
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 11 NO. 2 PAGE 28–33 (2018)

A Ladder of Curvatures in the Geometry of
Surfaces

Nicholas D. Brubaker, Jasmine Camero, Oscar Rocha Rocha and Bogdan
D. Suceavă∗
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ABSTRACT

Many investigations in the local differential geometry of surfaces focused on Gaussian curvature
and mean curvature. Besides these classical curvature invariants, are there any other geometric
quantities that deserve to be investigated? In the recent decades, there have been important
developments in the area of new curvature invariants for submanifolds, mostly included in Bang-
Yen Chen’s important monograph Pseudo-Riemannian geometry, δ−invariants and applications, World
Scientific, 2011. These developments are inviting us to look at the classical content from a different
perspective, exploring other quantities that might be of interest.
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CLASSICAL CURVATURE INVARIANTS IN THE GEOMETRY OF SMOOTH SURFACES. The history
of local differential geometry of smooth surfaces can be traced back to Leonhard Euler’s 1760 work [9] and is
an interesting casebook in the history of mathematics (see, e.g. [13]). For our present investigation, we start by
reminding the classical curvature invariants for smooth surfaces.

Consider a smooth surface S lying in R3, and an arbitrary point P ∈ S (see e.g. [12, 14]). Consider NP the
normal to the surface at P. Consider the family of all planes passing through P that contain the line through P
with the same direction as NP . These planes yield a family of curves on S called normal sections. Consider now
the curvature κ(P ) of the normal sections, viewed as planar curves. Then κ(P ) has a maximum, denoted κ1,
and a minimum, denoted κ2. The curvatures κ1 and κ2 are called the principal curvatures. Using these principal
curvatures, one may define the Gaussian curvature [10] as K(P ) = κ1(P ) · κ2(P ), and the mean curvature [11]
as H(P ) = 1

2 [κ1(P ) + κ2(P )] .

Complementing a century of investigations on what the correct definition for curvature should be, Felice
Casorati introduced in 1890 what is today called the Casorati curvature [1]. In his paper, Casorati argues that
there are important geometric reasons why one should investigate C(P ) = 1

2

[
κ21(P ) + κ22(P )

]
. (See also [18].)

Several recent works pursue the study of Casorati curvatures and its generalizations see e.g. [6, 7] as well as
their references.
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TANGENTIAL CURVATURE. With the notations presented above, we propose the investigation of the
following curvature invariant, which we call tangential curvature:

τ(p) =
|κ1(p)κ2(p)| − 1 +

√
(κ21(p) + 1)(κ22(p) + 1)

|κ1(p)|+ |κ2(p)|
.

For a Riemannian manifold in general there are three curvature invariants: the sectional curvature, the Ricci
curvature and the scalar curvature [3, 8]. In the last decade, a new important development was the investigation
of B.-Y.Chen’s δ-curvature invariants [3]. Our main motivation to investigate this invariant is suggested by
our main result on the tangential curvature, which will be presented below. Before approaching it, we would
like to recall the amalgamatic curvature introduced and investigated first in [5], then in [4] and [16]. For an
investigation of |κ1(p)− κ2(p)|, inspired by the developments in [2], see [15].

In [5], the following questions is posed: In the classical geometry of curves, a curve satisfying the property
that the ratio between curvature and torsion is constant is called a generalized helix. It’s natural to think if it
is possible to extend this idea to higher dimensional geometric objects; would it make sense to study surfaces
that are satisfying a similar relationship between the mean curvature H and the Gaussian curvature K? One
could consider both the ratio K

H or K
H2 and derive some analogies with the theory of curves. The history of the

original idea can be traced back to Weingarten’s original papers [19, 20]. One might look at the idea of the ratio
K
H seen in the geometry of surfaces. Suppose we work on a surface patch where H(p) 6= 0, for all points p. In
general, the ratio K

H is a function that depends on the point of the surface, everywhere where it is defined. If
we denote the principal curvatures by κ1 and κ2, then

K

H
=

2κ1κ2
κ1 + κ2

.

Note that this term could be also viewed as the harmonic ratio of the real numbers κ1 and κ2. The idea is to
define a geometric quantity that encodes the same information as this ratio. This motivated in [5] the following.

Definition 1. Let σ : U ⊂ R2 → R3 be a surface given by the smooth map σ. Then the amalgamatic curvature
at point p is

A(p) =
2|κ1||κ2|
|κ1|+ |κ2|

.

Additionally, one may look at the absolute mean curvature, denoted by H̄ i.e.

H̄ =
1

2
(|κ1|+ |κ2|) .

Also, we refer to [5, 4] for the following.

Definition 2. Let σ : U ⊂ R2 → R3 be a smooth surface given by the smooth map σ. The point p on the surface
is called absolutely umbilical if the principal curvatures satisfy |κ1| = |κ2|. If all the points of a hypersurface are
absolutely umbilical, then the hypersurface is called absolutely umbilical.

