection V.

In a Riemannian manifold, a quarter-symmetric projective conformal connection V satisfies the relation

V.g(X,Y) = =2[(Z) — Zo]g(X,Y) — (X)g(Y, Z) — 4(Y)g(X, 2),

T(X,Y) = p(X)m(Y) = p(Y)m(X). (24)
The local expression of the relation (2.4) is
Vigi; = =2k — 0k)Gi; — il — Vil Tho = w508 — miph, (2.5)
and its coefficient is
I = @JF (i = 00)3} + (5 — 03)0F + gigo* + mUf —mVF — Uy, (2.6)

P
Remark 2.1. If 0 =0, then the quarter-symmetric projective conformal connection V is V =V; If ¢ =0,
then the quarter-symmetric projective conformal connection V is V = 6,‘ If 0 =1 =0, then the quarter-

q
symmetric projective conformal connection V is V =V. And if ¢(X)= X, then the quarter-symmetric
projective conformal connection V is a semi-symmetric projective conformal connection[17].
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From (2.6), we find that the curvature tensor of V is

Rl = ?ijk + i, — Stage + UGy, — biga + Uscir, — Ulcin
+c Uik — cUjy + ULy — Ugjem' — Vikmyg + Vi
~Viemj + 6xvij + T + GV bpmi — 6V by, 2.7)
where K, i1 is the curvature tensor of % of g,

aiy = %i(w — o) = (i = ) (Y — ok) = UL (Yp — 0p) 7k — Gig (p — )0 + Ui (¢ — 0) 77,

0
bir. = Vo, + 005 — Uipopﬂ'k + Uikapwp,

0 1
cik = Vi + mimy, — UpnPmy, + iUikﬂ'pﬂ'p,

ISl gl
Uijk = Uz'ljglk
Vi = v Vi —UPVim, + UV, + U Via? — U ViEn! + View — Vigo! — 61V o, — Gy Viba®,
Vij = Vﬂﬁj - Vﬂ/m
0 0
Tij = ij - Vjﬂ'i.

*
From (2.5), dual connection V of the quarter-symmetric projective conformal connection V satisfies the relation

*

vkgij = 2(¢ )gz] + 11[}lgj]€ + ’L/Jjgzk’ z]; ( Ty — QUj + 11[}])65 - (Tri —20; + 7/’1)557
and its coefficient is
Ffj = {Z} — (¥ — Uz)5 - UJ51 91;(7/J - Uk) + WjUik - 7Tiij - Uij'/Tk~ (2.8)

And the curvature tensor is

71 _ _
Ry = K+ 8bjk — 8bis, + a5gu, — aigyy, + Ujear — Ujcj,
“rCéUik — CéU]’k + Uiljﬂ'k — Uijkﬂ'l — Vklﬂ'ij + lelgﬂ'i
Vi = 0jbi; — T + G Vil m; — gip VP . (29)

From the expressions (2.7) and (2.9)

Rz]k = Rijy + 0i0gx — Goun + a5Ga — i, — 20405 — Tije!
—Tik + G Vp P mi — Gu VP my + 8,VE by — 85V, (2.10)
where a1, = a;i. + b, Tijr = T} 91k

Theorem 2.1. In a Riemannian manifold, if a 1-form « is a closed form, then a volume curvature tensor of the quarter-
symmetric projective conformal connection V is zero, namely

P;=0 (2.11)
where P;; is a volume curvature tensor of V.

Proof. Contracting the indices k and 1 of (2.7), then we obtain

0
5) k k k k k k
Pij = Pij + ai; —aj; + bij — bji + Uj Cik — U2 Cjk + Uikcj — Ujkci + Uijﬂ'k — Uijk’l'r

—Vi¥ms + Viimi = Vikmy 4 nabij + Thibe + VEbpm; — VP,
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0 0
where P;; is a volume curvature tensor of the Levi-Civita connection V of Gijr Ul = U g, V! =V g™ and

¢} = cixg"l. That is to say

K2

0
Py = Pij+(ay—aji+bij —bji + VIpm — VEm;) + (Ufcir — U cji + Uircy — Ujief)
UG = Uign®) = ViEmj + Vi = Vi + nabiy + T,
On the other hand

aij = aji+ bij = bji + (V'mi = Vi) = iy = Tijiy,
0

P;; =0, U]kcik — Uiijk + UikC§ — UjkCéc =0,

Ubme — Uijrm™ =0, ViF =0, Vjj, =0.

Hence
If a 1-form ¢ is a closed form, then 1;; = 0. Hence from the expression (2.12), we obtain the expression
(2.11). O

Remark 2.2. Theorem 2.1 shows that the volume flat condition of the quarter-symmetric projective conformal
connection V is independent of both quarter-symmetric component and conformal component, and depends
only on projective component.

Theorem 2.2. The quarter-symmetric conformal connection on a Riemannian manifold (M, g) is conjugate symmetric
if and only if its Ricci curvature tensor is equal to that with respect to its dual connection.

