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ABSTRACT

The article is concerned with the study of real hypersurfaces of the complex quadric Qm. We
establish B. Y. Chen’s inequalities for real hypersurfaces of the complex quadric Qm and by
considering the equality case, we obtain some consequences. Also, we establish an inequality in
terms of the warping function and the scalar curvature for a warped product real hypersurface
of Qm and some obstructions have been given. Moreover, we investigate the expression of the
curvature tensor of a real hypersurface in the complex quadric Qm admitting semi-symmetric
metric connection. Using this curvature, we derive inequalities involving Chen δ-invariant
admitting a semi-symmetric metric connection. Furthermore, the equality case is considered.
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1. Introduction

In 1968, S. S. Chern raised a question involving minimal isometric immersion into Euclidean space [12].
Then, Chen found some obstructions to Chern’s problem and proposed inequalities for submanifolds in
Riemannian space form concerning the sectional curvature, the scalar curvature and the squared mean
curvature [9]. Moreover, he proposed inequality concerning δ(n1, n2, ..., nk) and the squared mean curvature
for the submanifolds in real space form [10].

Afterwards, many papers have been appeared in submanifolds of space forms in the version of real and
complex like, generalised complex space forms [11], (k, µ)-contact space forms [1] and Sasakian space forms
[13]. Further, the geometry of the complex quadric has been studied by H. Reckziegel [16] in 1995 and Y. J. Suh,
obtained some analyzing results on real hypersurfaces in the complex quadric by considering some geometric
conditions like parallel Ricci tensor [17], Reeb parallel shape operator [18]. Also, the classifications of real
hypersurface of the complex quadric with isometric Reeb flow were obtained by Berndt and Suh [5] and many
more work have been studied by different authors considering the same ambient space ([2]-[4],[19]).

However, Hayden [14] originated the idea of a semi-symmetric metric connection on a Riemannian manifold.
Yano [20] deliberated this connection and found some properties of a Riemannian manifold with the same
connection. Also, A. Mihai and C. Özgür studied the Chen extremities for submanifolds of the real space forms
with same connection [15].

Here, we first establish Chen’s extremities for real hypersurfaces of the complex quadricQm and considering
the equality case, we obtain some consequences. Also, we establish an inequality in terms of the warping
function and the scalar curvature for warped product real hypersurface of Qm and some obstructions have
been given. Then, we study real hypersurface of Qm admitting semi-symmetric metric connection and find the
curvature tensor of a real hypersurface in Qm with the semi-symmetric metric connection. Additionally, using
this curvature we develop Chen’s inequality for a real hypersurfaces of the complex quadric Qm admitting
semi symmetric metric connection.

As long as, by virtue of simpleness, throughout a paper we denote semi-symmetric metric connection, Levi-
Civita connection and Warped product by SSMC, LC connection and WP, respectively.
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2. The complex quadric Qm

For more details of the geometry of complex quadric we refer to ([5],[16],[17]). The complex hypersurface
of CPm+1 is known as the complex quadric Qm defined by the equation z21 + ...+ z2m+1 = 0, where z1, ..., zm+1

are homogeneous coordinates on CPm+1 equipped with the induced Riemannian metric g. Then, naturally the
canonical Kähler structure (J, g) on Qm is induced by Kähler structure on CPm+1 [18]. The 1-dimensional
quadric Q1 is congruent to the round 2-sphere S2. The 2-dimensional quadric Q2 is congruent to the
Riemannian product S2 × S2. For this, we will assume m ≥ 3 throughout the paper.

Apart from J there is one more geometric structure on Qm, known as the complex conjugation A on the
tangent spaces of Qm which is a parallel rank-two vector bundle U containing S1-bundle of real structures. For
x ∈ Qm, let Ax be the shape operator of Qm in CPm+1. Then we have AxW = W for W ∈ TxQm, that is, A is an
involution or Ax is a complex conjugation restricted to TxQm. Now, TxQm is decomposed as [18]:

TxQ
m = V(Ax)⊕ JV(Ax),

such that V(Ax) and JV(Ax), respectively denote the (+1)-eigenspace and (-1)-eigenspace of the involution
A2
x = I on TxQm, x ∈ Qm.
Now, a tangent vector W 6= 0 ∈ TxQm is known as the singular if it is tangent to more than one maximal flat

in Qm. Classification of singular tangent vectors for Qm are given as [19]:

1 If there exists A ∈ U such that W is an eigenvector corresponding to an eigenvalue (+1), then the singular
tangent vector W is known as U-principal.

2 If there exists A ∈ U and orthonormal vectors U, V ∈ V(A) such that W/||W || = (U + JV )/
√

2, then the
singular tangent vector W is known as U-isotropic.

