Extremities Involving B. Y. Chen’s Invariants for Real Hypersurfaces in Complex Quadric

Pooja Bansal*, Siraj Uddin and Mohammad Hasan Shahid

(Communicated by Ion Mihai)

ABSTRACT

The article is concerned with the study of real hypersurfaces of the complex quadric Q^m. We establish B. Y. Chen’s inequalities for real hypersurfaces of the complex quadric Q^m and by considering the equality case, we obtain some consequences. Also, we establish an inequality in terms of the warping function and the scalar curvature for a warped product real hypersurface of Q^m and some obstructions have been given. Moreover, we investigate the expression of the curvature tensor of a real hypersurface in the complex quadric Q^m admitting semi-symmetric metric connection. Using this curvature, we derive inequalities involving Chen δ-invariant admitting a semi-symmetric metric connection. Furthermore, the equality case is considered.

Keywords: real hypersurface; complex quadric; scalar curvature; Chen δ-invariant; semi-symmetric metric connection.

AMS Subject Classification (2010): Primary: 53C40; Secondary: 53C55; 53B05; 53B15.

1. Introduction

In 1968, S. S. Chern raised a question involving minimal isometric immersion into Euclidean space [12]. Then, Chen found some obstructions to Chern’s problem and proposed inequalities for submanifolds in Riemannian space form concerning the sectional curvature, the scalar curvature and the squared mean curvature [9]. Moreover, he proposed inequality concerning $\delta(n_1, n_2, ..., n_k)$ and the squared mean curvature for the submanifolds in real space form [10].

Afterwards, many papers have been appeared in submanifolds of space forms in the version of real and complex like, generalised complex space forms [11], (k, μ)-contact space forms [1] and Sasakian space forms [13]. Further, the geometry of the complex quadric has been studied by H. Reckziegel [16] in 1995 and Y. J. Suh, obtained some analyzing results on real hypersurfaces in the complex quadric by considering some geometric conditions like parallel Ricci tensor [17], Reeb parallel shape operator [18]. Also, the classifications of real hypersurfaces of the complex quadric with isometric Reeb flow were obtained by Berndt and Suh [5] and many more work have been studied by different authors considering the same ambient space ([2]-[4],[19]).

However, Hayden [14] originated the idea of a semi-symmetric metric connection on a Riemannian manifold. Yano [20] deliberated this connection and found some properties of a Riemannian manifold with the same connection. Also, A. Mihai and C. Özgür studied the Chen extremities for submanifolds of the real space forms with same connection [15].

Here, we first establish Chen’s extremities for real hypersurfaces of the complex quadric Q^m and considering the equality case, we obtain some consequences. Also, we establish an inequality in terms of the warping function and the scalar curvature for warped product real hypersurface of Q^m and some obstructions have been given. Then, we study real hypersurface of Q^m admitting semi-symmetric metric connection and find the curvature tensor of a real hypersurface in Q^m with the semi-symmetric metric connection. Additionally, using this curvature we develop Chen’s inequality for a real hypersurfaces of the complex quadric Q^m admitting semi symmetric metric connection.

As long as, by virtue of simpleness, throughout a paper we denote semi-symmetric metric connection, Levi-Civita connection and Warped product by SSMC, LC connection and WP, respectively.
2. The complex quadric Q^m

For more details of the geometry of complex quadric we refer to ([5],[16],[17]). The complex hypersurface of \mathbb{CP}^{m+1} is known as the complex quadric Q^m defined by the equation $z_1^2 + \ldots + z_{m+1}^2 = 0$, where z_1, \ldots, z_{m+1} are homogeneous coordinates on \mathbb{CP}^{m+1} equipped with the induced Riemannian metric g. Then, naturally the canonical Kähler structure (J,g) on Q^m is induced by Kähler structure on \mathbb{CP}^{m+1} [18]. The 1-dimensional quadric Q^1 is congruent to the round 2-sphere S^2. The 2-dimensional quadric Q^2 is congruent to the Riemannian product $S^2 \times S^2$. For this, we will assume $m \geq 3$ throughout the paper.

Apart from J there is one more geometric structure on Q^m, known as the complex conjugation A on the tangent spaces of Q^m which is a parallel rank-two vector bundle U containing S^1-bundle of real structures. For $x \in Q^m$, let A_x be the shape operator of Q^m in \mathbb{CP}^{m+1}. Then we have $A_x W = W$ for $W \in T_xQ^m$, that is, A is an involution or A is a complex conjugation restricted to $T_x Q^m$. Now, $T_x Q^m$ is decomposed as [18]:

$$ T_x Q^m = V(A_x) \oplus JV(A_x), $$

such that $V(A_x)$ and $JV(A_x)$, respectively denote the $(+1)$-eigenspace and (-1)-eigenspace of the involution $A_x^2 = I$ on $T_x Q^m$, $x \in Q^m$.

Now, a tangent vector $W \neq 0$ in $T_x Q^m$ is known as the singular if it is tangent to more than one maximal flat in Q^m. Classification of singular tangent vectors for Q^m are given as [19]:

1. If there exists $A \in U$ such that W is an eigenvector corresponding to an eigenvalue (+1), then the singular tangent vector W is known as U-principal.
2. If there exists $A \in U$ and orthonormal vectors $U,V \in \mathcal{V}(A)$ such that $W/\|W\| = (U + JV)/\sqrt{2}$, then the singular tangent vector W is known as U-isotropic.

Let \mathcal{M}^n be a real hypersurface of Q^m with a connection ∇ induced from the LC connection ∇ in Q^m. Then, the transform JU of the Kähler structure J on Q^m is defined by $JU = \phi U + \eta(U)N$ where ϕU is the tangential component of JU and $N \in T^*_U \mathcal{M}$, for $U \in T_p \mathcal{M}$. Here, \mathcal{M} associates an induced almost contact metric structure (ϕ, ξ, η, g) satisfying the following relations [6]:

$$ \xi = -JN, \eta(\xi) = 1, \eta(U) = g(\xi, U), \phi^2 U + U = \eta(U)\xi, \phi \xi = 0, $$

$$ \eta(\phi U) = 0, g(\phi U, \phi V) + \eta(U)\eta(V) = g(U, V), g(\phi U, V) = -g(U, \phi V). $$

Moreover, the real hypersurface \mathcal{M} of Q^m satisfy

$$ \nabla_U \xi = \phi SU, $$

where S is the shaper operator of \mathcal{M}.

