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ABSTRACT

We investigate some lifts of tensor fields of type (1,0) on a cross-section in the semi-tensor (pull-
back) bundle tM of tensor bundle TM of type (p,q) by using projection (submersion) of the
cotangent bundle T*M and we find some relation for them.
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1. Introduction

Let Mn be an n-dimensional differentiable manifold of class C∞, and let (T ∗(Mn), π1,Mn) be a cotangent
bundle over Mn. We use the notation (xi) =

(
xα, xα

)
, where the indices i, j, ... run from 1 to 2n, the indices

α, β, ... from 1 to n and the indices α, β, ... from n+ 1 to 2n, xα are coordinates in Mn, xα = pα are fibre
coordinates of the cotangent bundle T ∗(Mn).

Let now
(
T pq (Mn), π̃,Mn

)
be a tensor bundle [3], [6], [[7], p.118] with base space Mn, and let T ∗(Mn)

be cotangent bundle determined by a natural projection (submersion) π1 : T ∗(Mn)→Mn. The semi-tensor
bundle (induced, pull-back [4],[5],[8],[9],[11],[12],[13],[14]) of the tensor bundle

(
T pq (Mn), π̃,Mn

)
is the bundle(

tpq(Mn), π2, T
∗(Mn)

)
over cotangent bundle T ∗(Mn) with a total space

tpq(Mn) =
{

(
(
xα, xα

)
, xα) ∈ T ∗(Mn)×

(
T pq
)
x

(Mn) : π1
(
xα, xα

)
= π̃

(
xα, xα

)
= (xα)

}
⊂ T ∗(Mn)×

(
T pq
)
x

(Mn)

and with the projection map π2 : tpq(Mn)→ T ∗(Mn) defined by π2(xα, xα, xα) =
(
xα, xα

)
, where(

T pq
)
x

(Mn)
(
x = π1 (x̃) , x̃ =

(
xα, xα

)
∈ T ∗(Mn)

)
is the tensor space at a point x of Mn, where xα = t

β1...βp
α1...αq(

α, β, ... = 2n+ 1, ..., 2n+ np+q
)

are fiber coordinates of the tensor bundle T pq (Mn).

If (xi
′
) = (xα

′
, xα

′
, xα

′
) is another system of local adapted coordinates in the semi-tensor bundle tpq(Mn), then

we have 
xα

′
= ∂xβ

∂xα′ pβ ,

xα
′

= xα
′ (
xβ
)
,

xα
′

= t
β′
1...β

′
p

α′
1...α

′
q

= A
β′
1...β

′
p

α1...αpA
β1...βq
α′

1...α
′
q
t
α1...αp
β1...βq

= A
(β′)
(α) A

(β)
(α′)x

β .

(1.1)

The Jacobian of (1.1) has the components

Ā =
(
AI

′

J

)
=

 Aβα′ pσA
β′

β A
σ
β′α′ 0

0 Aα
′

β 0

0 t
(α)
(σ)∂βA

(β′)
(α) A

(σ)
(α′) A

(β′)
(α) A

(β)
(α′)

 , (1.2)

where I = (α, α, α), J = (β, β, β), I, J...=1, ..., 2n+ np+q, t(α)(σ) = t
α1...αp
σ1...σq , Aα

′

β = ∂xα
′

∂xβ
, Aβα′ = ∂xβ

∂xα′ , Aσβ′α′ = ∂2xσ

∂xβ′∂xα′ .
It is easily verified that the condition DetĀ 6= 0 is equivalent to the condition:

Det(Aβα′) 6= 0, Det(Aα
′

β ) 6= 0, Det(A
(β′)
(α) A

(β)
(α′)) 6= 0.
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Also, dim tpq(Mn) = 2n+ np+q.
We note that special class of semi-tensor bundle was examined in [2]. The main purpose of this paper is

to study semi-tensor (pull-back) bundle tpq(Mn) of tensor bundle T pq (Mn) by using projection of the cotangent
bundle T ∗(Mn).

We denote by =pq(T ∗(Mn)) and =pq(Mn) the modules over F (T ∗(Mn)) and F (Mn) of all tensor fields of
type (p, q) on T ∗(Mn) and Mn, respectively, where F (T ∗(Mn)) and F (Mn) denote the rings of real-valued
C

∞ −functions on T ∗(Mn) and Mn, respectively.