LetMn be a real hypersurface of Qm with a connection ∇ induced from the LC connection ∇ in Qm. Then,
the transform JU of the Kähler structure J on Qm is defined by JU = φU + η(U)N where φU is the tangential
component of JU and N ∈ T⊥p M, for U ∈ TpM. Here,M associates an induced almost contact metric structure
(φ, ξ, η, g) satisfying the following relations [6]:

ξ = −JN, η(ξ) = 1, η(U) = g(ξ, U), φ2U + U = η(U)ξ, φξ = 0,

η(φU) = 0, g(φU, φV ) + η(U)η(V ) = g(U, V ), g(φU, V ) = −g(U, φV ).

Moreover, the real hypersurfaceM of Qm satisfy

∇Uξ = φSU,

where S is the shaper operator ofM.
On the other hand, the Gauss and the Weingarten formulas for M follows

∇UV = ∇UV + h(U, V ) and ∇UN = −SU,

respectively, for U, V ∈ TpM and N ∈ T⊥p M. The second fundamental form h and the shape operator S ofM
are related by

g(h(U, V ), N) = g(SNU, V ) = g(SU, V ).

Now, we take A ∈ Ux such that N = cos(t)Z1 + sin(t)JZ2, where Z1, Z2 are orthonormal vectors in
V(A) and 0 ≤ t ≤ π

4 (see Proposition 3 [16]) which is a function onM.
Since ξ = −JN , we have

N = cos(t)Z1 + sin(t)JZ2,

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1,

from which it follows that g(ξ, AN) = 0.
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3. B. Y. Chen inequality for a real hypersurface of Qm

Here, we obtain the general inequality associated with the Chen δ-invariant for a real hypersurfaces M of
the complex quadric Qm.

Now, from the Gauss equation, the Riemannian curvature tensor R of connection ∇ in terms of J and A ∈ U
is defined as [18]:

R(U, V )W = g(V,W )U − g(U,W )V + g(φV,W )φU − g(φU,W )φV − 2g(φU, V )φW

+g(AV,W )AU − g(AU,W )AV + g(JAV,W )JAU − g(JAU,W )JAV

+g(SV,W )SU − g(SU,W )SV, (3.1)

where U, V,W ∈ TpM.
Then, we can see

g(R(U, V )W +R(V,W )U +R(W,U)V,W
′
) = 0, for U, V,W,W

′
∈ TpM (3.2)

that is, the first Bianchi Identity holds forM of LC connection ∇.
Next, the curvature tensor R of the Hopf hypersurfaceM (i.e. α = g(Sξ, ξ)), where α is a smooth function on
M satisfies

R(U, ξ)V = η(V )[U + αSU ]− [g(U, V ) + αg(SU, V )]ξ + g(Aξ, V )AU − g(AU, V )Aξ

−g(AN, V )JAU + g(JAU, V )AN,

R(U, V )ξ = η(V )[U + αSU ]− η(U)[V + αSV ] + g(AV, ξ)AU − g(AU, ξ)AV

−g(AN, V )JAU + g(AU,N)JAV.

Moreover, for a real hypersurfaceM and U, V,W,W
′ ∈ TpM, the relation (3.1) produce

g(R(U, V )W,W
′
) = g(V,W )g(U,W

′
)− g(U,W )g(V,W

′
) + g(φV,W )g(φU,W

′
)

−g(φU,W )g(φV,W
′
)− 2g(φU, V )g(φW,W

′
) + g(AV,W )g(AU,W

′
)

−g(AU,W )g(AV,W
′
) + g(JAV,W )g(JAU,W

′
)− g(JAU,W )g(JAV,W

′
)

+g(SV,W )g(SU,W
′
)− g(SU,W )g(SV,W

′
). (3.3)

By taking U = W
′

= ei in (3.3), one can have [17]

Ric(V,W ) = ng(V,W )− 3η(V )η(W )− g(AN,N)g(AV,W ) + g(AW,N)g(AV,N)

+g(AW, ξ)g(AV, ξ) + tr(S)g(SV,W )− g(S2V,W ), (3.4)

where the Ricci tensor ofMwith connection ∇ is symbolized by Ric which satisfy

Ric(U, ξ) = (2n− 4 + αh− α2)η(X)− 2g(AN,N)g(AU, ξ).

Consider an orthonormal basis {ei}n1 and {en+1 = N} of TpM and T⊥p M respectively, where n+ 1 = 2m.
Conveniently, let hn+1

ij = g(h(ei, ej), en+1) = g(h(ei, ej), N) for i, j ∈ {1, ..., n}. Now, one defines the squared
mean curvature ||H||2 ofM in Qm and the squared norm ||h||2 of h are given by:

||H||2 =
1

n2
( n∑
i,j=1

hn+1
ij

)2
, ||h||2 =

n∑
i,j=1

(hn+1
ij )2,

respectively.
Now, the scalar curvature τ has the expression

τ =
∑

1≤i<j≤n

K(ei ∧ ej),

where K(π) denotes the sectional curvature of M involved with a plane section π ⊂ TpM and is spanned by
tangent vectors {ei, ej} and

∑
1≤i≤j<nK(ei ∧ ej) =

∑
1≤i≤j<n g(R(ei, ej)ej , ei).