On the other hand, the Gauss and the Weingarten formulas for M follows

$$ \nabla_U V = \nabla_U V + h(U, V) \quad \text{and} \quad \nabla_U N = -SU, $$

respectively, for $U, V \in T_p \mathcal{M}$ and $N \in T^*_p \mathcal{M}$. The second fundamental form h and the shape operator S of \mathcal{M} are related by

$$ g(h(U, V), N) = g(SN U, V) = g(SU, V). $$

Now, we take $A \in U_x$ such that $N = \cos(t)Z_1 + \sin(t)JZ_2$, where Z_1, Z_2 are orthonormal vectors in $\mathcal{V}(A)$ and $0 \leq t \leq \frac{\pi}{2}$ (see Proposition 3 [16]) which is a function on \mathcal{M}. Since $\xi = -JN$, we have

$$ N = \cos(t)Z_1 + \sin(t)JZ_2, $$

$$ AN = \cos(t)Z_1 - \sin(t)JZ_2, $$

$$ \xi = \sin(t)Z_2 - \cos(t)JZ_1, $$

$$ A\xi = \sin(t)Z_2 + \cos(t)JZ_1, $$

from which it follows that $g(\xi, AN) = 0$.

35
3. B. Y. Chen inequality for a real hypersurface of Q^m

Here, we obtain the general inequality associated with the Chen δ-invariant for a real hypersurfaces \mathcal{M} of the complex quadric Q^m.

Now, from the Gauss equation, the Riemannian curvature tensor R of connection ∇ in terms of J and $A \in \mathcal{U}$ is defined as [18]:

$$R(U, V)W = g(V, W)U - g(U, W)V + g(\phi V, W)\phi U - g(\phi U, W)\phi V - 2g(\phi U, V)\phi W + g(AV, W)AU - g(AU, W)AV + g(JAV, W)JAU - g(JAU, W)JAV + g(SV, W)SU - g(SU, W)SV,$$

where $U, V, W \in T_p\mathcal{M}$.

Then, we can see

$$g(R(U, V)W + R(V, W)U + R(W, U)V, W') = 0, \quad \text{for } U, V, W, W' \in T_p\mathcal{M}$$

that is, the first Bianchi Identity holds for \mathcal{M} of LC connection ∇.

Next, the curvature tensor R of the Hopf hypersurface \mathcal{M} (i.e. $\alpha = g(S\xi, \xi)$), where α is a smooth function on \mathcal{M} satisfies

$$R(U, \xi)V = \eta(V)[U + \alpha SU] - [g(U, V) + \alpha g(SU, V)]\xi + g(A\xi, V)AU - g(AU, V)A\xi - g(AN, V)JAU + g(JAU, V)AN,$$

$$R(U, V)\xi = \eta(V)[U + \alpha SU] - \eta(U)[V + \alpha SV] + g(AV, \xi)AU - g(AU, \xi)AV - g(AN, V)JAU + g(AU, N)JAV.$$

Moreover, for a real hypersurface \mathcal{M} and $U, V, W, W' \in T_p\mathcal{M}$, the relation (3.1) produce

$$g(R(U, V)W, W') = g(V, W)g(U, W') - g(U, W)g(V, W') + g(\phi V, W)g(\phi U, W') - g(\phi U, W)g(\phi V, W') - g(\phi U, V)g(\phi W, W') + g(AV, W)g(\phi W, W') - g(AW, V)g(\phi V, W') + g(JAV, W)g(\phi W, W') - g(JAW, W)g(\phi V, W') + g(SV, W)g(\phi SU, W') - g(SU, W)g(\phi SV, W').$$

By taking $U = W' = e_i$ in (3.3), one can have [17]

$$\text{Ric}(V, W) = n\eta(V, W) - 3\eta(V)\eta(W) - g(AN, V)g(AV, W) + g(AW, N)g(AV, N) + g(AW, \xi)g(AV, \xi) + \text{tr}(S)g(SV, W) - g(S^2V, W),$$

where the Ricci tensor of \mathcal{M} with connection ∇ is symbolized by Ric which satisfy

$$\text{Ric}(U, \xi) = (2n - 4 + \alpha h - \alpha^2)\eta(X) - 2g(AN, N)g(AU, \xi).$$

Consider an orthonormal basis $\{e_i\}^n_1$ and $\{e_{n+1}\} = N$ of $T_p\mathcal{M}$ and $T_p^p\mathcal{M}$ respectively, where $n + 1 = 2m$. Conveniently, let $h_{ij}^{n+1} = g(h(e_i, e_j), e_{n+1}) = g(h(e_i, e_j), N)$ for $i, j \in \{1, \ldots, n\}$. Now, one defines the squared mean curvature $||\mathcal{H}||^2$ of \mathcal{M} in Q^m and the squared norm $||h||^2$ of h are given by:

$$||\mathcal{H}||^2 = \frac{1}{n^2}(\sum_{i,j=1}^{n} h_{ij}^{n+1})^2, \quad ||h||^2 = \sum_{i,j=1}^{n} (h_{ij}^{n+1})^2,$$

respectively.

Now, the scalar curvature τ has the expression

$$\tau = \sum_{1 \leq i < j \leq n} K(e_i \wedge e_j),$$

where $K(e_i)$ denotes the sectional curvature of \mathcal{M} involved with a plane section $\pi \subset T_p\mathcal{M}$ and is spanned by tangent vectors $\{e_i, e_j\}$ and $\sum_{1 \leq i < j \leq n} K(e_i \wedge e_j) = \sum_{1 \leq i < j \leq n} g(R(e_i, e_j)e_i, e_j)$.

Revoke that the Chen first invariant ([9],[10]) is defined by

$$\delta_m(p) = \tau(p) - \inf\{K(e_i) | \pi \subset T_p\mathcal{M}, \dim \pi = 2\},$$

where $\tau(p)$ is the scalar curvature at p.

We give one algebraic result which we will use to proof our result.

www.iejgeo.com
Lemma 3.1. [9] Let \(a_1, a_2, ..., a_k, b \) be \((k + 1)(k + 2)\) real numbers satisfying
\[
(\sum_{i=1}^{k} a_i)^2 = (k - 1)(\sum_{i=1}^{k} a_i^2 + b)
\]
Then \(2a_1a_2 \geq b \), with equality holding if and only if \(a_1 + a_2 = a_3 = ... = a_k \).