The absolute umbilical hypersurfaces are hypersurfaces with conformal Gauss map. We can see this in the
following way. Let (M, g) be a hypersurface of the Euclidean (n+ 1)-space En+1. Then the Gauss map ν of M
is defined to be the map which carries each point p ∈M to the unit normal vector ξ = en+1. Then Weingarten’s
formula gives

dν(X) = ∇̃Xξ = −Aξ(X),

where Aξ denotes the shape operator at p. Hence the induced metric gν on M via Gauss map is given by

gν(X,Y ) = g(AξX,AξY ).

Now, if e1, . . . , en are eigenvectors of Aξ with Aξei = κiei, then we have gν(ei, ei) = κ2i g(ei, ei). Hence the Gauss
map is conformal if and only if κ21 = . . . = κ2n.

We prove the following result.
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Theorem 1. Let σ : U ⊂ R2 → R3 be a surface given by the smooth map σ.Denote by κ1 and κ2 the principal curvatures
on σ(U). Then the amalgamatic curvature, the tangential curvature, the absolute mean curvature and the Casorati
curvature satisfy the inequality

A(p) ≤ τ(p) ≤ H̄(p) ≤
√
C(p),

with equality holding at the points where the Gauss map is conformal (i.e. the equality holds at the absolute umbilical
points, where |κ1(p)| = |κ2(p)|).

Proof: To simplify our presentation, denote |κ1| = x, and |κ2| = y. Consider x, y > 0. The first inequality we
have to prove is A ≤ τ, which converts into

2xy

x+ y
≤
xy − 1 +

√
x2 + 1

√
y2 + 1

x+ y
.

This reduces immediately to
xy + 1 ≤

√
x2 + 1

√
y2 + 1,

and by squaring both sides we get

x2y2 + 2xy + 1 ≤ x2y2 + x2 + y2 + 1

which leads to a complete square (x− y)2 ≥ 0. This also shows that the equality holds when x = y, that is at an
absolute umbilical point.

The second inequality we have to prove is τ ≤ H̄, which means

xy − 1 +
√
x2 + 1

√
y2 + 1

x+ y
≤ x+ y

2
.

A direct cross-multiplication leads to

2
√
x2y2 + x2 + y2 + 1 ≤ x2 + y2 + 2,

which by squaring again yields

4x2y2 + 4x2 + 4y2 + 4 ≤ x4 + y4 + 4 + 2x2y2 + 4x2 + 4y2,

which reduces to
0 ≤ x4 + y4 − 2x2y2 = (x2 − y2)2.

This also shows that the equality case holds in τ ≤ H̄, when x2 = y2, that is when the point is absolutely
umbilical. This is consistent with the fact noted in [5], that A = H̄ when x = y, that is the equality holds
when the harmonic mean of the numbers x and y equals their arithmetic mean. This represents the algebraic
description of absolutely umbilical points.

The last inequality, namely H̄(p) ≤
√
C(p) represents nothing else but the elementary AM-QM inequality

(between the arithmetic mean and the quadratic mean), applied to the positive real numbers x and y, with
|κ1| = x, and |κ2| = y. The equality holds at the points p where |κ1| = |κ2|.

Note that the ladder of curvatures presented in this theorem is different from the ladder of curvatures for
hypersurfaces investigated in [4].

Remark: It is known that the principal curvatures are the roots of the quadratic equation

κ2 − 2Hκ+K = 0,

and hence κ1 = H +
√
H2 −K, and κ1 = H −

√
H2 −K. If κ1 and κ2 can be expressed in terms of the mean

curvature H and of the Gaussian curvature K, it is natural to investigate how is the tangential curvature τ
related to the classical curvature invariants.

Proposition 1. Let σ : U ⊂ R2 → R3 be a surface given by the smooth map σ. Denote by κ1 and κ2 the principal
curvatures on σ(U). Then the tangential curvature τ , the absolute mean curvature H̄ , the mean curvature H and the
Gaussian curvature K satisfy the equality

τ =
|K| − 1 +

√
(K − 1)2 + 4H2

H̄
,

at every point p of the surface.
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Proof: Denote |κ1| = a and |κ2| = b, then |K| = |ab|. We obtain immediately

τ =
|K| − 1 +

√
K2 + a2 + b2 + 1

H̄
.

Since a2 + b2 = κ21 + κ22 = (2H)2 − 2K, we obtain immediately the claimed equality.

THE SURFACE ASSOCIATED TO THE TANGENTIAL CURVATURE. All these investigations led us to
consider the surface associated to the tangential curvature defined as τ : R2 → R3, defined by the vectorial
equation

τ(x, y) =

〈
x, y,

|xy| − 1 +
√
x2 + 1

√
y2 + 1

|x|+ |y|

〉
.