Revoke that the Chen first invariant ([9],[10]) is defined by

δm(p) = τ(p)− inf{K(π) | π ⊂ TpM, dim π = 2},

where τ(p) is the scalar curvature at p.
We give one algebraic result which we will use to proof our result.
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Lemma 3.1. [9] Let a1, a2, ..., ak, b be (k + 1)(k ≥ 2) real numbers satisfying

(

k∑
i=1

ai)
2 = (k − 1)(

k∑
i=1

a2i + b)

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3 = ... = ak.

Theorem 3.1. For a real hypersurfaceM of Qm with 2-plane section π ⊂ TpM spanned by tangent vectors e1 and e2,
we have

τ(p)−K(π) ≤ n2

2

{
1 +

(
n− 2

n− 1

)
||H||2

}
+g2(Ae1, e2) +

g2(AN,N)

2
+ g2(JAe1, e2). (3.5)

Moreover, equality holds in (3.5) at p ∈M if and only if there exist an orthonormal basis {ei}n1 of TpM and orthonormal
normal frame {en+1 = N} of T⊥p M, such that the matrix of the shape operator S takes the following form

S =

 p′ 0 0
0 q′ 0
0 0 M

 , (3.6)

where M is the diagonal matrix of order n− 2 with diagonal entry r = p′ + q′.

Proof. From (3.4), we deduce that

2τ = n2 + g2(AN,N)− 1 + n2||H||2 − ||h||2 (3.7)

where we have used

||h||2 = g(h(ei, ej), h(ei, ej)) = g(g(Sei, ej)N, g(Sei, ej)N)

= tr(S2).

Let us denote

ε = 2τ − n2 − g2(AN,N) + 1− n2(n− 2)

n− 1
||H||2. (3.8)

We obtain

ε = n2||H||2 − ||h||2 − n2(n− 2)

n− 1
||H||2

which provide

n2||H||2 = (n− 1){ε+ ||h||2}. (3.9)

or, equivalently

( n∑
i=1

hn+1
ii

)2
= (n− 1)

{
ε+

n∑
i=1

(hn+1
ij )2 +

∑
i6=j

(hn+1
ij )2

}
. (3.10)

Using lemma (3.1) together with equation (3.10), we obtain

2hn+1
11 hn+1

22 ≥
∑
i 6=j

(
hn+1
ij

)2
+ ε. (3.11)

Also, the Gauss equation implies that

K(π) = g(R(e1, e2)e2, e1)

= 1 + 3g2(φe1, e2) + g(Ae2, e2)g(Ae1, e1)− g2(Ae1, e2)

+g(JAe2, e2)g(JAe1, e1)− g2(JAe1, e2)−
(
hn+1
12

)2
+ hn+1

22 hn+1
11 . (3.12)
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Incorporating (3.11) in (3.12) yields

K(π) ≥ 1 + 3g2(φe1, e2) + g(Ae2, e2)g(Ae1, e1)− g2(Ae1, e2) + g(JAe2, e2)g(JAe1, e1)

−g2(JAe1, e2) +
1

2

{∑
i 6=j

(
hn+1
ij

)2
+ ε
}
−
(
hn+1
12

)2
= 1 + 3g2(φe1, e2) + g(Ae2, e2)g(Ae1, e1)− g2(Ae1, e2) + g(JAe2, e2)g(JAe1, e1)

−g2(JAe1, e2) + τ − n2

2
− g2(AN,N)

2
+

1

2
− n2(n− 2)

2(n− 1)
||H||2 +

1

2

∑
i 6=j,i,j≥2

(
hαij
)2

≥ 1 + 3g2(φe1, e2) + g(Ae2, e2)g(Ae1, e1)− g2(Ae1, e2) + g(JAe2, e2)g(JAe1, e1)

−g2(JAe1, e2) + τ − n2

2
− g2(AN,N)

2
+

1

2
− n2(n− 2)

2(n− 1)
||H||2.

Thus, finally we have

τ(p)−K(π) ≤ (n− 2)
{ n2

2(n− 1)
||H||2 +

3n− 2

2(n− 2)

}
− 3g2(φe1, e2)− g(Ae2, e2)g(Ae1, e1)

+g2(Ae1, e2)− g(JAe2, e2)g(JAe1, e1) + g2(JAe1, e2) + g(φSe2, e2)

+g(φSe1, e1)− η(e2)2 − η(e1)2 +
g2(AN,N)

2
+

1

2
− (n− 1)g(φSei, ei)

or

τ(p)−K(π) ≤ n2

2

{
1 +

(n− 2

n− 1

)
||H||2

}
+ g2(Ae1, e2) + g2(JAe1, e2) +

g2(AN,N)

2
. (3.13)

Now, finally we get the equality in (13) at p ∈M if and only if we have the equality case of lemma i.e.,

hn+1
ij = 0 for all i 6= j,

hn+1
11 + hn+1

22 = hn+1
33 = hn+1

44 = ... = hn+1
n n .

