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ABSTRACT

In this article we introduce a new geometric object called hyperbolic Pascal simplex. This new
object is presented by the regular hypercube mosaic in the 4-dimensional hyperbolic space. The
definition of the hyperbolic Pascal simplex, whose hyperfaces are hyperbolic Pascal pyramids and
whose faces are hyperbolic Pascals triangles, is a natural generalization of the definition of the
hyperbolic Pascal triangle and pyramid. We describe the growing of the hyperbolic Pascal simplex
considering the numbers and the values of the elements. Further figures illustrate the stepping
from a level to the next one.
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1. Introduction

There are several generalizations of Pascal’s arithmetical triangle (see, for instance [2, 3, 17]), there is among
them the family of hyperbolic Pascal triangles. This new type is based on the hyperbolic regular mosaics
denoted by Schläfli’s symbol {p, q}, where (p− 2)(q − 2) > 4 (see [5]). Each regular mosaic induces a so-called
hyperbolic Pascal triangle (HPT ), it is detailed only for regular squared mosaics {4, q} in [2, 9, 10, 11, 12].
Obviously, the classical Pascal’s triangle is connected to the Euclidean square mosaic {4, 4}.

The 3-dimensional analogue of Pascal’s original triangle is the well-known Pascal’s pyramid (or more
precisely Pascal’s tetrahedron). Its levels are triangles and the numbers along the three edges of the nth level
are the numbers of the nth lines of Pascal’s triangle. Each number inside in any levels is the sum of the three
adjacent numbers on the level above [1, 4, 8]. In [13] a 3-dimensional variation, the hyperbolic Pascal (cube)
pyramid (HPP) is presented, which is based on the hyperbolic regular cube mosaic {4, 3, 5}. This object can also
be considered as the a hyperbolic variation of the well-known (Euclidean) Pascal’s pyramid which is built on
the Euclidean regular cube mosaic {4, 3, 4}. In a special space, in H2×R, there is an interesting generalization
of HPP (see [15]).

In the 4-dimensional space the natural generalization of the square and the cube is the 4-dimensional
hypercube. Coxeter [5] showed that the hypercube generates regular mosaics not only in the Euclidean, but
also in the hyperbolic 4-dimensional spaces. They are the mosaics {4, 3, 3, 4} and {4, 3, 3, 5}, respectively. The 4-
dimensional Euclidean variation, Pascal’s simplex can be based on the Euclidean hypercube mosaic {4, 3, 3, 4}.

In this article we present a 4-dimensional hyperbolic Pascal simplex (HPS) built on the mosaic {4, 3, 3, 5}.
The method of the discussion is similar to the discussion of the hyperbolic Pascal pyramid’s ([13]) case and
we apply some of its results. (We keep the usual notation and write the hyperbolic Pascal simplex without an
“apostrophe", similarly to the case of Pascal’s classical triangle and the hyperbolic Pascal triangle.) We strictly
follow the definitions and denotations of the hyperbolic Pascal triangle and pyramid in [2] and [13] (see also
[15]). We mention that in the 4-dimensional Euclidean and hyperbolic spaces there are 2 and 4 other regular
mosaics with bounded cells and vertex figures, but we do not examine them in this article. We suppose, that
their examinations can be similar due to the generalization of Pascal triangle.
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2. Construction of the hyperbolic Pascal simplex

The 4-dimensional hyperbolic hypercube mosaic {4, 3, 3, 5} consists of hypercubes with Schläfli’s symbol
{4, 3, 3}. The vertex figures of the mosaic are 600-cells, {3, 3, 5}. The hypercube is well-known, but the 600-cell
is not so much, thus we give some details of it. The cells of a 600-cell are tetrahedra ({3, 3}), the (2-dimensional)
faces are triangles and the neighbouring vertices of a vertex of a 600-cell form an icosahedron ({3, 5}), so a
vertex lies on 12 edges, 30 faces and 20 cells. Each edge is on 5 faces and 5 cells and each face connects 2 cells.
The numbers of the vertices, edges, (2-dimensional) faces and cells of a 600-cell are 120, 720, 1200 and 600,
respectively.

