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ABSTRACT

We present a variational study of finding null relaxed elastic lines which are extremals of a
geometric energy functional, subject to suitable constraints and boundary conditions on a timelike
surface in Minkowski 3-space. We derive an Euler-Lagrange equation for a null relaxed elastic
line with regard to geodesic curvature, geodesic torsion and normal curvature of the curve on the
timelike surface. Finally, we give some examples for null relaxed elastic lines on the pseudo-sphere
and pseudo-cylinder.
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1. Introduction

A relaxed elastic line introduced by Manning in [5], minimizes the total squared curvature functional∫̀
0

κ2(s)ds among curves of length ` with fixed initial point and direction. Nickerson and Manning in [6] derive

the intrinsic equations for a relaxed elastic line on an oriented surface in Euclidean 3-space. They characterize
the relaxed elastic line with the following differential equation

2κ′′g − 4τgκ
′
n − 2κnτ

′
g + κg

(
κ2g + κ2n − 2τ2g + κ2n (`)

)
= 0

with two boundary conditions
κg (`) = 0
κ′g (`) = 2κn (`) τg (`) .

They give necessary and sufficent condition that an arc of a geodesic is a relaxed elastic line on a general
surface. They also show that the geodesics of some surfaces in Euclidean 3-space are relaxed elastic lines.
Yücesan etc. derive the Euler-Lagrange equation for a non-null relaxed elastic line on pseudo-hypersurfaces
in pseudo-Euclidean spaces and solve this equations for some pseudo-hypersurfaces as pseudo-hyperplane,
pseudo-hypersphere, pseudo-hyperbolic space and pseudo-hypercylinder [9].

Although non-null relaxed elastic lines are studied on some surfaces in Minkowski 3−space, null ones are
not. So we focus the problem of finding null relaxed elastic line on a timelike surface in Minkowski 3−space
whose unit normal vector field is everywhere spacelike. Thus we construct the problem of finding null relaxed
elastic line and give a differential condition which is derived together with boundary conditions that must be
satisfied for any null relaxed elastic line in a timelike surface. These conditions are examined in the special
cases of pseudo-sphere and pseudo-cylinder which are timelike surfaces.

2. Geometrical Set Up

Recall that the Minkowski 3−space E3
1 is a three-dimensional real vector space equipped with the metric

< x, y >= −x1y1+x2y2+x3y3, x =(x1, x2, x3) , y =(y1, y2, y3)∈ E3
1
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which is a non-degenerate, symmetric and bilinear form. A smooth curve in E3
1 is spacelike (resp., timelike

and null), if its velocity vector is spacelike (resp., timelike and null). If a regular curve in E3
1 is spacelike or

timelike, we can reparametrize the curve by an arc-length. For null (or lightlike) curves, there would be not
sense reparametrize by the arc-length. However, they have pseudo arc-length parametrized. A surface in E3

1 is
a non-degenerate (or a degenerate) if induced metric on its tangent plane is non-degenerate (or degenerate).
A non-degenerate surface is named in terms of the induced metric. If the induced metric is positive definite,
a non-degenerate surface is called spacelike, if the induced metric is indefinite, a non-degenerate surface is
called timelike (see [4] and [7]).
Now, we consider an oriented timelike surface S in Minkowski 3−space E3

1 and let γ be a null curve on S. At a
point γ(s) of γ, let T (s) = γ

′
(s) denote the tangent vector to γ, let n (s) denote the spacelike unit normal vector

to S and let Q (s) denote the unique vector obtained by

Q =
1

< V, T >
{V − < V, V >

2 < V, T >
T}, V ∈ Tγ(s)S, < V, T >6= 0

which appears in [2] such that

< T, T >=< Q,Q >=< T, n >=< Q,n >= 0,
< T,Q >=< n, n >= 1.

For each s, {T,Q, n} is called the Darboux frame along γ. The derivative equations of Darboux frame are given
by  T ′

Q′

n′

 =

 κg 0 κn

0 −κg τg
−τ

g
−κn 0

 T
Q
n

 , (2.1)

where κg, κn =< AnT, T > and τg =< AnT,Q > are the geodesic curvature, the normal curvature and the
geodesic torsion of γ, respectively, and An is the shape operator of S [1]. On the other hand, we have the
Cartan frame {T,N,B} for γ a null curve parametrized by the pseudo-arc parameter in Minkowski 3−space
E3
1, where T (s) = γ′ (s), N (s) = γ′′ (s) is a unit spacelike vector field and B (s) = −γ′′′ − 1

2 < γ′′′, γ′′′ > γ′ such
that satisfies

< T, T >=< B,B >=< T,N >=< N,B >= 0,
< N,N >=< T,B >= 1

[3]. The derivative equations of Cartan frame are given by T ′

N ′

B′

 =

 0 1 0
−κ 0 −1
0 κ 0

 T
N
B

 , (2.2)

where κ is the lightlike curvature of γ with the equality

κ (s) =
1

2
< γ′′′, γ′′′ >

[3]. We have the following equations from the comparison of moving frames (2.1) and (2.2)

< N,n >= κn = ±1

(see [1]).