Theorem 3.1. For a real hypersurface \(M \) of \(Q^n \) with 2-plane section \(\pi \subset T_pM \) spanned by tangent vectors \(e_1 \) and \(e_2 \), we have
\[
\tau(p) - K(\pi) \leq \frac{n^2}{2 \left(1 + \frac{n-2}{n-1} ||\mathcal{H}||^2 \right)} + g^2(AN, N) + g^2(JAe_1, e_2).
\]
Moreover, equality holds in (3.5) at \(p \in M \) if and only if there exist an orthonormal basis \(\{e_i\}_{n+1}^n \) of \(T_pM \) and orthonormal normal frame \(\{e_{n+1} = N\} \) of \(T_p^1M \), such that the matrix of the shape operator \(S \) takes the following form
\[
S = \begin{pmatrix}
 p' & 0 & 0 \\
 0 & q' & 0 \\
 0 & 0 & M
\end{pmatrix},
\]
where \(M \) is the diagonal matrix of order \(n - 2 \) with diagonal entry \(r = p' + q' \).

Proof. From (3.4), we deduce that
\[
2\tau = n^2 + g^2(AN, N) - 1 + n^2||\mathcal{H}||^2 - ||h||^2
\]
where we have used
\[
||h||^2 = g(h(e_i, e_j), h(e_i, e_j)) = g(g(Se_i, e_j)N, g(Se_i, e_j)N) = \text{tr}(S^2).
\]
Let us denote
\[
\epsilon = 2\tau - n^2 - g^2(AN, N) + 1 - \frac{n^2(n-2)}{n-1}||\mathcal{H}||^2.
\]
We obtain
\[
\epsilon = n^2||\mathcal{H}||^2 - ||h||^2 - \frac{n^2(n-2)}{n-1}||\mathcal{H}||^2
\]
which provide
\[
n^2||\mathcal{H}||^2 = (n-1)\{\epsilon + ||h||^2\}.
\]
or, equivalently
\[
(\sum_{i=1}^{n} h_{ii}^{n+1})^2 = (n-1)\{\epsilon + \sum_{i=1}^{n} (h_{ij}^{n+1})^2 + \sum_{i \neq j} (h_{ij}^{n+1})^2\}.
\]
Using lemma (3.1) together with equation (3.10), we obtain
\[
2h_{11}^{n+1}h_{22}^{n+1} \geq \sum_{i \neq j} (h_{ij}^{n+1})^2 + \epsilon.
\]
Also, the Gauss equation implies that
\[
K(\pi) = g(R(e_1, e_2)e_2, e_1)
= 1 + 3g^2(\phi e_1, e_2) + g(Ae_2, e_2)g(Ae_1, e_1) - g^2(Ae_1, e_2)
+ g(JAe_2, e_2)g(JAe_1, e_1) - g^2(JAe_1, e_2) - (h_{11}^{n+1})^2 + h_{22}^{n+1}h_{11}^{n+1}.
\]
Incorporating (3.11) in (3.12) yields
\[K(\pi) \geq 1 + 3g^2(\varphi e_1, e_2) + g(Ae_2, e_2)g(Ae_1, e_1) - g^2(Ae_1, e_2) + g(J Ae_2, e_2)g(J Ae_1, e_1) \\
- g^2(J Ae_1, e_2) + \frac{1}{2} \left\{ \sum_{i \neq j} (h_{ij}^{n+1})^2 + \epsilon \right\} - (h_{12}^{n+1})^2 \]
\[= 1 + 3g^2(\varphi e_1, e_2) + g(Ae_2, e_2)g(Ae_1, e_1) - g^2(Ae_1, e_2) + g(J Ae_2, e_2)g(J Ae_1, e_1) \\
- g^2(J Ae_1, e_2) + \tau - n_2 \frac{\|H\|^2}{2} + \frac{1}{2} - n_2^{(n-2) \frac{\|H\|^2}{2} + 1} + \frac{1}{2} \sum_{i \neq j, i, j \geq 2} (h_{ij}^n)^2 \]
\[\geq 1 + 3g^2(\varphi e_1, e_2) + g(Ae_2, e_2)g(Ae_1, e_1) - g^2(Ae_1, e_2) + g(J Ae_2, e_2)g(J Ae_1, e_1) \\
- g^2(J Ae_1, e_2) + \tau - n_2 \frac{\|H\|^2}{2} + \frac{1}{2} - n_2^{(n-2) \frac{\|H\|^2}{2} + 1} \]

Thus, finally we have
\[\tau(p) - K(\pi) \leq \frac{n^2}{2} \left\{ 1 + \left(\frac{n-2}{n-1} \right) \|H\|^2 \right\} + g^2(Ae_1, e_2) + g^2(J Ae_1, e_2) + \frac{g^2(AN, N)}{2} \]

or
\[\tau(p) - K(\pi) \leq \frac{n^2}{2} \left\{ 1 + \left(\frac{n-2}{n-1} \right) \|H\|^2 \right\} + g^2(Ae_1, e_2) + g^2(J Ae_1, e_2) + \frac{1}{1} \]

(3.13)

Now, finally we get the equality in (13) at \(p \in M \) if and only if we have the equality case of lemma i.e.,
\[h_{ij}^{n+1} = 0 \quad \text{for all} \quad i \neq j, \]
\[h_{11}^{n+1} + h_{22}^{n+1} = h_{33}^{n+1} = h_{44}^{n+1} = ... = h_{nn}^{n+1}. \]

Thus, we may have the choice for \(\{e_1, e_2\} \) such that \(h_{12}^{n+1} = 0 \). Hence, the matrix of the shape operator has the form (3.6).