Considering an arbitrary vertex V of the mosaic, the number of hypercubes around V is 600, as many as the
number of the cells of the 600-cell, and the number of the mosaic edges from V (degree of V ) is 120, as many
as the number of the vertices of the 600-cell. There are 20 hypercubes around a mosaic edge as there are 20
faces of an icosahedron, so there are 20 tetrahedra around a vertex on the 600-cell. See some other details of the
hyperbolic hypercube mosaic in [5, 14, 16].

Let us consider an arbitrary vertex of the mosaic, say vertex V0, as the base vertex of HPS. We sign it by 1
as well and let us sign all the vertices of the mosaic by the numbers of the shortest paths from the considered
vertex to the base vertex along mosaic edges. The shortest paths imply a digraph directed from V0. We define a
convex part P of the mosaic the following way. First we take a hypercube with vertex V0 and we consider the
vertex V1 opposite of V0 in the hypercube. It is the furthest vertex of the hypercube from V0 and it has the largest
sign among the vertices, namely 24. Second we take the new hypercubes of the mosaic containing vertex V1
and their vertices which have the largest signs in each hypercubes. Now we take again the hypercubes around
these vertices and their vertices with the largest signs, and so on. Continuing this algorithm limitless, the set
of these hypercubes gives P . Finally, the vertices (labelled above) and the edges (directed above) of P form an
infinite digraph similar to an infinite simplex with a finite base vertex V0. We name it hyperbolic Pascal simplex
(HPS). Obviously, the signs of the vertices are the sums of the signs of the incoming edges.

Let level 0 be the vertex V0. Level n consists of the vertices of HPS whose edge-distances from V0 are n-
edge (the distance of the shortest path along the edges of P is n). The shapes of the levels are tetrahedra. It is
clear, the 3-dimensional and 2-dimensional faces on the outer boundaries are hyperbolic Pascal pyramids and
hyperbolic Pascal triangles based on mosaics {4, 5, 4} and {4, 5}, respectively. The faces and edges of the nth

level are the nth levels of HPP and nth lines of HPT , respectively. Figures 1, 2 and 3 show the growing from
a level to the next one in case of some lower levels. As each hyperface of HPS is HPP, there are six types of
vertices: 1, A, B (from the 2-dimensional faces, which are hyperbolic Pascal triangles – see [2]) and C, D, E
in the hyperfaces, corresponding to [13]. The properties of the growing come partly from the examination of
HPT andHPP. We denote them, respectively, by grey, red, cyan, blue, green and yellow colours in the figures.
The colours of the other different types of the vertices inside HPS are also different. (See the definitions later.
The first vertex inside of the simplex appears in level 4. It is the biggest, the purple sphere – vertex type F – in
the centre of Figure 3.) The numbers without colouring refer to vertices in the lower level in every figure. The
graphs, growing from a level to the new one, contain graph-cycles with six nodes. These graph-cycles figure
the convex hulls of the parallel projections of the cubes from the mosaic, where the direction of the projection
is not parallel to any edges of the cubes. Moreover, the rhombic-dodecahedra are the 3-dimensional shadows
of the hypercubes.
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Figure 1. Connections between layers zero to one and one to two inHPS
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Figure 2. Connection between layers two and three inHPS

Figure 3. Connection between layers three and four inHPS

In the following we describe the method of growing of the hyperbolic Pascal simplex and we give the sum
of the paths connecting vertex V0 to level n.

3. Growing of the hyperbolic Pascal simplex

In the classical Pascal’s simplex the number of the elements on level n is (n+ 1)(n+ 2)/2 and its growing
from level n to level n+ 1 is n+ 2. In this section we give the growing from level to level in the case of the
hyperbolic Pascal simplex.

The growing process on the outer 2- and 3-dimensional faces ofHPS mostly comes from [13]. Figure 4 shows
the growing of vertices types 1, A and B. For example, the centre figure illustrates that each vertex A has two
incoming edges, which could be types 1, A or B, and five outgoing edges, precisely two A, one B and two C.
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The degrees of 1, A and B are 5, 7 and 7, respectively.

