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ABSTRACT

In this paper, firstly, we calculate Cauchy-length formula for the one-parameter planar motion in
generalized complex plane Cp which is generalization of the complex, dual and hyperbolic planes.
Then, we give the length of the enveloping trajectories of lines Cp. In addition, we prove the
Holditch theorem for the non-linear three points with the aid of the length of the enveloping
trajectories in Cp. So, the Holditch theorem for the linear three points which is given by Erişir et al.
in Cp is generalized for trajectories drawn by the non-linear three points in generalized complex
plane Cp.
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1. Introduction

Holditch theorem which published in 1858 by Hamnet Holditch [10] emphasized that if we allowed that a
chord with fixed length rotated throughout a curve which is closed and convex, then any point on the chord
which has a distance p from the end point and a distance q from the other end point draw a closed curve and
the area between these curve is πpq and constant in the plane geometry. In other words, the area is independent
of the choice of point on the chord. In the history of mathematics, this theorem is one of Clifford Pickover’s 250
milestones by means of this feature, [4].

Since the area mentioned in this theorem is independent of the selection of the curve and this theorem is
open to the technical applications, it has attracted a lot of attention and been studied often. Additionally, many
scientists generalized this theorem with various methods and different perspectives.

Steiner first mentioned the Steiner formula in 1840, [17]. Then, Blaschke and Müller gave the Holditch
theorem giving the relationship between the areas of trajectories for the linear three points in the Euclidean
plane, [3]. In addition, Hering took non-linear three points and proved the Holditch theorem, [9].

Pottman considered an infinite convex curve instead of taking an oval and calculated the area and volume of
the Holditch crescent. Moreover, Pottman gave Holditch theorem for open motions in Euclidean plane, [13, 14].

In Euclidean plane, the length of the enveloping trajectories of lines and Cauchy formula were given by
Blaschke and Müller, [3]. In similar way, Cauchy-length formulas in Lorentzian plane was given by Yüce
and Kuruoğlu. Moreover, they proved the length of the enveloping trajectories of non-null lines and gave
the Holditch theorem under the planar Lorentzian motion, [20].

The task of ordinary numbers in Euclidean geometry is undertaken the generalized complex numbers
in Cayley-Klein geometry, [18, 19]. The Cayley-Klein plane geometries including Euclidean, Galilean,
Minkowskian and Bolyai-Lobachevsikan first introduced by F. Klein in 1871 and A. Cayley, [11, 12]. Then,
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Yaglom distinguished these geometries according to measuring length and angles (parabolic, elliptic or
hyperbolic), [19].

Gürses and Yüce gave the one-parameter planar motion in Affine Cayley-Klein planes and p− complex
plane CJ =

{
x+ Jy : x, y ∈ R, J2 = p, p ∈ {−1, 0, 1}

}
⊂ Cp in the generalized complex plane Cp, [1, 2].

Moreover, Erişir et al. calculated the Steiner area formula and proved Holditch theorem in the generalized
complex plane Cp, [5]. Then, they calculated the polar moment of inertia of trajectories under the one-
parameter planar motion and Holditch-type theorem in Cp, [6].

In this paper, we study on the one-parameter planar motion in the generalized complex plane Cp which is
the generalization of the complex, dual and hyperbolic planes (which are isomorphous to Euclidean, Galilean
and Lorentzian number planes, respectively). We first consider the fixed points X and Y and the fixed point
Z non-linear with the points X and Y on the generalized moving complex plane in Cp. Then, we calculate the
Cauchy-length formula giving the length of the enveloping curve of the line XY formed by the points X and
Y . In addition, we give the relationship between the areas of the trajectories drawn by the points X,Y and Z.
Finally, we prove the Holditch theorem for the non-linear three points by making some special choosing by
means of this relationship during the one-parameter planar motion in the generalized complex plane Cp.

2. Preliminaries

The generalized complex number system is defined as a two-parameter family of complex number system
and involves in the ordinary, dual and double numbers as follows:

Z = x+ iy where i2 = iq + p, (q, p, x, y ∈ R).