3. Minimizing the Functional

Any null relaxed elastic line on a timelike surface S is a critial curve of the functional

K =

`∫
0

κ2ds =
1

4

`∫
0

< γ′′′, γ′′′ >2 ds (3.1)
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among the family of all arc of length ` having the same initial point and direction with γ ∈ S. Now we suppose
that γ lies a coordinate patch

X (u, v) = (x (u, v) , y (u, v) , z (u, v)) .

So, the tangent vector to
γ (s) = X (u (s) , v (s))

is expressed with

T (s) = γ′ (s) =
du

ds
Xu +

dv

ds
Xv

and for suitable scalar functions p (s) and q (s), we can write the binormal vector field of γ

Q (s) = p (s)Xu + q (s)Xv.

In order to obtain variational arcs of length `, we extend γ to an arc γ∗(s) defined for 0 ≤ s ≤ `∗, with `∗ > `
but sufficiently close to ` so that γ∗ lies in the coordinate patch. Let µ(s), 0 ≤ s ≤ `∗, be a scalar not vanishing
function. Then, we denote the variation vector field

µ(s)Q (s) = η (s)Xu + ζ (s)Xv

along γ. Assume also that
µ (0) = 0, µ′ (0) = 0. (3.2)

No further restrictions will be placed on µ. A variation of γ is defined by

β (σ; t) = X (u (σ) , v (σ)) + t(η (σ) , ζ (σ)) , (3.3)

for 0 ≤ σ ≤ `∗. Because of (3.2), the variation (3.3) has

β (0, t) = γ (0) ,
∂β (σ, t)

∂σ

∣∣∣∣
σ=0

=
∂γ (σ)

∂σ

∣∣∣∣
σ=0

= γ′ (0) .

It means that the variational arcs has same initial point and initial direction. We can restrict β (σ; t) , 0 ≤ |t| < δ,
to an arc of length ` by restricting the parameter σ to an interval of 0 ≤ σ ≤ λ(t) ≤ `∗ by requiring

λ(t)∫
0

<
∂2β

∂σ2
,
∂2β

∂σ2
>

1
4 dσ = `. (3.4)

Note that λ (0) = `. The function λ (t) need not be determined explicitly, but we shall need its derivative (given
in Lemma 3.1). By using (2.1), some partial derivatives of β (σ; t) with respect to σ are obtained as

∂β

∂σ

∣∣∣∣
t=0

= T,

∂2β

∂σ2

∣∣∣∣
t=0

= κ
g
T + κ

n
n (3.5)

and
∂3β

∂σ3

∣∣∣∣
t=0

=
(
κ′

g
+ κ2

g
− κnτg

)
T + κgκnn−Q. (3.6)

First derivative of β (σ; t) with respect to t is calculated as

∂β

∂t

∣∣∣∣
t=0

= µQ.

Finally, some mixed derivative of β (σ; t) are obtained as

∂2β
∂σ∂t

∣∣∣
t=0

= (µ′ − κgµ)Q+ µτgn,
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∂3β
∂σ2∂t

∣∣∣
t=0

= µτ2gT + ((µ′ − κgµ)′ − (µ′ − κgµ)κg
− µτgκn)Q+ ((µ′ − κgµ) τg + (µτg)

′
)n

(3.7)

and

∂4β

∂σ3∂t

∣∣∣∣
t=0

= (−
(
µτ2

g

)′
− µτ2gκg

− (µ′ − κgµ) τ2g − (µτg)
′
τg)T

+((µ′ − κgµ)′′ − ((µ′ − κgµ)κg)′ − (µτgκn)
′

−κg (µ′ − κgµ)′ + κ2g (µ
′ − κgµ) + µτgκgκn

−τgκn (µ′ − κgµ)− κn (µτg)′)Q
+(−µτ2gκn + (µ′ − κgµ)′ τg − (µ′ − κgµ)κgτg
−µτ2gκn + ((µ′ − κgµ) τg)′ + (µτg)

′′
)n.

(3.8)

Lemma 3.1. We obtain from (3.4), (3.5) and (3.7) in the following equation

dλ
dt

∣∣
t=0

= − 1
2

∫̀
0

κg ((µ
′ − κgµ)′ − κg (µ′ − κgµ)− µτgκn)

+κn((µ
′ − κgµ) τg + (µτg)

′
)ds.

(3.9)

Let K denote the null relaxed elastic functional of arc β(σ; t), 0 ≤ σ ≤ λ (t) . A necessary condition that γ be
an extremal is that K ′ (0) = 0 for arbitrary µ satisfying (3.2) (see [8]). If we calculate dK

dt , we get

dK
dt = 1

4
dλ
dt

∣∣
t=0

{
<
∂3β

∂σ3
,
∂3β

∂σ3
>

}
σ=λ(t)

+
λ(t)∫
0

<
∂3β

∂σ3
,
∂3β

∂σ3
><

∂4β

∂σ3∂t
,
∂3β

∂σ3
>dσ.

