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Abstract: In this paper, we generalize the dualistic structures orpe@product manifolds to the dualistic structures on géizech
warped product manifolds. We have developed an expres$ionreature for the connection of the generalized warpedlycbin
relation to the corresponding analogues of its base andditmmarping functions. We show that the dualistic structune the base
M, and the fibeM, induce a dualistic structure on the generalized warpedyatdd; x My and that, converselyM, x Ml,Gflfz) or

(M, x Ml,gflfz) is a statistical manifold if and only ifM,,g,) and(M,,qg,) are. Finally, Some other interesting consequences are also

given.
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1 Introduction

The warped product provides a way to construct new psewamnian manifolds from the given ones, s@ig 4] and
[3]. This construction has useful applications in generaltigity, in the study of cosmological models and black holes
generalizes the direct product in the class of pseudo-Rieiaa manifolds and it is defined as follows. L(&4;,91) and
(M2,92) be two pseudo-Riemannian manifolds andflet M; — R* be a positive smooth function dvi;, the warped
product of (Mj,g1) and (My,g2) is the product manifoldM; x M, equipped with the metric tensor
gf, '=Tq01+(fo n1)2n§g2, wherer andrp are the projections dfl; x M, ontoM; andM; respectively. The manifold
My is called the base ¢M; x My, gs,) andM is called the fiber. The functiofy is called the warping function.

The double warped product is a construction in the class efigis-Riemannian manifolds generalizing the warped
product and the direct product. It is obtained by homotladificistorting the geometry of each bade x {q} and each
fiber {p} x M, to get a new "doubly warped” metric tensor on the product fisdshiand it is defined as follows; for

i € {1,2}, let M; be a pseudo-Riemannian manifold equipped with megiand f, : M; — R* be a positive smooth
function onM;. The well-known notion of doubly warped product manifdif Xit M, is defined as the product
manifoldM = M, x M, equipped with pseudo-Riemannian metric which is denotegiflb;/, given by

Oy, = (f20 )’ g, + (from)° 1B, .

The generalized warped product is defined as follows: betan arbitrary real number and tgt (i = 1,2) be Riemannian
metric tensor oM;. Given a smooth positive functiofy on M;, the generalized warped product(®1,g:) and (M2, g2)
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is the product manifoldl; x M, equipped with the metric tens@y, , (see B]), explicitly, given by

Gy, r, (X,Y) = (1327 (A (X), d7u(Y)) + (1) %G (dre(X), dTe(Y)) + C T £ (X ()Y (1) + X ()Y (1)) ).
forall X,Y € I (T My x M2). When the warping functionfy = 1 or f, = 1 orc = 0, we obtain a warped product or direct
product.

Dualistic structures are closely related to statisticalhmmatics. They consist of pairs of affine connections otistitzal
manifolds, compatible with a pseudo-Riemanniann meftjc Their importance in statistical physics is underlined by
many authors:4],[ 2] etc.

Let M be a pseudo-Riemannian manifold equipped with a pseudmdirian metrioy and let[, 0" be the affine
connections oM. We say that a pair of affine connectidisand]” are compatible (or conjugate ) with respectif

X(9(Y,2)) = g(OxY,Z) +g(Y,0xZ) forall X,Y,Z e (TM), (1)
wherel™ (T M) is the set of all tangent vector fields &h Then the tripletg, J,0") is called the dualistic structure du.

We note that the notion of "conjugate connection ” has begibated to A.P. Norden in affine differential geometry
literarture (Simon, 2000) and has been independently dotted by (Nagaoka and Amari, 1982) in information
geometry, where it was called ” dual connection” (Lauritze®87). The triplefM, [, g) is called a statistical manifold if

it admits another torsion-free connectiéh satisfying the equationl). We call 0 and 0" duals of each other with
respect ta.

In the notions of terms on statistical manifolds, for a tonsfree affine connectiol and a pseudo-Riemannian metgic
on a manifoldM, the triple(M, [, g) is called a statistical manifold iflg is symmetric. If the curvature tensBrof O
vanishes(M, 0, g) is said to be flat.

This paper extends the study of dualistic structures on enproduct manifolds, 9], to dualistic structures on
generalized warped products in pseudo-Riemannian mdsifdle develop an expression of curvature for the connection
of the generalized warped product in relation to those spwading analogues of its base and fiber and warping
functions.

The paper is organized as follows. In section 2, we collezttsic material about Levi-Civita connection, the notibn o
conjugate, horizontal and vertical lifts and the geneealiwarped products.