Here, if p + q2
/

4 < 0, the generalized complex numbers are isomorphic to ordinary numbers, if we take
p + q2

/
4 = 0, the generalized complex numbers are isomorphic to dual numbers and if we choose p + q2

/
4 > 0,

the generalized complex numbers are isomorphic to double numbers, [8, 15, 18]. If q = 0 is taken, this number
system is defined as

Cp =
{
x+ iy : x, y ∈ R, i2 = p ∈ R

}
.

In this paper, we study on this number system Cp. Now, we give some operations on this system.
For Z1 = (x1 + iy1), Z2 = (x2 + iy2) ∈ Cp, the addition and subtraction on this generalized complex plane

are
Z1 ± Z2 = (x1 + iy1)± (x2 + iy2) = x1 ± x2 + i(y1 ± y2).

In addition, the product is written as

Mp(Z1, Z2) = (x1x2 + py1y2) + i(x1y2 + x2y1).

The product is defined as
Ordinary Product: (x1x2 − y1y2) + i(x1y2 + x2y1) for p = −1,
Study Product: (x1x2) + i(x1y2 + x2y1) for p = 0,
Clifford Product: (x1x2 + y1y2) + i(x1y2 + x2y1) for p = 1,

for the special values of the number p, [8, 15, 18]. In addition, the p−magnitude of Z = x+ iy ∈ Cp is

|Z|p =
√∣∣Mp

(
Z, Z̄

)∣∣ =
√
|x2 − py2|. (2.1)

Moreover, the scalar product on Cp is

〈z1, z2〉p = Re (Mp (z1, z̄2)) = Re (Mp (z̄1, z2)) = x1y1 − px2y2

for z1 = x1 + iy1, z2 = x2 + iy2 where "−" is an ordinary complex conjugate, [8].

The unit circle in Cp is called the geometric location of points at a unit distance from a fixed point and in the
form of |Z|p = 1. Thus, we can give the special cases of p in Cp as follows.

Now, if we take p < 0, we obtain x2 + |p| y2 = 1 with the aid of definition of the unit circle in Cp. Thus, in case
of p < 0 the generalized complex number system matches the elliptical complex number system. Specially, if
we take p = −1, the unit circle in Cp corresponds to the Euclidean unit circle. So, the plane C−1 matches the
Euclidean plane, [8].

www.iejgeo.com 112

http://www.iej.geo.com
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Now, let us consider p = 0. So, with the aid of definition of the unit circle in Cp, we obtain x2 = 1 (x = ±1).
In addition, the generalized number system matches up with the parabolic complex number system and the
plane C0 matches up with Galilean plane, (Figure 1), [8].

In other respects, we can give two different definitions of the circle in Euclidean plane. The first of these is
"The set of points fixed distance r from a fixed point M is a circle" and the second is "The set of end points of
the line segment AB making the fixed directed angle α is a circle". These indicate the same set in Euclidean
plane. However, these two definitions match up with different sets in Galilean plane. The first is occurred the
lines x = ±1 (is called Galilean circle). At that, any curvature can not be mentioned, (Figure 1). The second is
occurred Galilean cycle and this cycle is equal to the Euclidean parabola

(
y = ax2 + 2bx+ c

)
.

Now, let us consider p > 0. So, we obtain the hyperbolas
∣∣x2 − py2

∣∣ = 1. In addition, these hyperbolas have
asymptote

∣∣x2 − py2
∣∣ = 1 with asymptote y = ±x

/√p. In this case, the generalized number system is equal to
the hyperbolic complex number system. Especially, if we take p = 1, the plane C1 corresponds to the Lorentzian
plane, (Figure 1), [8].

Figure 1. Unit Circles in Cp.

So, we can give the following definition.

Definition 2.1. Let us consider a circle in the generalized complex plane Cp. This circle has the center M(a, b)
and the radius r. So, the equation of this circle is

∣∣∣(x− a)
2 − p(y − b)2

∣∣∣ = r2

where i2 = p ∈ R, [8].