Corollary 3.1. Let \(M \) be a real hypersurface of \(Q^n \) with 2-plane section \(\pi \subset T_p M \) spanned by tangent vectors \(e_1 \) and \(e_2 \) such that the normal vector field is \(U \)-principal. Then, we have
\[\tau(p) - K(\pi) \leq \frac{n^2}{2} \left\{ 1 + \left(\frac{n-2}{n-1} \right) \|H\|^2 \right\} + g^2(Ae_1, e_2) + g^2(J Ae_1, e_2) + \frac{1}{1} \]

(3.14)

Moreover, equality holds in (3.14) at \(p \in M \) if and only if there exist an orthonormal basis \(\{e_i\}^n \) of \(T_p M \) and orthonormal normal frame \(\{e_{n+1} = N\} \) of \(T_p^\perp M \), such that the matrix of the shape operator \(S \) takes the following form
\[S = \begin{pmatrix} p' & 0 & 0 \\
0 & q' & 0 \\
0 & 0 & M \end{pmatrix}, \]
(3.15)

where \(M \) is the diagonal matrix of order \(n - 2 \) with diagonal entry \(r = p' + q' \).

Corollary 3.2. Let \(M \) be a real hypersurface of \(Q^n \) with 2-plane section \(\pi \subset T_p M \) spanned by tangent vectors \(e_1 \) and \(e_2 \) such that the normal vector field is \(U \)-isotropic. Then, we have
\[\tau(p) - K(\pi) \leq \frac{n^2}{2} \left\{ 1 + \left(\frac{n-2}{n-1} \right) \|H\|^2 \right\} + g^2(Ae_1, e_2) + g^2(J Ae_1, e_2) \]

(3.16)

Moreover, equality holds in (3.16) at \(p \in M \) if and only if there exist an orthonormal basis \(\{e_i\}^n \) of \(T_p M \) and orthonormal normal frame \(\{e_{n+1} = N\} \) of \(T_p^\perp M \), such that the matrix of the shape operator \(S \) takes the following form
\[S = \begin{pmatrix} p' & 0 & 0 \\
0 & q' & 0 \\
0 & 0 & M \end{pmatrix}, \]
(3.17)

where \(M \) is the diagonal matrix of order \(n - 2 \) with diagonal entry \(r = p' + q' \).
4. WP real hypersurface of Q^m

In this section, we develop inequalities involving the warping function of a WP real hypersurface M of Q^m.

Next, we consider two Riemannian manifolds \mathcal{M}_1 and \mathcal{M}_2 of dimensions n_1 and n_2 equipped with Riemannian metrics ς_1 and ς_2 respectively. Let ς be a positive function on \mathcal{M}_1. The WP manifold $\mathcal{M}_1 \otimes \varsigma \mathcal{M}_2$ is defined to be the product manifold $\mathcal{M}_1 \otimes \mathcal{M}_2$ with the warped metric $g = \varsigma_1 + \varsigma_2^2$ [7].

Consider an isometric immersion $\Psi : M = \mathcal{M}_1 \otimes \varsigma \mathcal{M}_2 \rightarrow Q^m$ of a WP manifold $\mathcal{M}_1 \otimes \varsigma \mathcal{M}_2$ into a Riemannian manifold Q^m. Let h be the second fundamental form of Ψ and the mean curvature vectors denoted by $\mathcal{H}_i = \frac{1}{n_i} \mathcal{H}(h_i)$ where $\mathcal{H}(h_i)$ is the trace of h restricted to $\mathcal{M}_i (i = 1, 2)$.

Theorem 4.1. Let $\Psi : M^n = M_1 \otimes \varsigma \mathcal{M}_2 \rightarrow Q^m$ be an isometric immersion of a WP real hypersurface into Q^m with $\varsigma \in T_p M_1$. Then

$$n_2 \frac{\Delta \varsigma}{\varsigma} \leq -\frac{n^2}{2} + \frac{1}{2} g^2 (\mathcal{H}N, N) - 2n + 2n_1n_2 + \frac{11}{2} + \frac{n^2}{4} ||\mathcal{H}||^2 + 2 \sum_{i=1}^{n} g(A^2 e_i, e_i),$$

where $n_i = \text{dim} \mathcal{M}_i$ for $i = 1, 2$, Δ is the Laplacian operator of \mathcal{M}_1 and $\{ e_i \}_{1}^{n}$ is an orthonormal basis of $T_p M$.

Proof. Let us consider an isometric immersion $\Psi : M = \mathcal{M}_1 \otimes \varsigma \mathcal{M}_2 \rightarrow N(s)$ of a WP real hypersurface $\mathcal{M}_1 \otimes \varsigma \mathcal{M}_2$ into Q^m whose structure vector field $\varsigma \in T_p M_1$. Then, one can easily have [8]

$$\mathcal{K}(X \wedge Z) = \frac{1}{\varsigma} (\nabla_X \varsigma) - \varsigma X^2 \varsigma.)$$

Now we choose an orthonormal basis $\{ e_i \}_{1}^{n}$ of $T_p M$ such that $e_1, ..., e_{n_1}$ are tangent to M_1 and $e_{n_1+1}, ..., e_n$ are tangent to M_2. Then, with the virtue of above defined relation, we obtain

$$\frac{\Delta \varsigma}{\varsigma} = \sum_{1 \leq i \leq n_1} \sum_{1 \leq j \leq n} \mathcal{K}(e_i \wedge e_j). \quad (4.1)$$

By definition of scalar curvature τ and (4.1) yields

$$n_2 \frac{\Delta \varsigma}{\varsigma} = \tau - \sum_{1 \leq i \leq n_1} \mathcal{K}(e_i \wedge e_j) - \sum_{n_1+1 \leq j \leq n} \mathcal{K}(e_i \wedge e_j) \quad (4.2)$$

From (3.7), we have

$$n^2 ||\mathcal{H}||^2 = 2(\delta + ||h||^2) \quad (4.3)$$

where

$$\delta = 2 \tau - n^2 - g^2 (\mathcal{H}N, N) + 1 - \frac{n^2}{2} ||\mathcal{H}||^2. \quad (4.4)$$

