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ABSTRACT

This paper deals with rectifying curves and their characterization in arbitrary dimensional Lorentz
n-space. Considering the structure of a rectifying curve, we give some generalizations of such
curves in Lorentz n-space. Moreover, we characterize and prove some properties of these curves
in terms of their curvature functions.
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1. Introduction

The definition and characterization of rectifying curves has started by the work of [3], in which the author
determined all rectifying curves in E3. Rectifying curves are space curves, where position vector always lies in
its rectifying plane. The rectifying plane is spanned by tangent vector T (s) and the binormal vector B(s). So,
with respect to some chosen origin, the position vector of a rectifying curve α satisfies the equation

α(s) = λ(s)T (s) + µ(s)B(s),

where λ(s) and µ(s) are arbitrary differentiable functions, [3].
Euclidean rectifying curves have an important role in kinematic. For example, the position vector of a

rectifying curve is always in the direction of the Darboux vector. Therefore, rectifying curves can be interpreted
kinematically as those curves whose position vector field determines the axis of instantaneous rotation at
each point of the curve, [3]. Also, Euclidean rectifying curves have interesting geometric properties. So, such
curves are studied by many researchers, such as [2, 3, 4, 6, 11, 15]. For example, the authors in [6] defined the
rectifying curves in Euclidean 4-space. Later on, in [2], the authors extended the results in [6], to the general
case En. Then, the definition and concept of a rectifying curve is extended to Lorentz-Minkowski space. The
presence of the casual character of curves and vectors in Lorentz-Minkowski space often causes important and
interesting differences between Lorentzian and Riemannian geometry. So, there are many studies about the
rectifying curves in Lorentz-Minkowski space, [5, 7, 8, 9]. Some characterizations of spacelike, timelike and
null rectifying curves in Minkowski 3-space are given in [9]. The characterization of null, pseudo null and
partially null rectifying curves in Minkowski space-time are studied in [5]. Also, the authors in [1] defined a
spacelike rectifying curve in E4

1. The definition of the rectifying curve in other spaces such as three dimensional
sphere, [12], and pseudo-Galilean space, [14], can be found in the literature.

In the current study, we want to contribute to the study of null and spacelike rectifying curves and present
some results for such curves in the Lorentz n-space En1 . Firstly, we recall some preliminaries about the theory
of curves in En1 . After that, we examine null rectifying curves in En1 . Then, we study spacelike rectifying curves
in En1 and prove some properties and characterizations of these curves.
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2. Preliminaries

We first recall some general notions and notations needed throughout the paper, and repeat some of the
definitions mentioned in the introduction section, more formally.

Let En1 indicate the n- dimensional Lorentz space. For vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the
metric we use in this paper is

〈x, y〉 = −x1y1 +
n∑
i=2

xiyi.

The vector v ∈ En1 is called spacelike, null (lightlike) or timelike if 〈v, v〉 > 0 or v = 0, 〈v, v〉 = 0 and v 6= 0, and
〈v, v〉 < 0, respectively.
We define the signature of a vector v as

ε =

 1 , v is spacelike,
0 , v is null (lightlike),
−1 , v is timelike.

The norm of vector v ∈ En1 is defined by ‖v‖ =
√
|〈v, v〉|.

A curve α in En1 is said to be spacelike if all of its velocity vectors α′ are spacelike, it is similar for timelike
and null, [13].

Let α : I ⊂ R −→ En1 be an arclength parametrized spacelike curve. The Frenet equations of the spacelike
curve α are as follows [10]:

T ′(s) = κ1N(s),

N ′(s) = −ε1κ1T (s) + κ2B1(s),

B′1(s) = −ε1ε2κ2N(s) + κ3B2(s),

...
B′i(s) = −εiεi+1κi+1Bi−1(s) + κi+2Bi+1(s), (2.1)

...
B′n−2(s) = −εn−2εn−1κn−1Bn−3(s),

where T,N,B1, . . . , Bn−2 are mutually orthogonal vectors and κ1, κ2, . . . , κi, . . . , κn−1 are the curvatures and
ε1, ε2, . . . , εi, . . . εn−1 are the signatures of {N,B1, . . . , Bn−2}. Therefore, {T,N,B1, . . . , Bn−2} is an orthonormal
frame of α.