Let Z = x+ iy be a number in Cp and this number be expressed with a ray OT as in Figure 2. In addition, the
intersection point of the ray OT and the unit circle in Cp. Thus, the angle θp showed in Figure 2 is written by

θp =


1√
|p|

tan−1
(
σ
√
|p|
)
, p < 0

σ, p = 0
1√p tan−1

(
σ
√p
)
, p > 0 (branch I, III)

where σ ≡ y/x and z = x+ iy.
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Figure 2. Elliptic, parabolic and hyperbolic angles.

In addition, the angular measure is written as follows

θp =

∞∑
n=0

pn

2n+ 1
σ2n+1, |σ|

√
|p| < 1

as a power series .
Let the point L be the orthogonal projection of the point N on the radius OM . In addition, the line QM is the

tangent of unit circle at the point M in Cp, (Figure 3). So, we take the p−trigonometric functions (the p−cosine
(cos p) and p−sine (sin p) can be written as

cos pθp =

 cos
(
θp
√
|p|
)
, p < 0

1, p = 0 (branch I)
cosh

(
θp
√p
)
, p > 0 (branch I)

sin pθp =


1√
|p|

sin
(
θp
√
|p|
)
, p < 0

θp, p = 0 (branch I)
1√p sinh

(
θp
√p
)
, p > 0 (branch I)

and QM

OM
= NL

OL
gives

tan pθp =
sin pθp

cos pθp
.

Figure 3. Geometric definitions of cos p, sin p and tan p.
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In addition, we can write the p-trigonometric functions in Cp for the other branches. For the parabolic
trigonometric functions we hold

cos pIIθp = − cos pIθp and sin pIIθp = − sin pIθp.

Also, for the hyperbolic trigonometric functions we have the following equations;

cos pIIθp = i√p cos pIθp, cos pIIIθp = − cos pIθp, cos pIV θp = − i√p cos pIθp,

sin pIIθp =
√p
i sin pIθp, sin pIIIθp = − sin pIθp, sin pIV θp = −

√p
i sin pIθp

where the subscripts give the number of branches.

Moreover, the Maclaurin expansion is written by

cos pθp =

∞∑
n=0

pn

(2n)!
θ2np and sin pθp =

∞∑
n=0

pn

(2n+ 1)!
θ2n+1

p

for branch I. With the aid of the Maclaurin expansion, the generalized Euler Formula can be given by

eiθp = cos pθp + i sin pθp

where i2 = p in Cp.
In addition, the polar and exponential forms of the generalized complex number z is

z = rp(cospθp + i sin pθp) = rpe
iθp

where θp and rp = ‖z‖p are p−argument and p−magnitude of generalized complex number z, respectively, [8].
The p−rotation matrix obtained by eiθp is

A(θp) =

[
cos pθp p sin pθp
sin pθp cos pθp

]
.

Moreover, the derivatives of the p−trigonometric functions cos p and sin p can be written by

d

dα
(cos pα) = p sin pα,

d

dα
(sin pα) = cos pα,

[8].
Throughout this study, we consider one-parameter planar motion Kp/K′p in generalized complex plane Cp.

Moreover, we study in the branch I of Cp.

3. The Cauchy-Length Formula in the Generalized Complex Plane

Now, we calculate the Cauchy-length formula giving the length of the enveloping curve of the line g in Cp.