In section 3, we show that the projection of a dualistic streee defined on a generalized warped product space
(M1 x M2,Gy,1,) induces dualistic structures on the bas#;,g:) and the fiber(M»,g,). Conversely, there exists a
dualistic structure on the generalized warped productespatuiced by its base and fiber.

In section 4, we show that the projection of a dualistic streee defined on a generalized warped product space
(M1 x Mg, 8¢, 1,) induces dualistic structures on the bg#é;,g:) and the fiber(Mp,g2). Conversely, there exists a
dualistic structure on the generalized warped productesprattticed by its base and fiber and finally.
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2 Preliminaries

2.1 Statistical manifolds

We recall some standard facts about Levi-Civita connestiand the dual statistical manifold. Many fundamental
definitions and results about dualistic structure can baddao Amari’s monograph (,[2]).

Let (M, g) be a pseudo-Riemannian manifold. The medriefines the musical isomorphisms

tg: T*M — TM
a — fg(a)

such thag(fig(a),Y) = a(Y), and its inverséq. We can thus define the cometgof the metricg by :

g(avﬁ) :g(ﬂg(a)vﬂg(ﬁ)) (2)

A fundamental theorem of pseudo-Riemannian geometrysstage given a pseudo-Riemannian metrion the tangent
bundleT M, there is a unique connection (among the class of torsieadonnection) that "preserves” the metric; as long
as the following condition is satisfied:

X(g(Y,Z)) = 9(0xY,Z) +g(Y,0xZ) forX,Y,Ze T (TM) ®3)

Such a connection, denotedass known as the Levi-Civita connection. Its component fsroalled Christoffel symbols,
are determined by the components of pseudo-metric tengt€hsstoffel symbols of the second Kink )

Ak }m(@ 99; 09ij>

1=239 G0 "o

and ("Christoffel symbols of the first Kink”)

I 7}(% %f%)
Wk=2Vox T ax  axk”

The Levi-Civita connection is compatible with the pseuddniogin the sense that it treats tangent vectors of the ebbrt
curves on a manifold as being parallel.

It turns out that one can define a kind of "Compatibility” riden more generally than expressed by equat®n iy
introducing the notion of "Conjugate” (denoted by *) betwd®o affine connections.

Let (M, g) be a pseudo-Riemannian manifold andlet]” be an affine connections dn. A connectioril” is said to be
"conjugate” to[] with respect tq if

X(9(Y,2)) = 9(OxY,Z) + 9(Y, IZI;Z) forX,Y,Ze Tl (TM) 4)

Clearly,

(@) =0

OtherwiseJ, which satisfies equatioR), is special in the sense that it is self-conjugate

(O =0.

(© 2017 BISKA Bilisim Technology


www.ntmsci.com

311 BISKA D. Djebbouri and S. Ouakkas: Product of statistical mad#atith a non-diagonal metric

Because pseudo-metric tengpprovides a one-to-one mapping between vectors in the tarsgace and co-vectors in
the cotangent space, the equatibyndan also be seen as characterizing how co-vector fields e parallel-transported
in order to preserve their dual pairirg.,. > with vector fields. Writing out the equatidnexplicitly,

99 .

K = Nij + Neji» (5)
where

030) = Zr*'
so that

’—kﬁ,i = D,; Ok, 0; Zgn I—k]
In the following part, a manifold with a pseudo-metrig and a pair of conjugate connectidfis]” with respect tag is

called a " pseudo-Riemannian manifold with dualistic stnee ” and denoted byM, g, d,0"). Obviously,d andd" (or
equivalently]” andl™ *) satisfy the relation

(r+rm).

NI =

0= %(D+ 0) (or equivalentlyl” =

Thus an affine connectidn on (M, g) is metric if and only ifd" = O ( that it is self-conjugate). For a torsion-free affine
connectiord and a pseudo-Riemannian mefgion a manifoldM, the triplet(M, 0, g) is called a statistical manifold if
Og is symmetric. If the curvature tenséf of O vanishes(M, [J, g) is said to be flat.

For a statistical manifoldM, [, g), the conjugate connectidi with respect tag is torsion-free andl' g symmetric.
Then the triple{M, 0", g) is called the dual statistical manifold @¥, 0,g) and(0, 0", g) is the dualistic structure .
The curvature tensor df vanishes if and only if that ofl” does and in such a casg),0’,g) is called the dually flat
structure P]. More generally, in information geometry, a one-paramémily of affine connectiongl®) indexed byA
(A € R), calledA — connections, is introduced by Amari and Nagaoka i, [2]).