Definition 2.1. A curve α : I → En1 is called rectifying curve if for all s ∈ I , the orthogonal complement of N(s)
contains a fixed point.

Since the orthogonal complement of N is N⊥ = {v ∈ TαEn1 |〈v, N〉 = 0}, the position vector of a spacelike
rectifying curve α in En1 can be written as

α = λT + µ1B1 + . . .+ µn−2Bn−2, (2.2)

where λ, µ1, . . . , µn−2 are real functions, [2].

3. Null Rectifying Curves in En
1

In this section, we give some generalizations of the null rectifying curves in En1 , n > 4. Let α : I ⊂ R→ En1
be a null curve parametrized by the pseudo-arclength such that {α′(t), . . . , αn(t)} is a basis of Tα(t)En1 for all t.
Then there exists only one Frenet frame satisfying the equations

T ′ = N,

B′1 = −κ1N + κ2B2

N ′ = κ1T −B1,

B′2 = −κ2T + κ3B3,

B′i = −κiBi−1 + κi+1Bi+1, i ∈ {3, . . . , n− 3}, (3.1)
B′n−2 = −κn−2Bn−3,
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where
〈T, T 〉 = 〈B1, B1〉 = 0, 〈T,B1〉 = 1

and
〈N,N〉 = 〈B2, B2〉 = 〈B3, B3〉 = . . . = 〈Bn−2, Bn−2〉 = 1.

Let α(s) be a null rectifying curve in En1 , parametrized by pseudo-arclength s. Then its position vector satisfies
the equation

α(s) = λ(s)T + µ1(s)B1 + µ2(s)B2 + . . .+ µn−3(s)Bn−3 + µn−2(s)Bn−2, (3.2)

for some differentiable functions λ(s), µ1(s), µ2(s), . . . , µn−2(s).
Differentiating (3.2) with respect to s and by using (3.1), we obtain the system of equations

µ′1 = 0, (3.3)
λ′ − µ2κ2 = 1, (3.4)
λ− µ1κ1 = 0, (3.5)

µ′i + µi−1κi − µi+1κi+1 = 0, (3.6)
µ′n−2 + µn−3κn−3 = 0. (3.7)

From equation (3.2), we get that, the tangential component of the position vector of α is given by 〈α, T 〉 =
µ1(s). From equation (3.3), we obtain µ1(s) = c, c ∈ R. Considering the case 〈α, T 〉 = 0, we get the following
theorems.

Theorem 3.1. Let α(s) be a null rectifying curve in En1 , parametrized by pseudo-arclength s. If α is a rectifying curve
with the tangential component 〈α, T 〉 = 0, then the following statements hold:

[i] The components of the position vector of α are

λ = 0, µ1 = 0

and

µi(s) =

i−2∑
k=0

µi,k(s)
∂k

∂sk

(
− 1

κ2(s)

)
, i ∈ {2, 3, . . . , n− 3},

where the functions µi,k are inductively defined by the following system:

µ1,0(s) = 0,

µ2,0(s) = 1,

and for i ∈ {3, 4, . . . , n− 2},

µi,0(s) =
κi−1(s)µi−2,0(s) + µ′i−1,0(s)

κi(s)
, (3.8)

µi,k(s) =
κi−1(s)µi−2,k(s) + µ′i−1,k(s) + µi−1,k(s)

κi(s)
, k ∈ {1, 2, . . . , i− 4}

µi,i−3 =
µi−1,i−4(s) + µ′i−1,i−3(s)

κi(s)
,

µi,i−2 =
µi−1,i−3(s)

κi(s)
.

[ii] If κ2, κ3, . . . , κn−1 are constants but non-zero, then α lies in pseudosphere Sn−11 (r), r ∈ R+
0 .