Let Cp be the generalized complex plane and g be a line in the branch I in Cp. So, the Hesse form of this line
g in Cp is determined by the equation

h = x1 cos pψp − px2 sin pψp (3.1)

where
(
h, ψp

)
is the Hesse coordinates in Cp. In addition, h = h(ψp) is the distance to the origin O from the

right line and the point X (x1, x2) is the contact point of the line g with the envelope curve (g).
We assume that h = h(ψp) is a continuously differentiable support function of the line g. For each the value

ψp, there is a line in the generalized complex plane Cp. Thus, the line bundle in terms of ψp in the generalized
complex plane can be written as

h
(
ψp
)

= x1 cos pψp − px2 sin pψp. (3.2)

From the equation (3.2), by notating with ”.” the derivation with respect to ψp, the parametric representation
of the envelope line g is

dh
(
ψp
)

dψp
= px1 sin pψp − px2 cos pψp. (3.3)
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If this equation system formed by the equations (3.2) and (3.3) is solved according to x1 and x2, the following
equations

x1 = h cos pψp − ḣ sin pψp,

px2 = ph sin pψp − ḣ cos pψp
(3.4)

can be obtained. So, from the equation (3.4), we have

ẋ1 =
(
ph− ḧ

)
sin pψp,

pẋ2 =
(
ph− ḧ

)
cos pψp.

(3.5)

In addition, with the aid of the equation (3.5), the arc-element ds can be obtained that

ds =
1√
|p|
∣∣ph− ḧ∣∣ dψp.

So, we obtain that the length of the enveloping curve g is

L =
1√
|p|

t1∫
t0

∣∣ph− ḧ∣∣ dψp. (3.6)

This formula is called as the Cauchy-length formula in the generalized complex plane Cp.

Similarly, we calculate the length of the enveloping curve (g) according to the fixed generalized complex
plane K′p. So, we can write the Hesse form of the line g according to the fixed generalized complex plane K′p as

h′ = x′1 cos pψ′p − px′2 sin pψ′p (3.7)

where h′ is the distance to the origin O′ from the right line g.
In the other hand, if θp is the rotation angle of the one-parameter planar motion in the generalized complex

plane Cp, there is a relationship as
ψ′p = θp + ψp (3.8)

between the angles ψ′p, θp and ψp. So, from the equations (3.7) and (3.8) we can write

h′ = h− u1 cos pψp + pu2 sin pψp. (3.9)

Since the line g is fixed on the moving generalized complex plane Kp, ψp is fixed. Thus, the equivalent
dψ′p = dθp can be written from the equation (3.8). From this, with the aid of the equations (3.6) and (3.9) we
obtain that

L′ =
1√
|p|

t1∫
t0

∣∣ph′ − ḧ′∣∣ dθp (3.10)

or
L′ =

1√
|p|
∣∣phδp −A cos pψp + pB sin pψp

∣∣ (3.11)

where A =
t1∫
t0

(pu1 − ü1)dθp and B =
t1∫
t0

(pu2 − ü2)dθp.

Now, we express the length of enveloping curve g in the equation (3.11) in geometrically. So, if we make the
necessary arrangements in the equation (3.11), we obtain that

L′ =
√
|p|

 t1∫
t0

q̄dθp + LgQ

 .

where LgQ = q2 cos pψp − q1 sin pψp
∣∣t1
t0

is the length of orthogonal projection of the line segment Q1Q2 of the
moving pole curve (Q) on the line g. Moreover, q̄ = h− q1 cos pψp + pq2 sin pψp is distance of the pole point Q
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to the line g in the generalized complex plane.

Now, we assume that the enveloping trajectories of all the fixed lines g of the generalized moving plane Kp
have the same length L′ = c. If we consider the equation (3.11) we can give the following theorem.

Theorem 3.1. During the one-parameter planar motion Kp/K′p in the generalized complex plane Cp, all the fixed lines
with Hesse coordinates (h, ψp) of the generalized moving complex plane Kp whose enveloping trajectories have the same

length L′ = c are tangent to the cycles with center SG =
(
A

pδp
, Bpδp

)
and radius c√

|p|δp
in the generalized moving plane

Kp.

4. Holditch Theorem for the non-linear points in Cp

In this section, we give a new generalization of the Holditch theorem given by [5] by using non-linear points
in the generalized complex plane Cp.