D(A):1+/\ 1-2 . 1+A 1-A

i w7 *
5 O+ > ——0O (or equivalentlyl” 5 r+ 5 —r"). (6)

Obviously,0© = (1.
It can be shown that for a pair of conjugate connectians’, their curvature tensoR, % satisfy
9(Z(X.Y)ZW) +9(Z,% (X.Y)W) =0, )

and more generally
9@ (X,Y)Z,W) +9(Z. 2" (X,Y)W) = 0. (8)

If the curvature tenso# of O vanishes[ is said to be flat. Sd] is flat if and only if O* is flat. In this case(M, g, [, D*)
is said to be dually falt.

When, 0" is dually flat, therd?) is calledA -transitively flat. In such caséM,g,0*), 0**)) is called an A-Hessian
manifold”, or a manifold withA -Hessian structure.
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2.2 Horizontal and vertical lifts

Throughout this papédvl; andM, will be respectivelymy andm, dimensional manifolddyl; x M the product manifold
with the natural product coordinate system amd M1 x My — My and7s : M1 x My — M, the usual projection maps.

We recall briefly how the calculus on the product manifdlg x M, derives from that oM; and M, separately. For
details seef].

Let ¢1 in C*°(M31). The horizontal lift of¢; to M1 x My is ¢{‘ = ¢, 0 1. One can define the horizontal lifts of tangent
vectors as follows. Lep; € My and letX,, € Tp,M1. For anyp, € My the horizontal lift ofX, to (p1, p2) is the unique
h ; h _ h _
tangent vectoX, ., in T(p1,p2) (M1 x M2) such that, ) nl(X(plypz)) = Xp, anddp, p,) ng(X(pl’pz)) =0.
We can also define the harizontal lifts of vector fields asfell. LetX; € I (T My). The horizontal lift ofX; to My x M,
is the vector fieldX{! € ' (T (M1 x My)) whose value at eadlps, p,) is the horizontal lift of the tangent vectX; ) p; to
(p1, P2). For (p1, p2) € M1 x My, we will denote the set of the horizontal lifts (p;, p,) of all the tangent vectors &l
at p1 by L(p1, p2)(M1). We will denote the set of the horizontal lifts of all vectalfls onM; by £(My).

The vertical lift ¢3 of a function¢, € C*(Mz) to My x M, and the vertical liftXy of a vector fieldX; € ' (TM,) to
M1 x My are defined in the same way using the projectipnNote that the space8(M;) of the horizontal lifts and
£(My) of the vertical lifts are vector subspaces lofT (M; x My)) but neither is invariant under multiplication by
arbitrary functiongp € C*(M1 x My).

Observe that ii{aixl, ey dxi} is the local basis of the vector fields (regpx, . ..,dxn, } is the local basis of 1-forms)
m

relative to a chartU, @) of M; and{aiyl, ey %} is the local basis of the vector fields (regplys, . ..,dym,} the local

basis of the 1-forms) relative to a chat W) of My, then{(32-)",..., ()", (aiyl)",...,(%)"} is the local basis of
my

the vector fields (respf.(dxy)",. .., (dxm, )", (dy1)Y, ..., (dym,)"} is the local basis of the 1-forms) relative to the chart
(U xV,®x W) of My x Ma.

The following lemma will be useful later for our computatson

Lemma 1.
(1) Letgy € C™ (M), X,Yi € I (TM) anda € I (T*M;), i =1,2. Letp = D+ @Y, X = X+ XY anda, B € [ (T*(My x
Mz)). Then
(i) Forall (i,1) € {(1,h),(2,v)}, we have
X(@)=X(¢)', XY]=p¥]' and of (X)=ai(X)"

(i) Ifforall (i,1) € {(1,h),(2,v)} we havea (X! ) = B(X!), thena = B.
(2) Letw andn; be r-forms on M i = 1,2. Letw = w + wy andn = nl' + nY. We have

dw = (dw)"+ (dap)’ and wAN = (w AN+ (w2 AN2)Y

Proof. See [].