Moreover, in local coordinates (4.3) has the following expression

$$\left(\sum_{i=1}^{n} h_{ii}^{n+1} \right)^2 = 2 \left(\delta + \sum_{i=1}^{n} (h_{ii}^{n+1})^2 + \sum_{i \neq j} (h_{ij}^{n+1})^2 \right)$$

or, equivalently

$$\left(h_{11}^{n+1} + \sum_{i=2}^{n_1} h_{ii}^{n+1} + \sum_{i=n_1+1}^{n} h_{ii}^{n+1} \right)^2 = 2 \left\{ \delta + \left(h_{11}^{n+1} \right)^2 + \sum_{i=2}^{n_1} (h_{ii}^{n+1})^2 + \sum_{i=n_1+1}^{n} (h_{ii}^{n+1})^2 \right\}$$

$$+ \sum_{1 \leq i \neq j \leq n} (h_{ij}^{n+1})^2$$

$$= 2 \left\{ \delta + \left(h_{11}^{n+1} \right)^2 + \left(\sum_{i=2}^{n_1} h_{ii}^{n+1} \right)^2 \right\} - \sum_{2 \leq j \neq k \leq n_1} h_{jj}^{n_1+1} h_{kk}^{n_1+1}$$

$$+ \sum_{i=1}^{n} h_{ii}^{n+1} - \sum_{n_1+1 \leq j \neq k \leq n} h_{jj} h_{kk} + \sum_{1 \leq i \neq j \leq n} (h_{ij}^{n+1})^2 \right\}$$
Using lemma (3.1), we have
\[\sum_{1 \leq j \neq k \leq n_1} h_{ij}^{n+1} h_{jk}^{n+1} + \sum_{n_1 + 1 \leq j \neq k \leq n} h_{ij}^{n+1} h_{jk}^{n+1} \geq \frac{\delta}{2} + \sum_{1 \leq i < j \leq n} (h_{ij}^{n+1})^2 \] (4.5)

Furthermore, equality holds if and only if
\[\sum_{i = 1}^{n_1} h_{ii}^{n+1} = \sum_{i = n_1 + 1}^{n} h_{ii}^{n+1} \] (4.6)

We also know that
\[\tau = \sum_{1 \leq i < j \leq n} \mathcal{K}(e_i \wedge e_j) \]
\[= \sum_{1 \leq i < j \leq n_1} \mathcal{K}(e_i \wedge e_j) + \sum_{n_1 + 1 \leq i < j \leq n} \mathcal{K}(e_i \wedge e_j) + \sum_{j = n_1 + 1}^{n} \sum_{i = 1}^{n_1} \mathcal{K}(e_i \wedge e_j) \]

So, from (4.1), we derive
\[n_2 \frac{\Delta \zeta}{\zeta} = \sum_{j = n_2 + 1}^{n} \sum_{i = 1}^{n_1} \mathcal{K}(e_i \wedge e_j) \]
\[= \tau - \sum_{1 \leq i < j \leq n_1} \mathcal{K}(e_i \wedge e_j) - \sum_{n_1 + 1 \leq i < j \leq n} \mathcal{K}(e_i \wedge e_j) \]
\[= \tau - n_1(n_1 - 1) - 3(n_1 - 1) - n_2(n_2 - 1) - 3(n_2 - 1) + 2 \sum_{i = 1}^{n} g(A^2 e_i, e_i) \]
\[- \left\{ \sum_{1 \leq i < j \leq n_1} g(A e_i, e_i) g(A e_j, e_j) + \sum_{n_1 + 1 \leq i < j \leq n} g(A e_i, e_i) g(A e_j, e_j) \right\} \]
\[- \left\{ \sum_{1 \leq i < j \leq n_1} g(J A e_i, e_i) g(J A e_j, e_j) + \sum_{n_1 + 1 \leq i < j \leq n} g(J A e_i, e_i) g(J A e_j, e_j) \right\} \]
\[- \left\{ \sum_{1 \leq i < j \leq n_1} h_{ii}^{n+1} h_{jj}^{n+1} + \sum_{n_1 + 1 \leq i < j \leq n} h_{ii}^{n+1} h_{jj}^{n+1} \right\} + \left\{ \sum_{1 \leq i < j \leq n_1} (h_{ij}^{n+1})^2 \right\} \]
\[+ \sum_{n_1 + 1 \leq i < j \leq n} (h_{ij}^{n+1})^2 \}

Using (4.5), we have
\[n_2 \frac{\Delta \zeta}{\zeta} \leq \tau - n_1(n_1 - 1) - 3(n_1 - 1) - n_2(n_2 - 1) - 3(n_2 - 1) + 2 \sum_{i = 1}^{n} g(A^2 e_i, e_i) \]
\[- \left\{ \sum_{1 \leq i < j \leq n_1} g(A e_i, e_i) g(A e_j, e_j) + \sum_{n_1 + 1 \leq i < j \leq n} g(A e_i, e_i) g(A e_j, e_j) \right\} \]
\[- \left\{ \sum_{1 \leq i < j \leq n_1} g(J A e_i, e_i) g(J A e_j, e_j) + \sum_{n_1 + 1 \leq i < j \leq n} g(J A e_i, e_i) g(J A e_j, e_j) \right\} \]
\[- \left\{ \frac{1}{2} \delta + \sum_{1 \leq i < j \leq n_1} (h_{ij}^{n+1})^2 \right\} + \left\{ \sum_{1 \leq i < j \leq n_1} (h_{ij}^{n+1})^2 + \sum_{n_1 + 1 \leq i < j \leq n} (h_{ij}^{n+1})^2 \right\} \]

which gives
\[n_2 \frac{\Delta \zeta}{\zeta} \leq \tau - n_1(n_1 - 1) - 3(n_1 - 1) - n_2(n_2 - 1) - 3(n_2 - 1) + 2 \sum_{i = 1}^{n} g(A^2 e_i, e_i) - \frac{1}{2} \delta. \]
Incorporating (4.4) with the above relation, we derive
\[n_2 \frac{\Delta \zeta}{\zeta} \leq -\frac{n^2}{2} - 2n + 2n_1n_2 + \frac{11}{2} + \frac{n^2}{4}||H||^2 + 2\sum_{i=1}^{n} g(A^2e_i, e_i) - \frac{1}{2} \delta \]
from which we conclude our result.

Corollary 4.1. Let \(\Psi : M^n = M_1 \otimes_\zeta M_2 \to Q^m \) be an isometric immersion of a WP real hypersurface into \(Q^m \) with \(\xi \in T_pM_1 \). Then, for a \(\eta \)-principal normal vector field, we have the inequality
\[n_2 \frac{\Delta \zeta}{\zeta} \leq -\frac{n^2}{2} - 2n + 2n_1n_2 + 6 + \frac{n^2}{4}||H||^2 + 2\sum_{i=1}^{n} g(A^2e_i, e_i) \]
where \(n_i = \text{dim}M_i, \) for \(i = 1, 2, \Delta \) is the Laplacian operator of \(M_1 \) and \(\{e_i\}_n \) is an orthonormal basis of \(T_pM \).