Proof. From the expression (2.10), if ¢ = 0, then we obtain
ox c
Ry = Rl + Ol — ok + Gipad — G0, (2.13)
Contracting the indices i and 1, then we obtain
cx c ,
Rjk = Rji + najk — G50,
From this expression, we find
ajk = %(Rc;k ~ Ry +g;000),

Substituting this expression into the expression (2.13), we obtain
ox

Lo g o R
(0;iRjk — 0 Rix + G R — 91 1;)-

c*
S
ijk n

?

; 1o g
R — E(éiRjk =05 Rk, + Gy, R — ;) =

C*

From this expression, there holds R!;, = R, if and only if éj = Rj» k- O

The second Bianchi identity of the curvature tensor R!;, of the quarter-symmetric projective conformal
connection V on a Riemannian manifold (M, g) is

VhRﬁjk + viRé‘hk + ViR = TIZ'ZR;mk + TiTRglmk + TﬂiRimk
By Rijii = gipRyj;, this expression becomes
Vi Rijii + ViRing + ViRuikt = Vg Ry, + Vigp R, + Vg Ry + Tii Rjmi + Tif Rumit + T Rimir- (2.14)

Theorem 2.3. Suppose a connected Riemannian manifold (M, g)(dim M > 3) associated with a quarter-symmetric
projective conformal connection is everywhere isotropici. If

Yy — 20y +

7 (Thh — mpepy) = 0, (2.15)

then (M, g, V) is a constant curvature manifold.
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Proof. If (M, g, V) is everywhere wandering, the curvature tensor is
Rijri = K(p)(9u95x — Jirdj1)- (2.16)
Substituting the expression (2.16) into (2.14) and using (2.5), then we obtain
(Vi K — K(Yn —201)(909k — Girdj1) + Vil — K(¥i — 20:)]1(919nk — 9£9m)+

Vi K — K(¥j — 20)1(GnGir, — Inidi) = Klmn(Gupin — Ginjt + Pudn — pikdj)+
7i(Gjnk — GjePrt + PitGnke — PikTn) + T (GriPic — GrrPir + Pribix — Prigi))-

Multiplying both sides of this expression by g7*, and contracting the indices j, k, then we obtain
(n =2 [VaK = K(¢n = 200)]gu — [ViK = K(¢i = 204)|gn}
= (n = 3)(mneir — mint) + Gu(Taeh — Tpeh) — Gr(mieh — mpeh).
And multiplying both sides of this expression again by g%, and contracting the indices i, 1, then we obtain
(n=1)(n = 2)[VaK — K (¢ — 204)] = 2K (n — 2)(mnep} — mpp})-

From this expression we obtain

VK = K[{n — 204 + (Theh — mp@h)]-

n—1

Consequently, for n > 3, K = const, if and only if

Yn =200 + —— 1(%@5 — mppp) = 0.
O
Remark 2.3. If ¢, = 0, then the expression (2.15) is
o) = ! (mhelt — P
h _ 1 hSOp Wp@h 9
and if o5, = 0, then the expression (2.15) is
Yn = 2 (Theh — mpeh)
n—1 L
And if ¢, = oj, = 0, then the expression is
Thiph = Tpeh. (2.17)

From Theorem 2.3, it is easy to see that there holds the following Corollary for the quarter-symmetric metric

q
connection V

Corollary 2.1. A connected n-dimensional Riemannian manifold (M, g)(dim M > 3)associated with a quarter-

q
symmetric metric connection V being isotropic is a constant curvature manifold.

If p(X) = fX, then quarter-symmetric projective conformal connection V will be expressed as D. In this case
the expressions (2.5) and (2.6) are respectively

Dy.g;; = —2(Yx — 0k)Fi; — ViGjr — ViGiks Tilz' = f(ﬂ'j‘sz]‘c - Wi5f)7 (2.18)
D
T = {5} + (i — 00)0F + (0 — 0 + ;)05 + 7, (0" — fr¥). (2.19)

And the curvature tensor of the connection D is

D
— _ _
Rijk =K, + 5§‘aik — ik + GuBi — gikﬁé‘ + 0jbij, (2.20)
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where
0
ik = Vi(Ye — ox + ) = (Y5 — 00 + fm) (Ve — 0% + fTk) = G (Vp — 0p + fmp)(0? — f7P),
0
Bir = Vilox — frr) + (00 — fmi) (o — f).
A dual connection D of the quarter-symmetric projective conformal connection D satisfies the relation
Dyg;; = 2(Yk — ok)gsj + VG + ¥iGir, T, zg = (¢ + frj = 205)0F — (i + fmi — 20%) Jk
And from (2.19), its coefficient is
Dx*
F?j = {f]} — (i — Ui)(;f — (0 — fm;)6F _gij(wk — o+ frh).

And its curvature tensor is

z
Rzgk = ijk + 5§5zk 5 Bik +91k04 97ka 51&%

(2.21)

Theorem 2.4. If a Riemannian metric admits a quarter-symmetric projective conformal connection D with a constant

curvature on a Riemannian manifold (M, g)(dim > 3), then the Riemannian metric is conformally flat.