Proof. Let α(s) be a null rectifying curve in En1 , parametrized by pseudo-arclength s and 〈α, T 〉 = 0. Then its
position vector is given by (3.2). So, the system of the equations (3.3)-(3.7) reduces to

µ1 = 0, λ = 0,

µ2 = − 1

κ2
.
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Introducing functions µ1,0 and µ2,0, one rewrites these equations as

µ1(s) = µ1,0(s)

(
− 1

κ1

)
and

µ2(s) = µ2,0(s)

(
− 1

κ1

)
, (3.9)

where µ1,0 = 0 and µ2,0 = 1.
By induction, from equation (3.6),

µi+1 =
1

κi+1
(µ′i + µi−1κi) ,

we obtain

µi(s) =

i−2∑
k=0

µi,k(s)
∂k

∂sk

(
− 1

κ2(s)

)
, (3.10)

for i ∈ {2, 3, . . . , n− 3}. Here the functions µi,k are defined by system (3.8). This proves statement [i].
If the curvatures κ2, . . . , κn−1 are constants, the components of the position vector of α, µ2, µ3, . . . , µn−2 are

constant numbers. By relations µ1 = 0 and λ = 0, we obtain that α has equation

α(s) = µ2B2(s) + µ3B3(s) + . . .+ µn−2Bn−2(s).

From the last equation, we get

〈α(s), α(s)〉 = µ2
2 + µ2

3 + . . .+ µ2
n−2 = r2, r ∈ R+

0 ,

which means that α lies in pseudosphere Sn−11 (r) with center at the origin and radius r. This proves statement
[ii].

Theorem 3.2. Let α(s) be a null curve in En1 with non-zero curvatures. Then α is congruent to a null rectifying curve if
and only if

κn−3

n−5∑
k=0

µn−3,k(s)
∂k

∂sk

(
− 1

κ2(s)

)
+

n−4∑
k=0

(
µn−2,k(s)

∂k

∂sk

(
− 1

κ2(s)

))′
= 0 (3.11)

where the functions µi,k are defined by system (3.8).

Proof. If α is a null rectifying curve, we can use equation (3.7) in equation (3.10). Then we obtain equation
(3.11).

Conversely, assume that equation (3.11) is satisfied. Define the curve

β(s) = α(s)− µ2(s)B2(s)− µ3(s)B3(s)− . . .− µn−2(s)Bn−2(s)

with the functions µ2(s), . . . , µn−2(s) as in equation (3.9) and (3.10). Since β′(s) = 0, we can say that α is
congruent to a null rectifying curve.

4. Spacelike Rectifying Curves in En
1

This section contains some generelizations of the spacelike rectifying curves in En1 .

4.1. The curvatures of the spacelike rectifying curve

Differentiating the position vector of α with respect to the arclenght parameter s, we get

α′(s) = λ′(s)T (s) + λ(s)T ′(s) +

n−2∑
i=1

(µ′i(s)Bi(s) + µi(s)B
′
i(s)) .
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With the help of the Frenet equations in (2.1), we come across with

T = λ′T + (λκ1 − ε1ε2µ1κ2)N + (µ′1 − ε2ε3µ2κ3)B1

+

n−3∑
i=2

(µ′i + µi−1κi+1 − εi+1εi+2µi+1κi+2)Bi +
(
µ′n−2 + µn−3κn−1

)
Bn−2.

So, we obtain

λ′ = 1, (4.1)
λκ1 − ε1ε2µ1κ2 = 0, (4.2)
µ′1 − ε2ε3µ2κ3 = 0, (4.3)

µ′i + µi−1κi+1 − εi+1εi+2µi+1κi+2 = 0, (4.4)
µ′n−2 + µn−3κn−1 = 0. (4.5)

From (4.1), (4.2) and (4.3), we get
λ = s+ c, c ∈ R (4.6)

µ1 =
1

ε1ε2

κ1
κ2
λ, (4.7)