It is interesting to notice that this surface τ lies in R3 between the surfaces associated to the amalgamatic
curvature

a(x, y) =

〈
x, y,

2|x||y|
|x|+ |y|

〉
,

and the absolute mean curvature

b(x, y) =

〈
x, y,

|x|+ |y|
2

〉
,

as illustrated in the following figure.

EXAMPLES. It is interesting to see what happens with the tangential curvature and with the inequality
A ≤ τ ≤ H̄ for various surfaces.

Example 1. Consider a sphere of radiusR in R3. Then the principal curvatures are |κ1| = |κ2| = 1
R ,which yields

the amalgamatic curvature A = 1
R , the tangential curvature τ = 1

R , and the mean curvature equal to absolute
mean curvature H = H̄ = 1

R . All the points of the sphere are absolutely umbilical.

Example 2. Consider the cylinder R× S1(r). Its principal curvatures are κ1 = 0, and κ2 = 1
r . Then the

amalgamatic curvature is A = 0, the tangential curvature τ =
√
r2 + 1− r, and the mean curvature equal to

absolute mean curvature H = H̄ = 1
2r . Since the equality case does not hold, we do not have on the cylinder

any absolutely umbilical points.
Note that as r → 0, we have H = H̄ →∞, while τ → 1.

Example 3. Consider the hyperbolic paraboloid z = xy. Its first fundamental form is E = 1 + y2, F = xy,
G = 1 + x2, and its second fundamental form is L = N = 0, M = 1√

x2+y2+1
. The Gaussian curvature is

K = − 1
(x2+y2+1)2 , and the mean curvature is H = − xy

(x2+y2+1)3/2
. The principal curvatures for the hyperbolic

paraboloid are

κ1 =
−xy +

√
(x2 + 1)(y2 + 1)

(x2 + y2 + 1)3/2
> 0,
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and

κ2 =
−xy −

√
(x2 + 1)(y2 + 1)

(x2 + y2 + 1)3/2
< 0.

In conclusion since κ2 < 0 < κ1, it is known we can not have umbilical points on the hyperbolic paraboloid.
Can we have absolute umbilical points on this hyperbolic paraboloid? This can happen whenever

| − xy +
√

(x2 + 1)(y2 + 1)| = | − xy −
√

(x2 + 1)(y2 + 1)|.

This equality can hold in the following two cases.
Case 1. xy −

√
(x2 + 1)(y2 + 1) = xy +

√
(x2 + 1)(y2 + 1). This case does not yield any solution.

Case 2. xy −
√

(x2 + 1)(y2 + 1) = −xy −
√

(x2 + 1)(y2 + 1). In this case we obtain xy = 0, which yields the
solution x = 0 or y = 0.

Thus, the points (a, 0, 0) and the points (0, a, 0) are absolute umbilical points on the hyperbolic paraboloid
z = xy. At these points we have A = τ = H̄ =

√
C.

Example 4. Consider the elliptic cone x2

a2 + y2

b2 −
z2

c2 = 0. As an implicit quadric surface, it is known that its
classical curvature invariants are

K = 0, H = − x2 + y2 + z2

2a2b2c2
(
x2

a4 + y2

b4 + z2

c4

)3/2 ,
with the principal curvatures

κ1 = 0, κ2 = − x2 + y2 + z2

a2b2c2
(
x2

a4 + y2

b4 + z2

c4

)3/2 .
If we except the vertex (0, 0, 0) from this analysis, we note that on the elliptic cone we can not have |κ1| = | κ2|,
hence on this smooth surface there are no absolute umbilical points and the inequality A ≤ H̄ is strict.

Example 5. It is well-known that the helicoid σ(u, v) = 〈v cosu, v sinu, λu〉, with λ > 0, is a minimal surface, i.e.
H = 0 at every point. Its principal curvatures are κ = ± λ

λ2+v2 , and all its points are absolutely umbilical points.
Also, to illustrate what happens with the quantities studied in Theorem 1:

A = τ = H̄ =
√
C =

λ

λ2 + v2
.

Example 6. Another classical example of minimal surface is the catenoid given by the smooth parametrization
σ(u, v) = 〈coshu cos v, coshu sin v, u〉 . Its principal curvatures are κ = ± 1

cosh2 u
, and we have

A = τ = H̄ =
√
C =

1

cosh2 u
.

CONCLUSION. There may be geometric quantities of interest in the differential geometry of surfaces of
low-dimensional hypersurfaces. We thought it useful to investigate one such quantity. It is hard to expect that
other concepts will ever have the mathematical importance of Gaussian curvature and mean curvature, but
nevertheless their investigation may be worthy of interest. To better illustrate our thought, in dimension n = 3,
see [16, 17]. It is natural to ask whether there are any other quantities of interest expressing curvature in various
geometric ways? What can we say about them?

The authors thank the editor and the referees for their useful comments that contributed to the final form of
our paper.
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