1 A

2A 2A1
1B 2B

2C 2D3A

1, ,A B A B,

B

1

Figure 4. Growing of the 2-dimensional faces inHPS

The vertices C, D and E are inside the 3-dimensional faces, which are HPP-s and they have outgoing edges
into the inside of HPS . (There are 12 hypercubes around these edges in the mosaic.) Let us denote these
new types of vertices by F , G and H (see Figure 5). So, the degrees of vertices C, D and E are 13. (Compare
Figures 1–3 with Figures 4–5.)

D EC

3C 2C

3D 4D
5D

3E 4E 6E

1F 1G
1H

B C D E, , ,A C D, , C D E, ,

Figure 5. Growing of the 3-dimensional faces inHPS

Now we examine the vertices insideHPS. All these vertices have four, three, two or one incoming edges from
the previous level. We denote them by types F , G, H and K, respectively. (In Figure 3 vertex F is coloured
purple.) Some vertices F , G and H have one incoming edge from vertices C, D and E, respectively, and all
vertices types F connect only to inside vertices of HPS.

In the following we give the number of the outgoing edges of these vertices using the classification of
the vertices of the vertex figures with a 4-dimensional generalized method applied in [13]. According to the
previous section, the degrees of all these vertices are 120. Firstly, we consider a vertex typeK in level i (i ≥ 5). In
the mosaic, the neighbouring vertices to Ki form a vertex figure, a 600-cell, whose all 120 vertices have mosaic
edges joining toKi. Among them there is only one vertex in level i− 1, we denote it byWi−1 (see Figure 6). The
other vertices are in level i+ 1 and with the classification of them we can give the numbers of different types of
vertices which imply the outgoing mosaic edges fromKi. (The mosaic edgeWi−1Ki is an incoming edge toKi.)
If a vertex of a 600-cell has one common edge with Wi−1, then it has two incoming mosaic edges. (We mention
that the edges of the vertex figure are not the edges of the mosaic.) In Figure 6 vertex Hi+1 connects to Wi−1,
so there is a Wi mosaic vertex (not in the vertex figure) which has common mosaic edges not only with Wi−1
but also with Hi+1. This way Hi+1 has two incoming edges from Wi and Ki from level i, thus its type is H . All
the vertices of the 600-cell which are adjacent to Hi+1 form an icosahedron and the type of all its vertices are H
(orange regular 9-gons in the figures). The type of the other 107 vertices of the 600-cell is K, as their incoming
edges come from the considered vertex Ki.

Secondly, we take a vertex type H in level i (i ≥ 5), let it be Hi in Figure 7. Hi has two incoming edges from
level i− 1, so there are two vertices on the same edge of the vertex figure in level i− 1. We denote them by
Wi−1 again. (Generally, W denotes a vertex, whose type is not known or not important to know, while the
index shows the level of the vertex.) Now we have to classify again the vertices of the vertex figure around
the considered Hi according to its neighbouring vertices Wi−1. As there are 5 vertices in a 600-cell which are
connected to both vertices by an edge, there are 5 vertices type G, they have 3 incoming edges from level i.
(Recall, the mosaic edges and the icosahedron edges are different.) These 5 vertices are the intersections of the
icosahedra connecting to the two Wi−1-s. In Figure 7 we drew the icosahedron connecting to the left vertex
Wi−1 and the vertices Gi+1 are denoted by blue regular 8-gones. The other 2 · 6 vertices of the icosahedra are
one-edge-long far from one of the Wi−1-s, so their types are H . The rest 101 vertices of the 600-cell are types K.
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Figure 6. Growing method around vertex type K

On the right-hand side of the figure we highlighted the vertices Wi−1 and Gi+1 and their subgraph structure in
the 600-cell.
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Figure 7. Growing method around vertex type H

Thirdly, we classify the vertices of the 600-cell in the case of a vertex Gi (i ≥ 5). We mark a face of the 600-
cell, its vertices are in level i− 1 and from them start the mosaic’s incoming edges into Gi. There are only
two vertices type F , which are neighbouring to all the three Wi−1-s. Thus both Fi+1 have 4 incoming mosaic
edges and Figure 8 shows them with yellow regular 7-gones. For all the three edges of triangle Wi−1Wi−1Wi−1
connect pentagons, so that the vertices are one-edge-long far from the endpoints of the edges. The type of their
two common vertices are F , the other 3 · 2 vertices are G (see on the right-hand side in Figure 8). The other
3 · 4 vertices of the three icosahedra connecting to all Wi−1 are H . The number of the rest vertices of the vertex
figure is 97, their types are K.
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Gi
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ii+1
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Figure 8. Growing method around vertex type G