Thus, we may have the choice for {e1, e2} such that hn+1
12 = 0. Hence, the matrix of the shape operator has the

form (3.6).

Corollary 3.1. LetM be a real hypersurface of Qm with 2-plane section π ⊂ TpM spanned by tangent vectors e1 and
e2 such that the normal vector field is U-principal. Then, we have

τ(p)−K(π) ≤ n2

2

{
1 +

(
n− 2

n− 1

)
||H||2

}
+g2(Ae1, e2) + g2(JAe1, e2) +

1

2
. (3.14)

Moreover, equality holds in (3.14) at p ∈M if and only if there exist an orthonormal basis {ei}n1 of TpM and orthonormal
normal frame {en+1 = N} of T⊥p M, such that the matrix of the shape operator S takes the following form

S =

 p′ 0 0
0 q′ 0
0 0 M

 , (3.15)

where M is the diagonal matrix of order n− 2 with diagonal entry r = p′ + q′.

Corollary 3.2. LetM be a real hypersurface of Qm with 2-plane section π ⊂ TpM spanned by tangent vectors e1 and
e2 such that the normal vector field is U-isotropic. Then, we have

τ(p)−K(π) ≤ n2

2

{
1 +

(
n− 2

n− 1

)
||H||2

}
+g2(Ae1, e2) + g2(JAe1, e2). (3.16)

Moreover, equality holds in (3.16) at p ∈M if and only if there exist an orthonormal basis {ei}n1 of TpM and orthonormal
normal frame {en+1 = N} of T⊥p M, such that the matrix of the shape operator S takes the following form

S =

 p′ 0 0
0 q′ 0
0 0 M

 , (3.17)

where M is the diagonal matrix of order n− 2 with diagonal entry r = p′ + q′.
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4. WP real hypersurface of Qm

In this section, we develop inequalities involving the warping function of a WP real hypersurfaceM of Qm.
Next, we consider two Riemannian manifolds M1 and M2 of dimensions n1 and n2 equipped with

Riemannian metrics ς1 and ς2 respectively. Let ζ be a positive function onM1. The WP manifoldM1 ⊗ζM2 is
defined to be the product manifoldM1 ⊗M2 with the warped metric g = ς1 + ζ2ς2 [7].

Consider an isometric immersion Ψ :M =M1 ⊗ζM2 → Qm of a WP manifold M1 ⊗ζM2 into a
Riemannian manifoldQm. Let h be the second fundamental form of Ψ and the mean curvature vectors denoted
by Hi = 1

ni
tr(hi) where tr(hi) is the trace of h restricted toMi(i = 1, 2).

Theorem 4.1. Let Ψ :Mn =M1 ⊗ζM2 → Qm be an isometric immersion of a WP real hypersurface into Qm with
ξ ∈ TpM1. Then

n2
∆ζ

ζ
≤ −n

2

2
+

1

2
g2(AN,N)− 2n+ 2n1n2 +

11

2
+
n2

4
||H||2 + 2

n∑
i=1

g(A2ei, ei),

where ni = dimMi for i = 1, 2,∆ is the Laplacian operator ofM1 and {ei}n1 is an orthonormal basis of TpM .

Proof. Let us consider an isometric immersion Ψ :M =M1 ⊗ζM2 → N (s) of a WP real hypersurfaceM1 ⊗ζ
M2 into Qm whose structure vector field ξ ∈ TpM1. Then, one can easily have [8]

K(X ∧ Z) =
1

ζ
{(∇XX)ζ −X2ζ}.

Now we choose an orthonormal basis {ei}n1 of TpM such that e1, ..., en1 are tangent toM1 and en1+1, ..., en are
tangent toM2. Then, with the virtue of above defined relation, we obtain

∆ζ

ζ
=

∑
1≤i≤n1

∑
n1+1≤j≤n

K(ei ∧ ej). (4.1)

By definition of scalar curvture τ and (4.1) yields

n2
∆ζ

ζ
= τ −

∑
1≤i≤n1

K(ei ∧ ej)−
∑

n1+1≤j≤n

K(ei ∧ ej) (4.2)

From (3.7), we have

n2||H||2 = 2(δ + ||h||2) (4.3)

where

δ = 2τ − n2 − g2(AN,N) + 1− n2

2
||H||2. (4.4)