Corollary 4.2. Let \(\Psi : M^n = M_1 \otimes_\zeta M_2 \to Q^m \) be an isometric immersion of a WP real hypersurface into \(Q^m \) with \(\xi \in T_pM_1 \). Then, for a \(\eta \)-isotropic normal vector field, we have the inequality
\[n_2 \frac{\Delta \zeta}{\zeta} \leq -\frac{n^2}{2} - 2n + 2n_1n_2 + \frac{11}{2} + \frac{n^2}{4}||H||^2 + 2\sum_{i=1}^{n} g(A^2e_i, e_i) \]
where \(n_i = \text{dim}M_i, \) for \(i = 1, 2, \Delta \) is the Laplacian operator of \(M_1 \) and \(\{e_i\}_n \) is an orthonormal basis of \(T_pM \).

5. Curvature tensor of real hypersurface \(M \) in \(Q^m \) admitting SSMC

In this section, we study SSMC and then we obtain the curvature tensor of a real hypersurface \(M \) in \(Q^m \) with respect to SSMC and then we find the intrinsic scalar curvature with respect to SSMC.

Consider a Riemannian manifold \((M^n, g) \) with linear connection \(\overline{\nabla} \). Then, \(\overline{\nabla} \) is called *semi-symmetric connection* [20] if its torsion tensor \(\overline{T} \), defined by
\[\overline{T}(U, V) = \overline{\nabla}_U V - \overline{\nabla}_V U - [U, V], \] (5.1)
satisfy
\[\overline{T}(U, V) = \eta(V)U - \eta(U)V, \] (5.2)
for \(U, V \in T_pM \) and a 1-form \(\eta \). In addition, a semi-symmetric linear connection is said to be SSMC \(\overline{\nabla} \) if it holds
\[\overline{\nabla} g = 0, \] (5.3)
for all \(U, V \in T_pM \), otherwise it is said to be a *semi-symmetric non-metric connection*.

A SSMC \(\overline{\nabla} \) in terms of the LC connection \(\nabla \) on \(M \) is defined by
\[\overline{\nabla}_U V = \nabla_U V + \eta(V)U - g(U, V)\zeta, \] (5.4)
for \(U, V \in T_pM \).

Now, let us consider the complex quadric \(Q^m \) admitting SSMC \(\overline{\nabla} \) and the LC connection \(\nabla \). Next, let \(M \) be a real hypersurface of \(Q^m \) with the induced SSMC \(\overline{\nabla} \) and the induced LC connection \(\nabla \). Let \(\overline{\Gamma} \) and \(\Gamma \) be the curvature tensors of \(Q^m \) with respect to the connections \(\overline{\nabla} \) and \(\nabla \) respectively. Put \(\tilde{h} \) as the curvature tensor field of \(\overline{\nabla} \) and \(h \) as the curvature tensor field of \(\nabla \) on \(M \). Then the Gauss formulae with respect to \(\overline{\nabla} \) and \(\nabla \) has the expression
\[\overline{\nabla}_U V = \overline{\nabla}_U V + \tilde{h}(U, V), \quad \nabla_U V = \nabla_U V + h(U, V) \]
respectively, where \(\tilde{h} \) is the \((0,2)\)-tensor of \(M \) in \(Q^m \) and from these two relations, one can easily get \(\tilde{h}(U, V) = h(U, V) \).
Furthermore, using (5.4) for $U, V \in T_p\mathcal{M}$, we have

$$
\begin{align*}
(\tilde{\nabla}_U \eta)(V) &= (\nabla_U \eta)(V) + g(\phi U, \phi V) = g(\phi SU, V) + g(\phi U, \phi V), \\
(\tilde{\nabla}_U \phi)(V) &= (\nabla_U \phi)(V) - g(U, \phi V)\xi - \eta(V)\phi U \\
&= \eta(V)SU - \eta(V)\phi U - g(SU, V)\xi + g(\phi U, V)\xi,
\end{align*}
$$

and the covariant derivative of torsion tensor of $\tilde{\nabla}$ with respect to SSMC follows

$$(\tilde{\nabla}_U \tilde{T})(V, W) = g(\phi SU, V)W - g(\phi SU, W)V + g(U, V)W - g(U, W)V - \eta(U)[\eta(V)W - \eta(W)V],$$

for $U, V, W \in T_p\mathcal{M}$.

Now, we know the curvature tensor \tilde{R} can be calculated by

$$
\tilde{R}(U, V)W = \tilde{\nabla}_U \tilde{\nabla}_V W - \tilde{\nabla}_V \tilde{\nabla}_U W - \tilde{\nabla}_{[U, V]} W.
$$

Thus, using the relation (5.4), we obtain the relation between curvature tensor vector \tilde{R} and R of \mathcal{M} in Q^m admitting SSMC $\tilde{\nabla}$ and LC connection ∇ given by

$$
\tilde{R}(U, V)W = R(U, V)W + g(\phi SU, W)V - g(\phi SV, W)U + \eta(W)[\eta(V)U - \eta(U)V] - g(U, W)[\phi SU + U - \eta(U)\xi] + g(U, W)[\phi SV + V - \eta(V)\xi] \tag{5.5}
$$

Then from (5.5), one can easily obtain

$$
\begin{align*}
\tilde{R}(U, \xi)W &= R(U, \xi)W + g(\phi SU, W)\xi - \eta(W)\phi SU, \\
\tilde{R}(U, V)\xi &= R(U, V)\xi - \eta(V)\phi SU + \eta(U)\phi SV.
\end{align*}
$$

Also for $U, V, W, W' \in T_p\mathcal{M}$, we have

$$
\begin{align*}
g(\tilde{R}(U, V)W, W') &= -g(\tilde{R}(U, V)W, W'), \\
g(\tilde{R}(U, V)W', W) &= -g(\tilde{R}(U, V)W, W').
\end{align*}
$$

Now, if we assume that \mathcal{M} satisfies $\phi S + S\phi = 0$, then we derive

$$
\begin{align*}
g(\tilde{R}(W, W')U, V) &= g(\tilde{R}(U, V)W, W'), \\
g(\tilde{R}(U, V)W + \tilde{R}(V, W)U + \tilde{R}(W, U)V, W') &= 0.
\end{align*}
$$

Thus, we are able to state the following results

Theorem 5.1. Let \mathcal{M} be a real hypersurface \mathcal{M} in Q^m admitting SSMC. Then for $U, V, W, W' \in T_p\mathcal{M}$, we have

(a) The curvature tensor of \mathcal{M} with SSMC is given by (5.5)
(b) $g(\tilde{R}(V, U)W, W') + g(\tilde{R}(U, V)W, W') = 0$
(c) $g(\tilde{R}(U, V)W', W) + g(\tilde{R}(U, V)W, W') = 0$.