Fourthly, we classify the vertices of the 600-cell in the case when the vertex is Fi (i ≥ 4). Now a tetrahedron
is in level i− 1 and from its vertices Wi−1 start the incoming mosaic edges into the considered Fi. For all four
faces of tetrahedron Wi−1Wi−1Wi−1Wi−1 connect a vertex Fi+1, so that they are joining to three Wi−1, so they
have 4 incoming mosaic edges from level i (see Figure 9). That way along all the six edges of the tetrahedron
there are 4 neighbouring vertices to the end of the edge. The rest, the fifth vertices are type G, the number of
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them is 6 · 1. (There are 6 edges of a tetrahedron.) The other 4 · 3 vertices of the four icosahedra connecting to
vertices Wi−1 are type H . The rest vertices of the 600-cell are type K, they are 94 altogether.
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Wi –1
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ii+1
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Figure 9. Growing method around vertex type F

Finally, in Figure 10 the growing method is presented in the case of the inner vertices ofHPS as a summing-
up of discussions and figures. For example, the first graph shows that each vertex F has four incoming edges,
which could be types C, F or G, and 120− 4 outgoing edges with 4 pieces F , 6 pieces of G, 12 pieces of H and
94 pieces of K.

4F 2F

6G 6G 5G 12H12H 12H 12H

94K 97K
101K 107K

F G H K

D F G H, , , F G H K, , ,E F G H K, , , ,C F G, ,

Figure 10. Growing insideHPS

Figure 4, 5 and 10 describe the growing method of HPS , but for summarising we have to consider the
vertices in level i+ 1 without multiplicity. For example the new vertices F are counted for all the vertices C, F
and G. So, for the correct calculation we correspond only one third of them to the examined vertices C, F and
G. Similarly for the cases of all vertices we eliminate the multiplicity.

Let us denote the sums of vertices types A, B, C, D, E, F , G, H , K and 1 on level i by ai, bi, ci, di, ei, fi, gi, hi,
ki and vi, respectively.

Summarising the details (i ≥ 4) and calculating the numbers of vertices in some lower levels (i < 4) in
Table 1, we proved the Theorem 3.1.
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Theorem 3.1. The growing of the numbers of the different types of vertices in HPS is described by the system of linear
homogeneous recurrence sequences (n ≥ 1)

an+1 =
1

2
(2an + 2bn + 3vn) ,

bn+1 = an + 2bn,

cn+1 =
1

3
(2an + 3cn + 2dn) ,

dn+1 =
1

2
(2bn + 3cn + 4dn + 5en) ,

en+1 = 3cn + 4dn + 6en,

fn+1 =
1

4
(cn + 4fn + 2gn) ,

gn+1 =
1

3
(dn + 6fn + 6gn + 5hn) ,

hn+1 =
1

2
(en + 12fn + 12gn + 12hn + 12kn) ,

kn+1 = 94fn + 97gn + 101hn + 107kn

vn+1 = vn,

(3.1)

with all zero and v1 = 4 initial values.

Moreover, let sn be the number of all the vertices in level n, so that s0 = 1 and

sn = an + bn + cn + dn + en + fn + gn + hn + kn + 4, (n ≥ 1). (3.2)

Table 1 shows the numbers of the different type of vertices on levels up to 10.
We show that our sequences are linear homogeneous recurrence sequences (with constant coefficients). For

the definition and properties (and further references) of linear homogeneous recurrence sequences see [6].