2. Vertical lifts of tensor fields and γ− operator

Let A ∈ =pq(T ∗(Mn)). On putting

vvA =

 vvAα
vvAα

vvAα

 =

 0
0
A
α1...αp
β1...βq

 , (2.1)

from (1.2), we easily see that with vvA′ = Ā (vvA). The vector field vvA ∈ =1
0(tpq(Mn)) is called the vertical lift of

A ∈ =pq(T ∗(Mn)) to the semi-tensor bundle tpq(Mn).
Let ϕ ∈ =1

1(Mn). We define a vector field γϕ in π−1(U) by γϕ =
(∑p

λ=1 t
α1...ε...αp
β1...βq

ϕαλε

)
∂

∂xβ
, (p ≥ 1, q ≥ 0)

γ̃ϕ =
(∑q

µ=1 t
α1...αp
β1...ε...βq

ϕεβµ

)
∂

∂xβ
, (p ≥ 0, q ≥ 1)

(2.2)

with respect to the coordinates (xβ , xβ , xβ) on tpq(Mn). From (1.2) we easily see that the vector fields γϕ and γ̃ϕ
defined in each π−1(U) ⊂ tpq(Mn) determine respectively global vertical vector fields on tpq(Mn). We call γϕ (or
γ̃ϕ) the vertical-vector lift of the tensor field ϕ ∈ =1

1(Mn) to tpq(Mn). For any ϕ ∈ =1
1(Mn), if we take account of

(1.2) and (2.2), we can prove that (γϕ)
′

= Ā (γϕ) . Where γϕ is a vector field defined by

γϕ = (γϕ)
I

=

 0
0∑p

λ=1 t
α1...ε...αp
β1...βq

ϕαλε

 . (2.3)

Let ϕ ∈ =1
1(Mn). On putting

γ̃ϕ = (γ̃ϕ)
I

=

 0
0∑q

µ=1 t
α1...αp
β1...ε...βq

ϕεβµ

 , (2.4)

we easily see that (γ̃ϕ)
′

= Ā (γ̃ϕ).
For any ϕ ∈ =1

1(T ∗(Mn)), if we take account of ( 1.2), we can prove that (γϕ)′ = Ā(γϕ), where γϕ is a vector
field defined by

γϕ =

 −pσFσβ0
0

 , (2.5)

with respect to the coordinates (xβ , xβ , xβ).

3. Complete lifts of vector fields

Let X ∈ =1
0(T ∗(Mn)), i.e. X = Xα∂α. The complete lift cX of X to cotangent bundle is defined by cX =

Xα∂α − pβ(∂αX
β)∂α [[10], p.236]. On putting

ccX =

 ccXβ

ccXβ

ccXβ

 =

 −pε(∂βXε)
Xβ∑p

λ=1 t
α1...ε...αp
β1...βq

∂εX
αλ −

∑q
µ=1 t

α1...αp
β1...ε...βq

∂βµX
ε

 , (3.1)

from (1.2), we easily see that ccX ′ = Ā(ccX). The vector field ccX is called the complete lift of cX ∈ =1
0(T ∗(Mn))

to tpq(Mn).
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4. Horizontal lifts of vector fields

Let X ∈ =1
0(T ∗(Mn)), i.e. X = Xα(xα)∂α. If we take account of (1.2), we can prove that HHX ′ = Ā

(
HHX

)
,

where HHX ∈ =1
0(tpq(Mn)) is a vector field defined by

HHX =

 XαΓαβ
Xβ

X l(
∑q

µ=1 Γεlβµt
α1...αp
β1...ε...βq

−
∑p

λ=1 Γαλlε t
α1...ε...αp
β1...βq

)

 , (4.1)

with respect to the coordinates (xβ , xβ , xβ) on tpq(Mn). We call HHX the horizontal lift of the vector field X to
tpq(Mn), where Γαβ = pεΓ

ε
αβ .

Theorem 4.1. If X ∈ =1
0(T ∗(Mn)) then

ccX −HH X = γ(∇̂X)− γ̃(∇̂X) + γ(∇X),

where the symmetric affine connection ∇̂ is the given by Γ̂αβθ = Γαθβ .