µ2 =
1

ε2ε3

1

ε1ε2

(
1

κ3

κ1
κ2

+
λ

κ3

(
κ1
κ2

)′)
. (4.8)

Supposing the functions as below

µ1,0 =
1

ε1ε2
λ,

µ2,0 =
1

ε2ε3

1

ε1ε2

1

κ3
,

µ2,1 =
1

ε2ε3

1

ε1ε2

λ

κ3
,

we can rewrite equations (4.7) and (4.8) as follows:

µ1 = µ1,0
κ1
κ2
, (4.9)

µ2 = µ2,0
κ1
κ2

+ µ2,1

(
κ1
κ2

)′
. (4.10)

From (4.4) and using equations (4.9) and (4.10), we conclude

µi =

i−1∑
k=0

µi,k
∂k

∂sk

(
κ1
κ2

)
, (4.11)

for i = {3, 4, . . . , n− 2}.
The system of the functions µi,k can be constitued as below:

µ1,0 =
1

ε1ε2
(s+ c),

µ2,0 =
1

ε2ε3

1

ε1ε2

1

κ3
,

µ2,1 =
1

ε2ε3

1

ε1ε2

(s+ c)

κ3
,

µi,0 =
κiµi−2,0 + µ′i−1,0

εiεi+1κi+1
,

µi,k =
κiµi−2,k + µ′i−1,k + µi−1,k−1

εiεi+1κi+1
, (4.12)

µi,i−2 =
µi−1,i−3 + µ′i−1,i−2

εiεi+1κi+1
,

µi,i−1 =
µi−1,i−2
εiεi+1κi+1

,
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where k ∈ {1, 2, . . . , i− 3} and i ∈ {3, 4, . . . , n− 2}.

Theorem 4.1. Let α : I → En1 be an arclength parametrized curve with non-zero curvatures. Then, α is congruent to a
spacelike rectifying curve if and only if

κn−1

n−4∑
k=0

µn−3,k
∂k

∂sk

(
κ1
κ2

)
+

n−3∑
k=0

(
µn−2,k

∂k

∂sk

(
κ1
κ2

))′
= 0, (4.13)

where µi,k is defined in system (4.12).

Proof. The proof of this theorem is trivial by reading the paper in [2].

Theorem 4.2. There exists no spacelike rectifying curve in En1 with non-zero constant curvatures.

Proof. Suppose that, there exists a spacelike rectifying curve with non-zero constant curvatures. From (4.6),
(4.7), (4.8) and (4.4), we find

µi+1 =
µi−1κi+1 + µ′i
εi+1εi+2κi+2

,

for i ∈ {2, 3, . . . , n− 3}. With the help of the induction, we get

µ2m−1 =
1

ε1ε2 . . . ε2m

κ1κ3 . . . κ2m−1
κ2κ4 . . . κ2m

(s+ c), (4.14)

µ2m =
1

ε1ε2 . . . ε2m+1

∑m
j=1

[(∏j
i=1 κ2i−1

∏m
i=j+1 κ2i

)2
ε2j

]
κ1κ2κ3 . . . κ2m+1

. (4.15)

It is clear that, these equations are valid for m = 1. Putting m =M + 1 in (4.14), equation (4.16) is generated:
If equations (4.14) and (4.15) are valid for m ∈ {1, 2, . . . ,M}, then

µ2M+1 =
µ2M−1κ2M+1 + µ′2M
ε2M+1ε2M+2κ2M+2

=
1

ε1ε2 . . . ε2M ε2M+1ε2M+2

κ1κ3 . . . κ2M−1κ2M+1

κ2κ4 . . . κ2Mκ2M+2
(s+ c). (4.16)

Putting m =M + 1 in (4.15), equation (4.17) is generated:

µ2M+2 =
µ2Mκ2M+2 + µ′2M+1

ε2M+2ε2M+3κ2M+3

=
1

ε1ε2 . . . ε2M+3

∑M+1
j=1

[(∏j
i=1 κ2i−1

∏M+1
i=j+1 κ2i

)2
ε2j

]
κ1κ2κ3 . . . κ2M+1κ2M+2κ2M+3

. (4.17)