Table 1. Number of types of the vertices n ≤ 10

n 0 1 2 3 4 5 6 7 8 9 10
an 0 0 6 12 24 54 132 336 870 2268 5928
bn 0 0 0 6 24 72 198 528 1392 3654 9576
cn 0 0 0 4 12 36 136 696 4512 33004 253260
dn 0 0 0 0 12 96 708 5388 41868 328116 2579232
en 0 0 0 0 12 156 1428 11808 9448 747936 5899092
fn 0 0 0 0 1 4 16 86 1111 70970 7610192
gn 0 0 0 0 0 6 72 1702 137462 15061942 1694955086
hn 0 0 0 0 0 12 774 79254 8862504 998747934 112617248352
kn 0 0 0 0 0 94 12228 1395058 157449038 17755598218 2002190230214
vn 1 4 4 4 4 4 4 4 4 4 4
sn 1 4 10 26 89 534 15696 1494860 166593249 18770594046 2116518790936

Theorem 3.2. The sequences {an}, . . ., {kn} and {sn} can be described by the same ninth order linear homogeneous
recurrence sequence

xn = 128xn−1 − 1795xn−2 + 8837xn−3 − 19239xn−4 + 19239xn−5

− 8837xn−6 + 1795xn−7 − 128xn−8 + xn−9, (n ≥ 10), (3.3)

the initial values are in Table 1. The sequences {an}, . . ., {en} can also be described by

xn = 12xn−1 − 37xn−2 + 37xn−3 − 12xn−4 + xn−5, (n ≥ 6), (3.4)

and sequences {an}, {bn} satisfy the equation

xn = 4xn−1 − 4xn−2 + xn−3, (n ≥ 4). (3.5)
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Proof. According to [13], as

M =



1 1 0 0 0 0 0 0 0 3
2

1 2 0 0 0 0 0 0 0 0
2
3 0 1 2

3 0 0 0 0 0 0
0 1 3

2 2 5
2 0 0 0 0 0

0 0 3 4 6 0 0 0 0 0
0 0 1

4 0 0 1 1
2 0 0 0

0 0 0 1
3 0 2 2 5

3 0 0
0 0 0 0 1

2 6 6 6 6 0
0 0 0 0 0 94 97 101 107 0
0 0 0 0 0 0 0 0 0 1


(3.6)

is the coefficients matrix of (3.1) with rank(M) = 10, then the equation from minimal polynomial of matrix M
equals to the characteristic equation of any sequence from (3.1) and sn. The minimal polynomial of M is

p(x) = x9 − 128x8 + 1795x7 − 8837x6 + 19239x5 − 19239x4 + 8837x3 − 1795x2 + 128x− 1

= (x− 1)
(
x2 − 3x+ 1

) (
x2 − 8x+ 1

) (
x4 − 116x3 + 366x2 − 116x+ 1

)
. (3.7)

Thus the recurrences can be describe by (3.3). (The calculation was made by the help of software MAPLE.)
As an+1, bn+1, cn+1, dn+1, en+1 and vn+1 are independent from fn, gn, hn and kn, they form a system of

homogeneous recurrence equations again with matrix M1 =

 1 1 0 0 0 3/2

1 2 0 0 0 0
2/3 0 1 2/3 0 0
0 0 3 4 5 0
0 0 0 0 0 1

, where the minimal polynomial

is x5 − 12x4 + 37x3 − 37x2 + 12x− 1 = (x− 1)(x2 − 8x+ 1)(x2 − 3x+ 1). So (3.4) also holds. Similarly, we can
reduce the degree of recursion for an and bn.

Remark 3.1. In the Euclidean Pascal’s simplex the equation system (3.1) also holds with suitable initial values.
In this case, there is no type vertices B, D, E, G, H , K, so bi = di = ei = gi = hi = ki = 0 for any i. Thus the
hyperbolic Pascal simplex is not only the geometric but also the algebraic generalization of Pascal’s simplex.

Remark 3.2. The ratios of the numbers of the vertices from level to level tend to the largest eigenvalue of the
matrix M (or dominant root of polynomial (3.7)). According to [6], we can also refer to this limit as the Kepler
limit of sequence {sn}. Fiorenza and Vincenzi ([6, 7]) gave a necessary and sufficient condition for the existence
of Kepler limit. In our case, as all the roots of (7) are different positive real numbers, all the elements of sequence
{sn} are also positive, then there exist the Kepler limit and equals to the dominant root. (For more details and
examples see [6, 7].) Thus, the growing ratio of HPS is α1 ≈ 112.763, on the contrary it is 1 in the Euclidean
case.

4. Sum of the values on levels in hyperbolic Pascal simplex

The sum of the values of the elements on level n in the classical Pascal’s simplex is 4n ([4]). In this section we
determine it in case of the hyperbolic Pascal simplex.