Proof. From (2.3), (2.4), (2.5), (3.1) and (4.1), we have

ccX −HH X =

 −pε(∂βXε)
Xβ∑p

λ=1 t
α1...ε...αp
β1...βq

∂εX
αλ −

∑q
µ=1 t

α1...αp
β1...ε...βq

∂βµX
ε


−

 pεX
αΓεαβ

Xβ

X l(
∑q

µ=1 Γεlβµt
α1...αp
β1...ε...βq

−
∑p

λ=1 Γαλlε t
α1...ε...αp
β1...βq

)


=

 −pε(∂βXε)− pεXαΓεαβ
0∑p

λ=1 t
α1...ε...αp
β1...βq

(∂εX
αλ + Γαλlε X

l)−
∑q

µ=1 t
α1...αp
β1...ε...βq

(∂βµX
ε + ΓεlβµX

l)


=

 0
0∑p

λ=1 t
α1...ε...αp
β1...βq

(
∂εX

αλ + Γαλlε X
l
)
−

 0
0∑q

µ=1 t
α1...αp
β1...ε...βq

(
∂βµX

ε + ΓεlβµX
l
)


+

 −pε(∂βXε +XαΓεαβ)
0
0



=


0
0∑p

λ=1 t
α1...ε...αp
β1...βq

(∂εX
αλ + Γ̂αλεl X

l︸ ︷︷ ︸
∇̂εX̃αλ

)

−


0
0∑q

µ=1 t
α1...αp
β1...ε...βq

(∂βµX
ε + Γ̂εβµlX

l︸ ︷︷ ︸
∇̂βµ X̃ε

)



+


−pε(∂βXε +XαΓεαβ︸ ︷︷ ︸

∇βXε

)

0
0


=

 0
0∑p

λ=1 t
α1...ε...αp
β1...βq

(
∇̂εX̃αλ

)
−

 0
0∑q

µ=1 t
α1...αp
β1...ε...βq

(
∇̂βµX̃ε

)
+

 −pε (∇βXε)
0
0


= γ(∇̂εX̃αλ)− γ̃

(
∇̂βµX̃ε

)
+ γ (∇βXε) = γ(∇̂X)− γ̃(∇̂X) + γ(∇X),

which prove Theorem 4.1.
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5. Cross-sections in the semi-tensor bundle

Let ξ ∈ =pq(Mn) be a tensor field on Mn. Then the correspondence x→ ξx, ξx being the value of ξ at
x ∈ T ∗(Mn), determines a cross-section βξ of semi-tensor bundle. Thus if σξ : Mn → T pq (Mn) is a cross-section
of
(
T pq (Mn), π̃,Mn

)
, such that π̃ ◦ σξ = I(Mn), an associated cross-section βξ : T ∗(Mn)→ tpq(Mn) of semi-tensor

bundle
(
tpq(Mn), π2, T

∗(Mn)
)

defined by [[1], p. 217-218], [4], [5], [[10].p. 301]:

βξ
(
xα, xα

)
=
(
xα, xα, σξ ◦ π1

(
xα, xα

))
=
(
xα, xα, σξ (xα)

)
=
(
xα, xα, ξ

α1...αp
β1...βq

(
xβ
))
.

If the tensor field ξ has the local components ξα1...αp
β1...βq

(
xβ
)
, the cross-section βξ (T ∗(Mn)) of tpq(Mn) is locally

expressed by 
xβ = pβ = θβ (xα) ,
xβ = xβ ,

xβ = ξ
α1...αp
β1...βq

(xα) ,

(5.1)

with respect to the coordinates xB = (xβ , xβ , xβ) in tpq(Mn).
xα = pα being considered as parameters. Thus, by differentiating with respect to pα, we easily see that the n
local vector fields B(θ) (θ = 1, ..., n) with components

B(θ) :
(
BB

(θ)

)
= ∂(θ)x

B =

 ∂θθβ
∂θx

β

∂θξ
α1...αp
β1...βq

 =

 δθβ
0
0


is tangent to the fibre, where

δθβ = Aθβ =
∂xθ

∂xβ
.