Let Kp and K′p be moving and fixed generalized complex planes in Cp, respectively. Under the one-parameter
planar motion, the non-linear fixed points X , Y and Z taken in the moving plane Kp draw the trajectories kX ,
kY and kZ with areas FX , FY and FZ , respectively.

Especially, we take the non-linear points X = (0, 0), Y = (a+ b, 0) and Z = (a, c) on the generalized moving
plane Kp in Cp. We know that the area of trajectory drawn by a point X in Cp is calculated

FX = F0 +
1

2
δp
(
x1

2 − px22 − 2x1s1 + 2px2s2
)

from [5]. So, for the points X = (0, 0), Y = (a+ b, 0) and Z = (a, c) the areas are written by

FX = F0 for X = (0, 0) (4.1)

FY = FX +
1

2
δp

(
(a+ b)

2 − 2 (a+ b) s1

)
for Y = (a+ b, 0) (4.2)

FZ = FX +
1

2
δp
(
a2 − pc2 − 2as1 + 2pcs2

)
for Z = (a, c) . (4.3)

From the equation (4.2) we obtain that

s1 =
a+ b

2
+
FX − FY
δp (a+ b)

. (4.4)

In addition, if we use the equations (4.3) and (4.4) we have

FZ =
aFY + bFX

a+ b
− 1

2
δp
(
pc2 + ab

)
+ pδpcs2.

In the other hand, we consider the one-parameter planar motion S = SG in Cp. So, we have

s2 =
B

pδp
.

Moreover, we consider that L′ is called as LXY if the points X = (0, 0), Y = (a+ b, 0) and Z = (a, c) is written
in equation (3.11).

Finally, we obtain

FZ =
aFY + bFX

a+ b
− 1

2
δp
(
pc2 + ab

)
−
√
|p|cLXY .

Thus, we give the following theorem.
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Theorem 4.1. Main Theorem: During the one-parameter planar motion Kp/K′p with S = SG in the generalized
complex plane, let the points X , Y and Z, non-linear with the points X and Y , be fixed on the moving plane Kp. If the
points X = (0, 0), Y = (a+ b, 0) ∈ Kp move along the trajectories kX and kY with the areas FX and FY , respectively,
then the point Z = (a, c) ∈ Kp draws the trajectory with the area

FZ =
aFY + bFX

a+ b
− 1

2
δp
(
pc2 + ab

)
−
√
|p|cLXY . (4.5)

where LXY is the length of the enveloping curve of (XY ). So, the area of section between curves kX , kY and kZ depends
on the distances of the point R to the end points X and Y , the distance of the point Z to the line XY , the length of the
enveloping curve (XY ) and the rotation angle of the motion. This area is independent of the choice of curves.

So, the following corollary can be given.

Corollary 4.1. We take that the points X , Y and Z are linear points during the one-parameter planar motion in Cp. So,
the points R and Z are coincident. Namely, c = 0. Thus, from the equation (4.5) we can obtain

FZ =
aFY + bFX

a+ b
− 1

2
δpab.

This formula is the area formula given for the linear points in [5]. Namely, the formula (4.5) is generalization of the
formula in [5].

Note: If we choice p = 0, the formula (4.5) is written by

FZ =
aFY + bFX

a+ b
− 1

2
δpab. (4.6)

The formula (4.6) is also the area for the linear points in [5]. Thus, we can give the following corollary.

Corollary 4.2. The area formula for non-linear three points for p = 0 is same the formula of area for linear three points
in Cp.

The reason of this is the metric in the plane C0. According to the metric in C0 the distance between the points
X and R is same the distance between the points X and Z. Similarly, this situation is valid for the points Y , R
and Y , Z.

Finally, we can give the following corollary.

Corollary 4.3. The relationship between L′, the length of envelope curve (g), and LXY , the length of the enveloping
curve of (XY ), with the aid of the areas FX and FY is written by

L′ =
√
|p|
(
hδp +

(
FY − FX
δp (a+ b)

− a+ b

2

)
δp cos pψp −

√
|p|LXY sin pψp

)
.
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