Denote respectively ân, b̂n, ĉn, d̂n, ên, f̂n, ĝn, ĥn, k̂n and v̂n, the sums of the values of vertices type A, B, C,
D, E, F , G, H , K and 1 on level n, and let ŝn be the sum of all the values. From Figure 4, 5 and 10 the results
of Theorem 4.1 can be read directly. For example, all vertices type A, B and 1 on level i generate, respectively,
two, two and three vertices type A on level i+ 1 and it gives the first equation of (4.1). Table 2 shows the sum
of the values of the vertices on levels up to level 10.

53 www.iejgeo.com

http://www.iej.geo.com


Hyperbolic Pascal Simplex

Theorem 4.1. If n ≥ 1, then
ân+1 = 2ân + 2b̂n + 3v̂n,

b̂n+1 = ân + 2b̂n,

ĉn+1 = 2ân + 3ĉn + 2d̂n,

d̂n+1 = 2b̂n + 3ĉn + 4d̂n + 5ên,

ên+1 = 3ĉn + 4d̂n + 6ên,

f̂n+1 = ĉn + 4f̂n + 2ĝn,

ĝn+1 = d̂n + 6f̂n + 6ĝn + 5ĥn,

ĥn+1 = ên + 12f̂n+ 12ĝn + 12ĥn + 12k̂n,

k̂n+1 = 94f̂n + 97ĝn + 101ĥn + 107k̂n

v̂n+1 = v̂n,

(4.1)

with all zero and v̂1 = 4 initial values.

Table 2. Sum of values of vertices n ≤ 10

n 0 1 2 3 4 5 6 7 8 9 10
ân 0 0 12 36 108 348 1164 3948 13452 45900 156684
b̂n 0 0 0 12 60 228 804 2772 9492 32436 110772
ĉn 0 0 0 24 144 840 5808 48552 458736 4588008 46916592
d̂n 0 0 0 0 96 1296 14400 152592 1592448 16530384 171272832
ên 0 0 0 0 72 1248 15192 166176 1753080 18264480 189472440
f̂n 0 0 0 0 24 240 2280 26880 667944 51411168 5797305000
ĝn 0 0 0 0 0 240 5976 255936 24140328 2793536160 331243298952
ĥn 0 0 0 0 0 360 38400 4458168 528618816 62831416920 7469847072960
k̂n 0 0 0 0 0 2256 323592 39296736 4682378232 556809369792 66200381333976
ŝn 1 4 16 76 508 7060 407620 44411764 5239632532 622525195252 74007676940212

Theorem 4.2. The sequences {ân}, . . ., {k̂n} and {ŝn} can be described by the same tenth order linear homogeneous
recurrence sequence

x̂n = 147x̂n−1 − 3635x̂n−2 + 36277x̂n−3 − 175292x̂n−4 + 445156x̂n−5 − 608920x̂n−6

+ 438532x̂n−7 − 151320x̂n−8 + 19344x̂n−9 − 288x̂n−10, (n ≥ 11), (4.2)

the initial values are in Table 2. The sequences {ân}, . . ., {ên} can also be described by

x̂n = 18x̂n−1 − 99x̂n−2 + 226x̂n−3 − 224x̂n−4 + 92x̂n−5 − 12x̂n−6, (n ≥ 7), (4.3)

and sequences {ân}, {b̂n} can also be formed by

x̂n = 5x̂n−1 − 6x̂n−2 + 2x̂n−3, (n ≥ 4). (4.4)

The proof of this theorem is the same step by step as the proof of Theorem 3.2. The factorised minimal
polynomial (now it is the same as the characteristic polynomial) of the coefficients matrix of (4.1) is

p(x) = x10 − 147x9 + 3635x8 − 36277x7 + 175292x6 − 445156x5 (4.5)
+608920x4 − 438532x3 + 151320x2 − 19344x+ 288

= (x− 1)
(
x2 − 4x+ 2

) (
x3 − 13x2 + 28x− 6

) (
x4 − 129x3 + 1214x2 − 1428x+ 24

)
.

Remark 4.1. The growing ratio (or Kepler limit) of values of HPS is ≈118.89 (conditions hold, see Remark 3.2
and [6, 7]), while it is 4 in Euclidean case.
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