Moreover, in local coordinates (4.3) has the following expression

(

n∑
i=1

hn+1
ii )2 = 2

(
δ +

n∑
i=1

(hn+1
ii )2 +

∑
i 6=j

(hn+1
ii )2

)
or, equivalently

(
hn+1
11 +

n1∑
i=2

hn+1
ii +

n∑
i=n1+1

hn+1
ii

)2
= 2

{
δ + (hn+1

11 )2 +

n1∑
i=2

(hn+1
ii )2 +

n∑
i=n1+1

(hn+1
ii )2

+
∑

1≤i 6=j≤n

(hn+1
ij )2

}

= 2

{
δ + (hn+1

11 )2 +

( n1∑
i=2

hn+1
ii

)2

−
∑

2≤j 6=k≤n1

hn1+1
jj hn1+1

kk

+

( n∑
i=n1+1

hn+1
ii

)2

−
∑

n1+1≤j 6=k≤n

hjjhkk +
∑

1≤i6=j≤n

(hn+1
ij )2

}
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Using lemma (3.1), we have∑
1≤j 6=k≤n1

hn+1
jj hn+1

kk +
∑

n1+1≤j 6=k≤n

hn+1
jj hn+1

kk ≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 (4.5)

Furthermore, equality holds if and only if

n1∑
i=1

hn+1
ii =

n∑
i=n1+1

hn+1
ii (4.6)

We also know that

τ =
∑

1≤i<j≤n

K(ei ∧ ej)

=
∑

1≤i<j≤n1

K(ei ∧ ej) +
∑

n1+1≤i<j≤n

K(ei ∧ ej) +

n∑
j=n1+1

n1∑
i=1

K(ei ∧ ej)

So, from (4.1), we derive

n2
∆ζ

ζ
=

n∑
j=n1+1

n1∑
i=1

K(ei ∧ ej)

= τ −
∑

1≤i<j≤n1

K(ei ∧ ej)−
∑

n1+1≤i<j≤n

K(ei ∧ ej)

= τ − n1(n1 − 1)− 3(n1 − 1)− n2(n2 − 1)− 3(n2 − 1) + 2

n∑
i=1

g(A2ei, ei)

−
{ ∑

1≤i<j≤n1

g(Aei, ei)g(Aej , ej) +
∑

n1+1≤i<j≤n

g(Aei, ei)g(Aej , ej)

}
−
{ ∑

1≤i<j≤n1

g(JAei, ei)g(JAej , ej) +
∑

n1+1≤i<j≤n

g(JAei, ei)g(JAej , ej)

}
−
{ ∑

1≤i<j≤n1

hn+1
ii hn+1

jj +
∑

n1+1≤i<j≤n

hn+1
ii hn+1

jj

}
+

{ ∑
1≤i<j≤n1

(hn+1
ij )2

+
∑

n1+1≤i<j≤n

(hn+1
ij )2

}
Using (4.5), we have

n2
∆ζ

ζ
≤ τ − n1(n1 − 1)− 3(n1 − 1)− n2(n2 − 1)− 3(n2 − 1) + 2

n∑
i=1

g(A2ei, ei)

−
{ ∑

1≤i<j≤n1

g(Aei, ei)g(Aej , ej) +
∑

n1+1≤i<j≤n

g(Aei, ei)g(Aej , ej)

}
−
{ ∑

1≤i<j≤n1

g(JAei, ei)g(JAej , ej) +
∑

n1+1≤i<j≤n

g(JAei, ei)g(JAej , ej)

}
−
{

1

2
δ +

∑
1≤i<j≤n1

(hn+1
ij )2

}
+

{ ∑
1≤i<j≤n1

(hn+1
ij )2 +

∑
n1+1≤i<j≤n

(hn+1
ij )2

}
which gives

n2
∆ζ

ζ
≤ τ − n1(n1 − 1)− 3(n1 − 1)− n2(n2 − 1)− 3(n2 − 1) + 2

n∑
i=1

g(A2ei, ei)−
1

2
δ.
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Incorporating (4.4) with the above relation, we derive

n2
∆ζ

ζ
≤ −1

2
n2 +

1

2
g2(AN,N)− 2n+ 2n1n2 +

11

2
+
n2

4
||H||2 + 2

n∑
i=1

g(A2ei, ei)−
1

2
δ

from which we conclude our result.

Corollary 4.1. Let Ψ :Mn =M1 ⊗ζM2 → Qm be an isometric immersion of a WP real hypersurface into Qm with
ξ ∈ TpM1. Then, for a U-principal normal vector field, we have the inequality

n2
∆ζ

ζ
≤ −n

2

2
− 2n+ 2n1n2 + 6 +

n2

4
||H||2 + 2

n∑
i=1

g(A2ei, ei)

where ni = dimMi, for i = 1, 2,∆ is the Laplacian operator ofM1 and {ei}n1 is an orthonormal basis of TpM .