Proposition 5.1. In a real hypersurface \mathcal{M} of Q^m admitting SSMC together with $\phi S + S\phi = 0$, we have

(a) $g(\tilde{R}(U, V)W, W') - g(\tilde{R}(W, W')U, V) = 0$ for $U, V, W, W' \in T_p\mathcal{M}$
(b) \mathcal{M} holds first Bianchi identity with respect to SSMC.

Proof. By using the assumption, the result follows immediately. \(\Box\)

Relation (5.5) can be rewritten as

$$
\begin{align*}
g(\tilde{R}(U, V)W, W') &= g(\tilde{R}(U, V)W, W') + \eta(U)[\eta(W)g(SV, W') - g(SV, W')\eta(W')] - \eta(V)[\eta(W)g(SU, W') - g(SU, W')\eta(W')] - g(\phi SU, V)g(\phi W, W') \\
&\quad + g(\phi SV, U)g(\phi W, W').
\end{align*}
$$

www.iejgeo.com
Now, on contracting U and W in above defined relation, we derive
\[\tilde{Ric}(V, W) = Ric(V, W) - (n - 2)g(\phi SV, W) + (n - 2)\eta(V)\eta(W) \]
\[-g(V, W)\left[\sum_{i=1}^{n} g(\phi Se_{i}, e_{i}) + (n - 2) \right], \]
(5.6)
where $\tilde{Ric}(V, W)$ and $Ric(V, W)$ are the Ricci tensors of the connection $\tilde{\nabla}$ and ∇ respectively.

Again, by applying contraction on V and W, the scalar curvature $\tilde{\tau}$ with SSMC has the following expression
\[2\tilde{\tau} = 3(n - 1) - 2 + g^2(AN, N) + n^2||\tilde{H}||^2 - ||h||^2 - 2(n - 1)g(\phi Se_{i}, e_{i}). \]
(5.7)
Thus, we have

Lemma 5.1. In a real hypersurface M of Q^m admitting SSMC such that $\phi S = S\phi$, we have
(a) $\tilde{Ric}(V, W) = Ric(V, W) - (n - 2)[g(\phi SV, W) + g(\phi V, \phi W)]$
(b) $QV = QV - (n - 2)[V - \eta(V)\xi - \phi SV]$
(c) $Ric(V, \xi)$ coincides with $Ric(V, \xi)$
for all $V, W \in T_pM$.

Proof. Let us assume that $\phi S = S\phi$. Then, we have
\[g(\phi Se_{i}, e_{i}) = g(S\phi e_{i}, e_{i}) \]
\[= -g(\phi Se_{i}, e_{i}) \]
This results $g(\phi Se_{i}, e_{i}) = 0$, which together with (5.6) follows (a) and hence (b). By using the assumption and inserting $W = \xi$ in (5.6), we get (c).

Also, we know that the Ricci operator Q of SSMC is defined by
\[\tilde{Ric}(V, W) = g(QV, W), \forall \ V, W \in T_pM. \]

From this incorporating (5.6) together with the assumption, we have
\[QV = QV - (n - 2)[V - \eta(V)\xi - \phi SV]. \]

\[\square \]

6. Chen’s inequality for a real hypersurface M of Q^m with SSMC

Here, we obtain inequality for the mean curvature, the scalar and the sectional curvature associated with the induced SSMC for a real hypersurfaces M of Q^m.

Here, we have the squared mean curvature $||\tilde{H}||^2$ of M in Q^M and the squared norm $||h||^2$ of h as
\[||\tilde{H}||^2 = \frac{1}{n^2}\left(\sum_{i,j=1}^{n} h_{ij}^{n+1} \right)^2 \] and
\[||h||^2 = \sum_{i,j=1}^{n} (h_{ij}^{n+1})^2 \]
respectively, where $h_{ij}^{n+1} = g(h(e_{i}, e_{j}), N)$ and the mean curvature vector field \tilde{H} of $\tilde{\nabla}$ and H of ∇ are invariant.

Now, the scalar curvature $\tilde{\tau}$ for an orthonormal basis $\{e_{i}\}_{n}$ reads
\[\tilde{\tau} = \sum_{1 \leq i < j \leq n} K(e_{i} \land e_{j}). \]

Theorem 6.1. Let M be a real hypersurface of Q^m admitting SSMC $\tilde{\nabla}$. Then, for 2-plane section $\pi \subset T_pM$ spanned by tangent vectors e_1 and e_2, we have
\[\tilde{\tau}(x) - K(\pi) \leq (n - 2)\left\{ \frac{n^2||\tilde{H}||^2}{2(n - 1)} + \frac{3(n - 1) - 2}{2(n - 2)} \right\} + g^2(Ae_1, e_2) + \frac{g^2(AN, N)}{2} \]
\[+ g(\phi Se_1, e_1) + g(\phi Se_2, e_2) + g^2(JAe_1, e_2) + (n - 1)g(\phi Se_i, e_i). \]
(6.1)
Moreover, equality holds in (6.1) at \(p \in M \) if and only if there exist an orthonormal basis \(\{e_i\}_i^n \) of \(T_p M \) and orthonormal normal frame \(\{e_{n+1} = N\} \) of \(T_p^\perp M \), such that the matrix of the shape operator \(S \) takes the following form

\[
S = \begin{pmatrix}
p' & 0 & 0 \\
0 & q' & 0 \\
0 & 0 & M \\
\end{pmatrix},
\]

where \(M \) is the diagonal matrix of order \(n - 2 \) with diagonal entry \(r = p' + q' \).