For even n, from (4.14) and (4.15), equation (4.5) reduces to

1

ε1ε2 . . . ε2n−2

κ1κ3 . . . κn−3
κ2κ4 . . . κn−2

(s+ c)κn−1 = 0. (4.18)

Since we suppose all the curvatures to be non-zero, a contradiction occurs with (4.18).
For odd n, from (4.14) and (4.15), equation (4.5) is rewritten as follows

1

ε1ε2 . . . εn−2

∑n−3
2

j=1

[(∏j
i=1 κ2i−1

∏n−3
2

i=j+1 κ2i

)2
ε2j

]
κ1κ2κ3 . . . κn−2

κn−1 +
1

ε1ε2 . . . εn−1

κ1κ3 . . . κn−2
κ2κ4 . . . κn−1

= 0. (4.19)

Equation (4.19) equals to

1

ε1ε2 . . . εn−2

∑n−3
2

j=1

[(∏j
i=1 κ2i−1

∏n−1
2

i=j+1 κ2i

)2
ε2j

]
κ1κ2κ3 . . . κn−1

+
1

ε1ε2 . . . εn−1

(κ1κ3 . . . κn−2)
2

κ1κ2 . . . κn−2κn−1
= 0. (4.20)

A contradiction occurs again with equation (4.20). Therefore, utilizing Theorem 4.1, the proof is completed.
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Remark 4.1. Let β : I → En1 be a curve with constant curvatures, parametrized by

β(t) = (a1 cosh(b1t), a1 sinh(b1t), a2 cos(b2t), a2 sin(b2t), . . . , am cos(bmt), am sin(bmt)) , (4.21)

for even n = 2m and

β(t) = (a1 cosh(b1t), a1 sinh(b1t), a2 cos(b1t), a2 sin(b1t), . . . , am cos(bmt), am sin(bmt), at) , (4.22)

for odd n = 2m+ 1, where a, ai, bi ∈ R and bi’s are distinct numbers for i ∈ {1, 2, . . . ,m}.
It is clear to show that, from equations (4.21), (4.22) a curve with constant curvatures is not a spacelike

rectifying curve, so
〈β(t), N(t)〉 6= 0.

Assuming all the curvatures of the spacelike rectifying curve are non-zero constants, except one of these, the
non-constant curvature can be defined as follows:

Theorem 4.3. Let α : I → En1 be an arclength parametrized spacelike curve with non-zero curvatures. If the first n− 2
curvatures κ1, κ2, . . . , κn−2 of the spacelike rectifying curve α are non-zero constants, then, α is a spacelike rectifying
curve if and only if

κn−1 = ± 1√
εn−2εn−1as(s+ 2c) + b

, for even n, (4.23)

κn−1 = ± s+ c√
εn−2εn−1as(s+ 2c) + b

, for odd n, (4.24)

where a is a constant allied with the curvatures κ1, κ2, . . . , κn−2 and b, c ∈ R.

Proof. (⇒) Suppose that α is a spacelike rectifying curve with its first n− 2 non-zero constant curvatures. From
equation (4.5), we have

µn−3κn−1 = −µ′n−2 = −
(
µn−4κn−2 + µ′n−3
εn−2εn−1κn−1

)′
. (4.25)

Equations (4.14), (4.15) are valid for i ∈ {1, 2, . . . , n− 3}. Hence, for even n, equation (4.25) reduces to

a(s+ c)κn−1 =

(
1

εn−2εn−1κn−1

)′
, (4.26)

where a is a constant allied with the curvatures κ1, κ2, . . . , κn−2. Equation (4.26) leads to the relation in (4.23).
In case n is odd, from (4.25), we get

aκn−1 =

(
s+ c

εn−2εn−1κn−1

)′
, (4.27)

where a is a constant allied with the curvatures κ1, κ2, . . . , κn−2. Equation (4.27) equals to

s+ c

κn−1

(
s+ c

εn−2εn−1κn−1

)′
= a(s+ c),

from which the solution as in the statement of the theorem follows.
(⇐) Suppose that α is the spacelike rectifying curve with its first n− 2 constant curvatures with n ≥ 4 and the
last curvature of α is defined as (4.23), (4.24). Then, the statement of the Theorem 4.1, that is equation (4.13), is