Corollary 4.2. Let Ψ :Mn =M1 ⊗ζM2 → Qm be an isometric immersion of a WP real hypersurface into Qm with
ξ ∈ TpM1. Then, for a U-isotropic normal vector field, we have the inequality

n2
∆ζ

ζ
≤ −n

2

2
− 2n+ 2n1n2 +

11

2
+
n2

4
||H||2 + 2

n∑
i=1

g(A2ei, ei)

where ni = dimMi, for i = 1, 2,∆ is the Laplacian operator ofM1 and {ei}n1 is an orthonormal basis of TpM.

5. Curvature tensor of real hypersurfaceM in Qm admitting SSMC

In this section, we study SSMC and then we obtain the curvature tensor of a real hypersurfaceM in Qm with
respect to SSMC and then we find the intrinsic scalar curvature with respect to SSMC.

Consider a Riemannian manifold (Mn, g) with linear connection ∇̃. Then, ∇̃ is called semi-symmetric
connection [20] if its torsion tensor T̃ , defined by

T̃ (U, V ) = ∇̃UV − ∇̃V U − [U, V ], (5.1)

satisfy

T̃ (U, V ) = η(V )U − η(U)V, (5.2)

for U, V ∈ TpM and a 1-form η. In addition, a semi-symmetric linear connection is said to be SSMC ∇̃ if it holds

∇̃g = 0, (5.3)

for all U, V ∈ TpM, otherwise it is said to be a semi-symmetric non-metric connection.
A SSMC ∇̃ in terms of the LC connection ∇ onM is defined by

∇̃UV = ∇UV + η(V )U − g(U, V )ξ, (5.4)

for U, V ∈ TpM.
Now, let us consider the complex quadric Qm admitting SSMC ∇̃ and the LC connection ∇. Next, letM be

a real hypersurface of Qm with the induced SSMC ∇̃ and the induced LC connection ∇. Let R̃ and R be the
curvature tensors of Qm with respect to the connections ∇̃ and ∇ respectively. Put R̃ as the curvature tensor
field of ∇̃ and R as the curvature tensor field of∇ onM. Then the Gauss formulae with respect to ∇̃ and∇ has
the expression

∇̃UV = ∇̃UV + h̃(U, V ), ∇UV = ∇UV + h(U, V )

respectively, where h̃ is the (0,2)-tensor ofM in Qm and from these two relations, one can easily get h̃(U, V ) =
h(U, V ).
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Furthermore, using (5.4) for U, V ∈ TpM, we have

(∇̃Uη)(V ) = (∇Uη)(V ) + g(φU, φV ) = g(φSU, V ) + g(φU, φV ),

(∇̃Uφ)(V ) = (∇Uφ)(V )− g(U, φV )ξ − η(V )φU

= η(V )SU − η(V )φU − g(SU, V )ξ + g(φU, V )ξ,

and the covariant derivative of torsion tensor of ∇̃with respect to SSMC follows

(∇̃U T̃ )(V,W ) = g(φSU, V )W − g(φSU,W )V + g(U, V )W − g(U,W )V

−η(U)[η(V )W − η(W )V ],

for U, V,W ∈ TpM.
Now, we know the curvature tensor R̃ can be calculated by

R̃(U, V )W = ∇̃U ∇̃VW − ∇̃V ∇̃UW − ∇̃[U,V ]W.

Thus, using the relation (5.4), we obtain the relation between curvature tensor vector R̃ and R ofM in Qm

admitting SSMC ∇̃ and LC connection ∇ given by

R̃(U, V )W = R(U, V )W + g(φSU,W )V − g(φSV,W )U + η(W )[η(V )U − η(U)V ]

−g(V,W )[φSU + U − η(U)ξ] + g(U,W )[φSV + V − η(V )ξ] (5.5)

Then from (5.5), one can easily obtain

R̃(U, ξ)W = R(U, ξ)W + g(φSU,W )ξ − η(W )φSU,

R̃(U, V )ξ = R(U, V )ξ − η(V )φSU + η(U)φSV.

Also for U, V,W,W
′ ∈ TpM, we have

g(R̃(V,U)W,W
′
) = −g(R̃(U, V )W,W

′
),

g(R̃(U, V )W
′
,W ) = −g(R̃(U, V )W,W

′
)

Now, if we assume thatM satisfies φS + Sφ=0, then we derive

g(R̃(W,W
′
)U, V ) = g(R̃(U, V )W,W

′
),

g(R̃(U, V )W + R̃(V,W )U + R̃(W,U)V,W
′
) = 0.

Thus, we are able to state the following results

Theorem 5.1. Let M be a real hypersurfaceM in Qm admitting SSMC. Then for U, V,W,W
′ ∈ TpM, we have

(a) The curvature tensor ofM with SSMC is given by (5.5)
(b) g(R̃(V,U)W,W

′
) + g(R̃(U, V )W,W

′
) = 0

(c) g(R̃(U, V )W
′
,W ) + g(R̃(U, V )W,W

′
) = 0.