(3.10)

Substituting (3.9), (3.6) and (3.8) in the equation (3.10), and then if we write zero in place of t in the functional,
we obtain;

dK
dt

∣∣
t=0

=
∫̀
0

µ′′ (Aκg +BC (1− 3κg) + 3Bκgκnτg) ds

+
∫̀
0

µ′(A(−2κ2g + 2κnτg) + 3BC
(
−κ′g + κ2g − κnτg

)
+B(3τ2g − 3κ2gκnτg + 3τ ′gκnκg)ds

+
∫̀
0

µ(A(−κgκ′g + κ3g − 2κgκnτg + κnτ
′
g) +BC(−κ′′g

+3κgκ
′
g − 2τ ′gκn − κ3g + 2κgκnτg) +B(3τgτ

′
g − 2τ2gκg

−2κgκ′gκnτg + κ3gκnτg − κ2gκnτ ′g + κgκnτ
′′
g )ds,

where
A =

1

8

(
2κ′g (`) + κ2g (`)− 2κn (`) τg (`)

)
,

B = −
(
2κ′g + κ2g − 2κnτg

)
and

C = κ′g + κ2g − κnτg.

Integrating by parts, we get

dK
dt

∣∣
t=0

=
∫̀
0

µ(A(−κgκ′g+κ3g−2κgκnτg+κnτ ′g) +BC(−κ′′g
+3κgκ

′
g−2τ ′gκn−κ3g+2κgκnτg) +B(3τgτ

′
g−2τ2gκg

−2κgκ′gκnτg+κ3gκnτg−κ2gκnτ ′g+κgκnτ ′′g −(A(−2κ
2
g

+2κnτg) + 3BC
(
−κ′g + κ2g − κnτg

)
+B(3τ

2
g−3κ

2
gκnτg

+3τ ′gκnκg))
′
+(Aκg+BC (1− 3κg)+3Bκgκnτg)

′′
)ds

+u1 (`)µ
′ (`)+ (u2 (`)− u′1 (`))µ (`)
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where
u1 (`)= A(−κg (`)κ′g (`)+κ3g (`)−2κg (`)κn (`) τg (`)

+κn (`) τ
′
g (`) ) +B (`)C (`) (−κ′′g (`)+3κg (`)κ

′
g (`)

−2τ ′g (`)κn (`)−κ3g (`)+2κg (`)κn (`) τg (`) )
+B (`) (3τg (`) τ

′
g (`)−2τ2g (`)κg (`)

−2κg (`)κ′g (`)κn (`) τg (`)+κ3g (`)κn (`) τg (`)
−κ2g (`)κn (`) τ ′g (`)+κg (`)κn (`) τ ′′g (`)

and
u2 (`)= A(−2κ2g (`)+2κn (`) τg (`) )

+3B (`)C (`)
(
−κ′g (`) + κ2g (`)− κn (`) τg (`)

)
+B (`) (3τ

2
g (`)−3κ

2
g (`)κn (`) τg (`)

+3τ ′g (`)κn (`)κg).

In order that
dK

dt

∣∣∣∣
t=0

= 0 for all functions µ satisfying (19) with arbitrary values of µ (`) and µ′ (`), the given

arc γ must satisfy two boundary conditions;
u1 (`) = 0, (3.11)

u2 (`)− u′1 (`) = 0 (3.12)

and the differential equation;

A(−κgκ′g+κ3g−2κgκnτg+κnτ ′g) +BC(−κ′′g
+3κgκ

′
g−2τ ′gκn−κ3g+2κgκnτg) +B(3τgτ

′
g−2τ2gκg

−2κgκ′gκnτg+κ3gκnτg−κ2gκnτ ′g+κgκnτ ′′g −(A(−2κ
2
g

+2κnτg) + 3BC
(
−κ′g + κ2g − κnτg

)
+B(3τ

2
g−3κ

2
gκnτg

+3τ ′gκnκg))
′
+(Aκg+BC (1− 3κg)+3Bκgκnτg)

′′
= 0

(3.13)

at the free end. Then we can give the following theorem.

Theorem 3.1. The intrinsic equations for a null relaxed elastic curve of length ` having on a timelike surface S in
Minkowski 3−space E3

1 are given by the differential equation (3.13) together with the boundary conditions (3.11) and
(3.12) .

4. Examples

1. The most familiar instance of timelike surfaces in Minkowski 3−space E3
1 is pseudo-sphere

S2
1 (1) =

{
p ∈ E3

1

∣∣ < p, p >= 1
}
.

For all curves on S2
1 (1) the geodesic torsion τg is zero and square of the normal curvature κ2n is 1. Then, null

geodesics of S2
1 (r) are relaxed elastic lines.

2. The pseudo-cylinder
C2

1 (1) =
{
(x, y, z) ∈ E3

1

∣∣ − x2 + y2 = 1, z ∈ R
}

is a timelike surface and parametrized by X (u, v) = (sinhu, coshu, v). Then the null geodesic

γ (s) = (sinh s, cosh s, s)

with the geodesic torsion τg = − 1
2 and the normal curvature κn = 1 (see [1]) is a null relaxed elastic line.
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