Proof. Adding the expressions (2.20) and (2.21), and setting ~;r, = a;, — Bix, we obtain

D D=
lek + R’lek) - 2Kzgk + 6 7116 5£’ij + gzk’yj - gjk’ygv (222)
Contracting the indices i and I of (2.22), then we obtain
D Dx* _ )
Rjk + Rji = 2K ji — (n — 2)%6 — 917 (2.23)
Multiplying both sides of (2.23) by §’*, we obtain
D Dx _ .
R+ R =2K —2(n—1)v;,
From this expression
SR
Vi = m[ —(R+ R,
Using this expression, from (2.23), we obtain
1 — D Dx gjk _ D Dx
Wk = Gy =gy W2k — Bk + Byx) = 52725 2K = (R4 R)J,
Substituting this expression into (2.22) and putting
D
D D 1 D D R
R ! - -
Cljk Uk: - m((sz 5 le? + g]kR glk}Rj) - (n 1 (7’L 2) (5ngk - 6igjk)a
Dx* D* 1 Dx D* D>la< % . .
C”k Uk m(@ 5 Rzk + gij 9iR;) — m(5j9ik — 6iTjk);
i1 1 1 ! K
Ao _ 7 I T I -
Cije = Kijip — m(@ 5 Kix -HijK 9k ;) — m@j%k — 0iTk);
Then by a direct computation we obtain
D Dx 0
Clip +Clix = 20”,€. (2.24)
D D Dsx 9 _Y 0
From R = K(&lvgik —6,g;), we have O}, = C};, = 0. Hence by (2.24), c. & = 0. Using C,; = Cl,, then
0
Cl. i = 0, where Cl =0 is a Weyl conformal curvature tensor of a Riemannian metric ¢;;. Hence if n > 3,
then the Rlemanman metric is conformal flat. O
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0
Remark 2.4. The Cl ik Cl i1, and Cl ;1 are Weyl conformal curvature tensor of g;; of D, D and V respectively.

Theorem 2.5. The quarter-symmetric projective conformal connection D is conjugate symmetric in a Riemannian
manifold if and only if the corresponding Ricci curvature tensors are equal.

Proof. From the expressions (2.20) and (2.21), we get

Dx D
Ruk Rfijk + 55/)1% - 6§'pik’ =+ ?ik’pé‘ - ?jkpi' - 2521/%3" (2.25)

where p;i, = oy + Bir. Contracting the indices i and 1 we obtain

Dx D .
Rjx = Rjk +npjx — G10; — 20k;- (2.26)

Alternating the indices j and k of this expression, using p;r — px; = ¥;x we obtain,

Dx Dx D D
Rji — Rij = Ry, — R + (n+ 4)¢jx.

From this relation we find

Dx Dx D D
Yjk = m[(Rjk — Ryj) — (Rji — Ruijy)l,
Using this expression, from (2.26)
1 D= D , 9 D+ D=« D D
pik = ARk — Rjk = Gjpi — m[(RJ‘k — Rij) — (Rji — Ry )]}

Substituting the above two expressions into (2.25)

D
R!

D D D 1 2 ., D D D D
(0iRjx — 0L Ri, + G R — g RL) + ﬁ[éi(Rjk — Ryij) — 6;(Rir. — Ryi)]

J
D D D D D D 1 Dx D* Dx
+ G (R — Ré‘) - yjk(Ré‘ — R}) + néj(Rij — Rj;) = Rzgk (5§Rg‘k 5 Rzk + ng ?ijﬁ)

S\H

ijk

2 1 D D D? D* D>lk D? Dx D
-‘rm[&( jk—RkJ)_5 ( zk—Rm)]—&-glk(R — R ) gjk(R R)+n6k( Rji)-
D D+ Dx* D
From this expression we arrive at that k., = R. , if and only if R;. = Rjp. 0

Now we will study the Schur’s theorem of the quarter-symmetric projective conformal connection D. From
the Theorem 2.3, the quarter-symmetric projective conformal connection D satisfies the Schur’s theorem if and
only if, from (2.15),

Yp — 20 + 2f7, = 0. (227)

Hence, from (2.18) and (2.19) in a connected Riemannian manifold (M, g)(dim > 3), the quarter-symmetric
projective conformal connection D satisfying the Schur’s theorem satisfies

Dygi; = —2(ok — 2fm)g;; — 2(0i — fmi) G0 — 2(05 — f75) G, Tz] = f(m;6; — 771'5?)-
And its connection coefficient is

D
U5 = {5} + (00 — 2fm)8} + (0 — 2fm)8; +G;(o* — fr*). (2.28)

From this fact, the quarter-symmetric projective conformal connection D satisfying the Schur’s theorem is as
follows.

p
1. g; = O(D = D,wh = —2f’/Th),

p
Dkgij = 2f(27m19ij + migik + Tigir), Tf; = f(m;0F — mid}),

= {ij} = F2mid} + m;0F + gijm®).
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2. 4y =0(D = D,op = frn),

Dkgij = 2f7rk§ij/ TZ; = f(ﬂ—J(Sii - 7”6;?)’
ch _ "

’(/}i = 04,
DGy = —iGx — VG, Tf = f(m07 — m:0%),

D -
Tk = (£} + fr;0F +7,; (0% — frb).
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