κn−1µn−3,0 + µ′n−2,0 = 0. (4.28)

From system (4.12), (4.28) equals to

κn−1µn−3,0 +

(
κn−2µn−4,0 + µ′n−3,0

εn−2εn−1κn−1

)′
= 0. (4.29)

Also, from (4.11) and the constancy of κ1 and κ2, (4.29) equals to (4.25). Then, the curvatures in (4.23) and (4.24)
satisfy (4.25), (4.13) is completed; so, α is a spacelike rectifying curve.
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4.2. The components of the position vector of a spacelike rectifying curve

In the theorem below, a spacelike rectifying curve in En1 is characterized by its tangential component, its
normal component or its binormal components.

Theorem 4.4. α is a spacelike rectifying curve parametrized by the arclength in En1 with non-zero curvatures iff one of
the following expressions hold.

[i] The tangential component of the position vector of the spacelike rectifying curve α is given by

〈α, T 〉 = s+ c,

for some constant c ∈ R.

[ii] The distance function ρ = ‖α‖ provides
ρ2 = s2 + c1s+ c2,

for some c1, c2 ∈ R.

[iii] The normal component αN of the position vector of the spacelike rectifying curve α has constant length and the
distance function ρ is non-constant.

[iv] The binormal components of the position vector of the spacelike rectifying curve α are given by

〈α,Bi〉 = µi,

where µi for i ∈ {1, 2, . . . , n− 2} is defined by (4.9), (4.10) and (4.11).

Proof.

[i] (⇒) Suppose that, α is a spacelike rectifying curve parametrized by the arclength. From the definition of α
in (2.2) and equation (4.1), we get

〈α, T 〉 = λ = s+ c.

(⇐) If 〈α, T 〉 = s+ c, then differentiating this equation using the Frenet equations in (2.1), we get

〈α,N〉κ1 = 0.

Since κ1 6= 0, α is a spacelike rectifying curve.

[ii] (⇒) Suppose that, α is a spacelike rectifying curve parametrized by the arclength. Multiplying (4.3) with
µ1, (4.4) with ε2εi+1µi, i ∈ {2, 3, . . . , n− 3} and (4.5) with ε2εn−1µn−2, we get

µ1 (µ
′
1 − ε2ε3µ2κ3) = 0, (4.30)

ε2εi+1µi (µ
′
i + µi−1κi+1 − εi+1εi+2µi+1κi+2) = 0, (4.31)

ε2εn−1µn−2
(
µ′n−2 + µn−3κn−1

)
= 0. (4.32)

Adding equations (4.30), (4.31), (4.32), we have

µ1µ
′
1 + ε2ε3µ2µ

′
2 + ε2ε4µ3µ

′
3 + . . .+ ε2εn−2µn−3µ

′
n−3 + ε2εn−1µn−2µ

′
n−2 = 0,

or
ε2µ1µ

′
1 + ε3µ2µ

′
2 + . . .+ εn−2µn−3µ

′
n−3 + εn−1µn−2µ

′
n−2 = 0.

Hence, we can write
n−2∑
i=1

εi+1µiµ
′
i = 0.

So, we have
n−2∑
i=1

εi+1µ
2
i = a2,
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for a ∈ R. From the definition of α in (2.2) and using (4.1), we get

ρ2 = 〈α, α〉 = λ2 +

n−2∑
i=1

µ2
i

= (s+ c)2 + d2. (4.33)

(⇐) Differentiating ρ2 = 〈α, α〉 = s2 + c1s+ c2 twice using Frenet equations in (2.1), we obtain

〈α,N〉 = 0.

Thus, α is congruent to a spacelike rectifying curve.