Proposition 5.1. In a real hypersurfaceM of Qm admitting SSMC together with φS + Sφ = 0, we have

(a) g(R̃(U, V )W,W
′
)− g(R̃(W,W

′
)U, V ) = 0 for U, V,W,W

′ ∈ TpM
(b) M holds first Bianchi identity with respect to SSMC.

Proof. By using the assumption, the result follows immediately.

Relation (5.5) can be rewritten as

g(R̃(U, V )W,W
′
) = g(R(U, V )W,W

′
) + η(U)[η(W )g(SV,W

′
)− g(SV,W )η(W

′
)]

−η(V )[η(W )g(SU,W
′
)− g(SU,W )η(W

′
)]− g(φSU, V )g(φW,W

′
)

+g(φSV,U)g(φW,W
′
).
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Now, on contracting U and W
′

in above defined relation, we derive

R̃ic(V,W ) = Ric(V,W )− (n− 2)g(φSV,W ) + (n− 2)η(V )η(W )

−g(V,W )
[ n∑
i=1

g(φSei, ei) + (n− 2)
]
, (5.6)

where R̃ic(V,W ) and Ric(V,W ) are the Ricci tensors of the connection ∇̃ and ∇ respectively.
Again, by applying contraction on V and W , the scalar curvature τ̃ with SSMC has the following expression

2τ̃ = 3(n− 1)− 2 + g2(AN,N) + n2||H̃||2 − ||h||2 − 2(n− 1)g(φSei, ei). (5.7)

Thus, we have

Lemma 5.1. In a real hypersurfaceM of Qm admitting SSMC such that φS = Sφ, we have

(a) R̃ic(V,W ) = Ric(V,W )− (n− 2)[g(φSV,W ) + g(φV, φW )]
(b) Q̃V = QV − (n− 2)[V − η(V )ξ − φSV ]
(c) R̃ic(V, ξ) coincides with Ric(V, ξ)

for all V,W ∈ TpM.

Proof. Let us assume that φS = Sφ. Then, we have

g(φSei, ei) = g(Sφei, ei)

= −g(φSei, ei)

This results g(φSei, ei) = 0, which together with (5.6) follows (a) and hence (b). By using the assumption and
inserting W = ξ in (5.6), we get (c).
Also, we know that the Ricci operator Q̃ of SSMC is defined by

R̃ic(V,W ) = g(Q̃V,W ), ∀ V,W ∈ TpM.

From this incorporating (5.6) together with the assumption, we have

Q̃V = QV − (n− 2)[V − η(V )ξ − φSV ].

6. Chen’s inequality for a real hypersurfaceM of Qm with SSMC

Here, we obtain inequality for the mean curvature, the scalar and the sectional curvature associated with the
induced SSMC for a real hypersurfacesM of Qm.

Here, we have the squared mean curvature ||H̃||2 of M in QM and the squared norm ||h||2 of h as

||H̃||2 =
1

n2
( n∑
i,j=1

hn+1
ij

)2
and ||h||2 =

n∑
i,j=1

(hn+1
ij )2

respectively, where hn+1
ij = g(h(ei, ej), N) and the mean curvature vector field H̃ of ∇̃ andH of∇ are invariant.

Now, the scalar curvature τ̃ for an orthonormal basis {ei}n1 reads

τ̃ =
∑

1≤i<j≤n

K(ei ∧ ej).

Theorem 6.1. LetM be a real hypersurface of Qm admitting SSMC ∇̃. Then, for 2-plane section π ⊂ TpM spanned by
tangent vectors e1 and e2, we have

τ̃(x)−K(π) ≤(n− 2)

{
n2||H̃||2

2(n− 1)
+

3(n− 1)− 2

2(n− 2)

}
+g2(Ae1, e2) +

g2(AN,N)

2

+ g(φSe1, e1) + g(φSe2, e2) + g2(JAe1, e2) + (n− 1)g(φSei, ei). (6.1)

43 www.iejgeo.com

http://www.iej.geo.com


Extremities involving B. Y. Chen’s invariants

Moreover, equality holds in (6.1) at p ∈M if and only if there exist an orthonormal basis {ei}n1 of TpM and orthonormal
normal frame {en+1 = N} of T⊥p M, such that the matrix of the shape operator S takes the following form

S =

 p′ 0 0
0 q′ 0
0 0 M

 , (6.2)

where M is the diagonal matrix of oerder n− 2 with diagonal entry r = p′ + q′

Proof. First of all we put

ε = 2τ̃ − 3(n− 1) + 2− g2(AN,N) + 2(n− 1)g(φSei, ei)−
n2(n− 2)

n− 1
||H̃||2 (6.3)