Let ω be an 1-form with local components ωβ on Mn, so that ω is a 1-form with local expression ω = ωβdx
β .

We denote by Bω the vector field with local components

Bω :
(
BB

(θ)
ωθ

)
=

 ωβ
0
0

 , (5.2)

which is tangent to the fibre.
Taking the derivative with respect to xθ, we have vector fields C(θ) (θ = n+ 1, ..., 2n) with components

C(θ) =
∂xB

∂xθ
= ∂θx

B =

 ∂θθβ
∂θx

β

∂θξ
α1...αp
β1...βq

 ,

which are tangent to the cross-section βξ (T ∗(Mn)).
Thus C(θ) has the components

C(θ) :
(
CB(θ)

)
=

 ∂θθβ
δβθ
∂θξ

α1...αp
β1...βq

 ,

with respect to the coordinates (xβ , xβ , xβ) in tpq(Mn). Where

δβθ = Aβθ =
∂xβ

∂xθ
.

Let X ∈ =1
0 (T ∗(Mn)). Then we denote by CX the vector field with local components

CX :
(
CB(θ)X

θ
)

=

 Xθ∂θθβ
Xβ

Xθ∂θξ
α1...αp
β1...βq

 , (5.3)
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with respect to the coordinates (xβ , xβ , xβ) in tpq(Mn), which is defined globally along βξ (T ∗(Mn)).
On the other hand, the fibre is locally expressed by

xβ = pβ = const.,
xβ = const.,

xβ = t
α1...αp
β1...βq

= t
α1...αp
β1...βq

,

t
α1...αp
β1...βq

being considered as parameters. Thus, by differentiating with respect to xβ = t
α1...αp
β1...βq

, we easily see that
the vector fields E(

θ
) (θ = 2n+ 1, ..., 2n+ np+q) with components

E(
θ
) :

(
EB(

θ
)) = ∂

θ
xB =

 ∂
θ
θβ

∂
θ
xβ

∂
θ
t
α1...αp
β1...βq

 =

 0
0

δθ1β1
...δ

θq
βq
δα1
γ1 ...δ

αp
γp


is tangent to the fibre, where δ is the Kronecker symbol.

Let ξ be a tensor field of type (p, q) with local components

ξ = ξ
γ1...γp
θ1...θq

dxθ1 ⊗ ...⊗ dxθq ⊗ ∂γ1 ⊗ ...⊗ ∂γp
on Mn.

We denote by Eξ the vector field with local components

Eξ :

(
EB(

θ
)ξγ1...γpθ1...θq

)
=

 0
0
ξ
α1...αp
β1...βq

 , (5.4)

which is tangent to the fibre.

Theorem 5.1. Let ψ,ω ∈ =0
1(Mn) . For the Lie product, we have

[Bψ,Bω] = 0.

Proof. If ψ, ω ∈ =0
1(Mn) and

 [Bψ,Bω]
β

[Bψ,Bω]
β

[Bψ,Bω]
β

 are the components of [Bψ,Bω] with respect to the coordinates

(xβ , xβ , xβ) in tpq(Mn), then we have

[Bψ,Bω]
J

= ψI∂Iω
J − ωI∂IψJ

= ψα∂αω
J + ψα∂αω

J + ψα∂αω
J − ωα∂αψJ − ωα∂αψJ − ωα∂αψ

J

= ψα∂αω
J − ωα∂αψJ .

Firstly, if J = β, we have

[Bψ,Bω]
β

= ψα∂αω
β − ωα∂αψβ

= ψα∂αωβ − ωα∂αψβ
= 0

by virtue of (5.2). Secondly, if J = β, we have

[Bψ,Bω]
β

= ψα∂αω
β − ωα∂αψβ

= 0

by virtue of (5.2). Thirdly, if J = β. Then we have

[Bψ,Bω]
β

= ψα∂αω
β − ωα∂αψβ

= 0

by virtue of (5.2). Thus, we have [Bψ,Bω] = 0.
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Theorem 5.2. Let X be a vector field on T ∗(Mn), we have along βξ (T ∗(Mn)) the formula

ccX = −B (LXθ) + CX + E (−LXξ) ,

where LXθ denotes the Lie derivative of θ with respect to X , and LXξ denotes the Lie derivative of ξ with respect to X .