[iii] (⇒) Decomposing the position vector of a spacelike curve α in its tangential and normal component, we
come across with

α = 〈α, T 〉T + αN .

From (2.2), for a spacelike rectifying curve, αN =
∑n−2

i=1 µiBi. So,

‖αN‖ =

√√√√n−2∑
i=1

µ2
i = d,

where d is given in equation (4.33). Therefore, the normal component of α has constant length. The proof of the
distance function mentioned, is given in [ii].
(⇐) From αN = α− 〈α, T 〉T and 〈αN , αN 〉 = d2, we find that

d2 = 〈αN , αN 〉 = 〈α, α〉 − 〈α, T 〉2. (4.34)

Differentiating (4.34) and using (2.1), we have

κ1〈α, T 〉〈α,N〉 = 0.

Since, ρ2 = ‖α‖2 is not a constant, 〈α, T 〉 6= 0. So, α is congruent to a spacelike rectifying curve.

[iv] (⇒) It is clear from equation (2.2) for the position vector of a spacelike rectifying curve.
(⇐) Suppose 〈α,B1〉 = µ1. Differentiating and using (2.2), we obtain

−ε1ε2κ2〈α,N〉+ κ3µ2 = µ′1.

Using the definitions of µ1 and µ2, 〈α,N〉 = 0. Hence, α is congruent to a spacelike rectifying curve.

4.3. A classification of spacelike rectifying curves

In this section, we build the spacelike rectifying curves starting from an arclength parametrized curve on the
pseudo-hyperbolic space, Hn−1

0 (1) = {~x ∈ En1 |〈~x, ~x〉 = −1}.

Theorem 4.5. Let α : I → En1 be a spacelike curve given by ~α(t) = ρ(t)~y(t), where ρ(t) is an arbitrary positive function
and ~y(t) is a unit spacelike curve lying in pseudo-hyperbolic space Hn−1

0 (1). Then, ~α is a spacelike rectifying curve if and
only if

ρ(t) =
a

cosh(t+ t0)
, a ∈ R0, t ∈ R.

Proof. We can prove this idea with the same method used in [1].

Example 4.1. Let us consider the curve,

~α(s) =
a

cosh(s+ s0)

( √
n

2
cosh

(
s√
n− 1

)
,

√
n

2
sinh

(
s√
n− 1

)
, sin

(
s√
n− 1

)
,

cos

(
s√
n− 1

)
, . . . , sin

(
s√
n− 1

)
, cos

(
s√
n− 1

))
,
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where a ∈ R0, s0 ∈ R in En1 . This curve has a form ~α(s) = ρ(s)~y(s) where ρ(s) = a
cosh(s+s0)

and

~y(s) =

(√
n

2
cosh

(
s√
n− 1

)
,

√
n

2
sinh

(
s√
n− 1

)
, sin

(
s√
n− 1

)
, cos

(
s√
n− 1

)
,

. . . , sin

(
s√
n− 1

)
, cos

(
s√
n− 1

))
.

Since 〈~y(s), ~y(s)〉 = −1 and ‖y′(s)‖ = 1, ~y(s) is a unit speed spacelike curve in pseudo-hyperbolic space Hn−1
0 (1).

So, ~α is a spacelike rectifying curve lying in En1 .

Corollary 4.1. The statements of this paper coincide with the spacelike cases of [9] for n = 3, and with [1] for n = 4.

Remark 4.2. For the timelike rectifying curve, we get the following equation system

λ′ = 1,

λκ1 − µ1κ2 = 0,

µ′1 − µ2κ3 = 0,

µ′i + µi−1κi+1 − µi+1κi+2 = 0,

µ′n−2 + µn−3κn−1 = 0.

It can be clearly seen that the above system is equal to the system of [2].

5. Conclusion

This work gives rectifying curves and develops their characterization in Lorentz n-space. So, this study may
shed light on future work about rectifying curves with respect to their causel character and help some unsolved
problems of rectifying curves in such spaces.
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