Proof. First of all we put

\[
e = 2\tilde{\tau} - 3(n - 1) + 2 - g^2(AN, N) + 2(n - 1)g(\phi Se_i, e_i) - \frac{n^2(n - 2)}{n - 1}||\tilde{H}||^2
\]

Thus, we have

\[
n^2||\tilde{H}||^2 = (n - 1)\{e + ||h||^2\}.
\]

Moreover, we can write

\[
\left(\sum_{i=1}^{n} h_i^{n+1}\right)^2 = (n - 1)\left\{e + \sum_{i=1}^{n} (h_i^{n+1})^2 + \sum_{i\neq j} (h_{ij}^{n+1})^2\right\}
\]

Using lemma (3.1), we obtain

\[
2h_1^{n+1}h_2^{n+1} \geq \sum_{i\neq j} (h_{ij}^{n+1})^2 + e
\]

The Gauss equation yields

\[
\bar{K}(\pi) = g(\tilde{H}(e_1, e_2)e_1, e_1)
\]

\[
= 3g^2(\phi e_1, e_2) + g(Ae_1, e_2)g(Ae_1, e_1) - g^2(Ae_1, e_2) + g(J Ae_1, e_1) - (h_{12}^{n+1})^2 + h_1^{n+1}h_2^{n+1} - g(\phi Se_2, e_2) - g(\phi Se_1, e_1) + \eta(e_2)^2 + \eta(e_1)^2 - g^2(J Ae_1, e_2)
\]

Inserting (6.6) into (6.7) yields

\[
\bar{K}(\pi) \geq 3g^2(\phi e_1, e_2) + g(Ae_1, e_2)g(Ae_1, e_1) - g^2(Ae_1, e_2) + g(J Ae_1, e_1) - (h_{12}^{n+1})^2 + h_1^{n+1}h_2^{n+1} - g(\phi Se_2, e_2) - g(\phi Se_1, e_1) + \eta(e_2)^2 + \eta(e_1)^2
\]

\[
\geq 3g^2(\phi e_1, e_2) + g(Ae_2, e_2)g(Ae_1, e_1) - g^2(Ae_1, e_2) + g(J Ae_2, e_2)g(J Ae_1, e_1) - g^2(J Ae_1, e_2) - g(\phi Se_2, e_2) - g(\phi Se_1, e_1) + \eta(e_2)^2 + \eta(e_1)^2 + \tilde{\tau} + \frac{3(n - 1) - 2}{2} - \frac{n^2(n - 2)}{2(n - 1)}||\tilde{H}||^2 + (n - 1)g(\phi Se_e, e_1)
\]

Thus, we derive

\[
\tilde{\tau}(p) - \bar{K}(\pi) \leq (n - 2)\left\{\frac{n^2||\tilde{H}||^2}{2(n - 1)} + \frac{3(n - 1) - 2}{2(n - 2)}\right\} - 3g^2(\phi e_1, e_2) - g(Ae_2, e_2)g(Ae_1, e_1)
\]

\[
+ g^2(Ae_1, e_2) - g(J Ae_2, e_2)g(J Ae_1, e_1) + g^2(J Ae_1, e_2) + g(\phi Se_2, e_2)
\]

\[
+ g(\phi Se_1, e_1) - \eta(e_2)^2 - \eta(e_1)^2 + \frac{g^2(AN, N)}{2} - (n - 1)g(\phi Se_1, e_1)
\]
or, equivalently
\[
\tau(p) - \tilde{K}(\pi) \leq (n - 2) \left(\frac{n^2|\tilde{H}|^2}{2(n-1)} + \frac{3(n-1) - 2}{2(n-2)}} \right) + g^2(Ae_1, e_2) + g^2(J Ae_1, e_2) + g\left(\phi Se_1, e_1\right) + g\left(\phi Se_2, e_2\right) + (n-1)g(\phi Se_i, e_i)\]
\[+ g^2(AN, N) + \frac{1}{2}\]
\[= 0 \text{ for all } i \neq j,
\]
\[h_{i1}^{n+1} = h_{i2}^{n+1} = ... = h_{n}^{n+1}.
\]

Thus, we may have the choice for \{e_1, e_2\} such that \(h_{i2}^{n+1} = 0\). Hence, the matrix of the shape operator has the form (6.2).

Corollary 6.1. Let \(\mathcal{M}\) be a real hypersurface of \(Q^n\) admitting SSMC \(\tilde{\nabla}\). Then, for a \(U\)-principal normal vector field, we have
\[
\tau(p) - K(\pi) \leq (n - 2) \left(\frac{n^2|\tilde{H}|^2}{2(n-1)} + \frac{3(n-1) - 2}{2(n-2)}} \right) + g^2(Ae_1, e_2) + g^2(J Ae_1, e_2)
\]
\[+ g(\phi Se_1, e_1) + g(\phi Se_2, e_2) + (n-1)g(\phi Se_i, e_i),\]

where \(\pi \subset T_p\mathcal{M}\) is a 2-plane section spanned by tangent vectors \(e_1\) and \(e_2\).

Corollary 6.2. Let \(\mathcal{M}\) be a real hypersurface of \(Q^n\) admitting SSMC \(\tilde{\nabla}\). Then, for a \(U\)-isotropic normal vector field, we have
\[
\tau(p) - K(\pi) \leq (n - 2) \left(\frac{n^2|\tilde{H}|^2}{2(n-1)} + \frac{3(n-1) - 2}{2(n-2)}} \right) + g^2(Ae_1, e_2) + g^2(J Ae_1, e_2)
\]
\[+ g(\phi Se_1, e_1) + g(\phi Se_2, e_2) + (n-1)g(\phi Se_i, e_i),\]

where \(\pi \subset T_p\mathcal{M}\) is a 2-plane section spanned by tangent vectors \(e_1\) and \(e_2\).

Acknowledgments

Authors wishes to express sincere thanks to the referees for their valuable suggestions and comments towards the improvement of the paper.

References

Extremities involving B. Y. Chen’s invariants

Affiliations

POOJA BANSAL
ADDRESS: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India.
E-MAIL: poojabansal811@gmail.com

ORCID ID: 0000-0002-5894-8027

SIRAJ UDDIN
ADDRESS: Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
E-MAIL: siraj.ch@gmail.com

ORCID ID: 0000-0002-3564-6405

MOHAMMAD HASAN SHAHID
ADDRESS: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India.
E-MAIL: hasan_jmi@yahoo.com

ORCID ID: 0000-0002-3646-4697