Proof. Using (3.1), (5.2), (5.3) and (5.4), we have

−B (LXθ) + CX + E (−LXξ) = −

 Xθ∂θθβ + θθ∂βX
θ

0
0

+

 Xθ∂θθβ
Xβ

Xθ∂θξ
α1...αp
β1...βq


+

 0
0
−Xθ∂θξ

α1...αp
β1...βq

−
∑q

µ=1 ∂βµX
βξ
α1...αp
β1...β...βq

+
∑p

λ=1 ∂βX
αλξ

α1...ε...αp
β1...βq


=

 −θθ (∂βXθ
)

Xβ

−
∑q

µ=1 ∂βµX
βξ
α1...αp
β1...β...βq

+
∑p

λ=1 ∂βX
αλξ

α1...ε...αp
β1...βq


= ccX.

Thus, we have Theorem 5.2.

On the other hand, on putting C(
β
) = E(

β
), we write the adapted frame of βξ (T ∗(Mn)) as{

B(β), C(β), C(β)
}

. The adapted frame
{
B(β), C(β), C(β)

}
of βξ (T ∗(Mn)) is given by the matrix

Ã =
(
ÃAB

)
=

 δβα ∂βθα 0
0 δαβ 0

0 ∂βξ
σ1...σp
α1...αq δβ1

α1
...δ

βq
αqδ

σ1
γ1 ...δ

σp
γp

 . (5.5)

Since the matrix Ã in (5.5) is non-singular, it has the inverse. Denoting this inverse by
(
Ã
)−1

, we have

(
Ã
)−1

=
(
ÃBC

)−1
=

 δθβ −∂θθβ 0

0 δβθ 0

0 −∂θξ
σ1...σp
β1...βq

δθ1β1
...δ

θq
βq
δσ1
γ1 ...δ

σp
γq

 , (5.6)

where Ã
(
Ã
)−1

= (ÃAB)
(
ÃBC

)−1
= δAC = Ĩ , where A =

(
α, α, α

)
, B =

(
β, β, β

)
, C =

(
θ, θ, θ

)
.

Proof. In fact, from (5.5) and (5.6), we easily see that

Ã
(
Ã
)−1

= (ÃAB)
(
ÃBC

)−1
=

 δβα ∂βθα 0
0 δαβ 0

0 ∂βξ
σ1...σp
α1...αq δβ1

α1
...δ

βq
αqδ

σ1
γ1 ...δ

σp
γp


 δθβ −∂θθβ 0

0 δβθ 0

0 −∂θξ
σ1...σp
β1...βq

δθ1β1
...δ

θq
βq
δσ1
γ1 ...δ

σp
γq


=

 δθα ∂θθα − ∂θθα 0
0 δαθ 0

0 ∂θξ
σ1...σp
α1...αq − ∂θξ

σ1...σp
α1...αq δθ1α1

...δ
θq
αq

 =

 δθα 0 0
0 δαθ 0
0 0 δθα

 = δAC = Ĩ .

Then we see from Theorem 5.2 that the complete lift ccX of a vector field X ∈ =1
0(T ∗(Mn)) has along

βξ (T ∗(Mn)) components of the form

ccX :

 −LXθX
−LXξ

 ,
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with respect to the adapted frame
{
B(β), C(β), C(β)

}
.

Let A ∈ =pq(T ∗(Mn)). If we take account of (2.1) and (5.5), we can easily prove that vvA′ = Ã (vvA), where
vvA ∈ =1

0(tpq(Mn)) is a vector field defined by

vvA =

 vvAα
vvAα

vvAα

 =

 0
0
A
α1...αp
β1...βq

 ,

with respect to the adapted frame
{
B(β), C(β), C(β)

}
of βξ (T ∗(Mn)).

Bω, CX and Eξ also have the components:

Bω =

 ωα
0
0

 , CX =

 0
Xα

0

 , Eξ =

 0
0
ξ
α1...αp
β1...βq



respectively, with respect to the adapted frame
{
B(β), C(β), C(β)

}
of the cross-section βξ (T ∗(Mn)) determined

by a tensor field ξ of type (p, q) in T ∗(Mn).
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