Thus, we have

n2||H̃||2 = (n− 1){ε+ ||h||2}. (6.4)

Moreover, we can write

( n∑
i=1

hn+1
ii

)2
= (n− 1)

{
ε+

n∑
i=1

(hn+1
ij )2 +

∑
i 6=j

(hn+1
ij )2

}
(6.5)

Using lemma (3.1), we obtain

2hn+1
11 hn+1

22 ≥
∑
i 6=j

(
hn+1
ij

)2
+ ε (6.6)

The Gauss equation yields

K̃(π) = g(R̃(e1, e2)e2, e1)

= 3g2(φe1, e2) + g(Ae2, e2)g(Ae1, e1)− g2(Ae1, e2) + g(JAe2, e2)g(JAe1, e1)−
(
hn+1
12

)2
+hn+1

22 hn+1
11 − g(φSe2, e2)− g(φSe1, e1) + η(e2)2 + η(e1)2 − g2(JAe1, e2) (6.7)

Inserting (6.6) into (6.7) yields

K̃(π) ≥ 3g2(φe1, e2) + g(Ae2, e2)g(Ae1, e1)− g2(Ae1, e2) + g(JAe2, e2)g(JAe1, e1)

−g2(JAe1, e2) +
1

2

{∑
i6=j

(
hn+1
ij

)2
+ ε
}
−
(
hn+1
12

)2 − g(φSe2, e2)− g(φSe1, e1)

+η(e2)2 + η(e1)2

= 3g2(φe1, e2) + g(Ae2, e2)g(Ae1, e1)− g2(Ae1, e2) + g(JAe2, e2)g(JAe1, e1)

−g2(JAe1, e2) +
ε

2
+
(
hn+1
12

)2
+

∑
i 6=j,i,j≥2

(
hn+1
ij

)2 − (hn+1
12

)2 − g(φSe2, e2)

−g(φSe1, e1) + η(e2)2 + η(e1)2

≥ 3g2(φe1, e2) + g(Ae2, e2)g(Ae1, e1)− g2(Ae1, e2) + g(JAe2, e2)g(JAe1, e1)

−g2(JAe1, e2)− g(φSe2, e2)− g(φSe1, e1) + η(e2)2 + η(e1)2 + τ̃

−3(n− 1)− 2

2
− g2(AN,N)

2
− n2(n− 2)

2(n− 1)
||H̃||2 + (n− 1)g(φSei, ei)

Thus, we derive

τ̃(p)− K̃(π) ≤ (n− 2)

{
n2||H̃||2

2(n− 1)
+

3(n− 1)− 2

2(n− 2)

}
−3g2(φe1, e2)− g(Ae2, e2)g(Ae1, e1)

+g2(Ae1, e2)− g(JAe2, e2)g(JAe1, e1) + g2(JAe1, e2) + g(φSe2, e2)

+g(φSe1, e1)− η(e2)2 − η(e1)2 +
g2(AN,N)

2
− (n− 1)g((φSei, ei)
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or, equivalently

τ̃(p)− K̃(π) ≤(n− 2)

{
n2||H̃||2

2(n− 1)
+

3(n− 1)− 2

2(n− 2)

}
+g2(Ae1, e2) + g2(JAe1, e2)

+
g2(AN,N)

2
+ g(φSe1, e1) + g(φSe2, e2) + (n− 1)g(φSei, ei) (6.8)

Now, finally we get equality in (6.1) at p ∈M if and only if we have the equality case of lemma.

hn+1
ij = 0 for all i 6= j,

hn+1
11 + hn+1

22 = hn+1
33 = hn+1

44 = ... = hn+1
n n .

Thus, we may have the choice for {e1, e2} such that hn+1
12 = 0. Hence, the matrix of the shape operator has the

form (6.2).

Corollary 6.1. LetM be a real hypersurface of Qm admitting SSMC ∇̃. Then, for a U-principal normal vector field, we
have

τ̃(p)−K(π) ≤(n− 2)

{
n2||H̃||2

2(n− 1)
+

3(n− 1)− 1

2(n− 2)

}
+g2(Ae1, e2) + g2(JAe1, e2)

+ g(φSe1, e1) + g(φSe2, e2) + (n− 1)g(φSei, ei),

where π ⊂ TpM is a 2-plane section spanned by tangent vectors e1 and e2.

Corollary 6.2. LetM be a real hypersurface of Qm admitting SSMC ∇̃. Then, for a U-isotropic normal vector field, we
have

τ̃(p)−K(π) ≤(n− 2)

{
n2||H̃||2

2(n− 1)
+

3(n− 1)− 2

2(n− 2)

}
+g2(Ae1, e2) + g2(JAe1, e2)

+ g(φSe1, e1) + g(φSe2, e2) + (n− 1)g(φSei, ei),

where π ⊂ TpM is a 2-plane section spanned by tangent vectors e1 and e2.
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