RemarkLet X be a vector field oMy x My, such thatiri (X) = ¢ (X310 1m) andd e (X) = @(Xz0 T8), thenX = ¢X1h+ OXJ.
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2.3 The generalized warped product

let ¢ : M — N be a smooth map between smooth manifolds and bet a metric ork-vector bundlgF, B=) overN. The
metricg¥ : I (¢~'F) x I (¢ ~'F) — C*(M) on the pull-bacKy*F, P, 1) overM is defined by

g¥(U,V)(p) = gy(p(Up,Vp), YUV €T (Y IF), pe M.

Given a linear connectiofiN onk-vector bundl€F, B-) overN, the pull-back connectiofis the unique linear connection
on the pull-back ¢ ~1F, Py-1¢) overM such that

Bewoy) =N, wWer(F), vxer(Tm). ©)

Further, leU € ¢~'F and letp € M, X € ' (TM). Then

(Fxw) () = (NG ) w(p)), (10)

T
whereU e I (F)withU o =U.

Now, let 75, i=1,2, b% the usual projection &, x M, onto M;, given a linear connectioon vector bundléel M;, the
pull-back connectiorilis the unique linear connection on the pull-badg x My — rq’l(T M) such that for each
YielMN(TM), X e M (TMzg x M)

L (Yom) =D 11
(Ion)idfﬂ'@ (11)

Further, let(ps, p2) € M1 x M2, U € ni'*l(T M) andX € I (TMy x My). Then

(V)P p2) = (%%pbpzﬂﬁ)(pi)- (12)

Now, letc be an arbitrary real number and tgt (i = 1,2) be a Riemannian metric tensor bt. Given a smooth positive
function f; on M;, the generalized warped product @f1,9;:) and (M, @) is the product manifold; x M, equipped
with the metric tensor (seé])

G, ., = ()9 + (f)°Bg, +cffydff odf,

oty =
Wherers, (i = 1,2) is the projection oM, x M, ontoM, and

dffedfy =dfl odfy+dfy@df].
ForallX,Y € I (TM; x M), we have

Gy 1, 04Y) = ()2G7 (A (X), dra(Y) + ()27 (A7 (X), dru(Y)) + 1Y (XY (F) + X ()Y () ).

f1,f2
The latter is the unique tensor fields such that for &ny; € I (TM;), (i=1,2)
(félfl)zgl(xlaYl)lv if (Ial):(kaK)

gflf2 (XII vaK) = (13)
cfl X () Ye(f)K, otherwise
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If either f; = 1 or f, = 1 but not both, then we obtain a singly warped product. If bigtke 1 andf, = 1, then we have a
product manifold. If neitheff; nor f, is constant and = 0, then we have a nontrivial doubly warped product. If naithe
f1 nor f, is constant and £ 0, then we have a nontrivial generalized warped product.

Now, Let us assume thdM;,g;), (i = 1,2) is a smooth connected Riemannian manifold. The followingppsition
provides a necessary and sufficient condition for a symmetrnisor fieldGy, r, of type (0, 2) of two Riemannian metrics
to be a Riemannian metric.

Proposition 1.[6] Let (M, i), (i = 1,2) be a Riemannian manifold and lgtife a positive smooth function on khd c
be an arbitrary real number. Then the symmetric tensor field,@ a Riemannian metric on M M if and only if

0 < c?gy(grad f, grad fl)hgg(grad fo,gradf)" < 1. (14)
Corollary 1. [6] If the symmetric tensor field G, of type(0,2) on My x M3 is degenerate, then for any {1,2},
gi(grad f,grad ) is positive constant kn which

1

k=——-.
c?k(z_i)

In all what follows, we suppose th&t and f, satisfie the inequalityl).

Lemma 2.[6] Let X be an arbitrary vector field of Mx My, if there existp;, ¢ € C*(M;) and X,Y; € ' (TM;), (i =1,2)
such that
G,1,(X,Z]) = Gy, (#3X] + $1%3.27),
VZ el (TM),
Gflfz(xvz\zl) = thflfz(nglhjL W?YZV’Z\Z/)'

Then we have,

X = $3X0 -+ vy + 13 { wiva(f1)"— 9 (fo)" arad(£3) — e 13 { ul¥a(f2) '~ 81%e(f2)" } grad(ff).  (15)

3 Dualistic structure with respect to G, ,
Proposition 2. Let (G, ,,, L], 0°) be a dualistic structure on Mx M, . Then there exists an affine connectfﬂ)rﬁ*on M,
such that(g , ID ID*) is a dualistic structure on M(i = 1,2).

Proof. Taking the affine connections &, (i = 1,2).

)

h

( Y1) 0 7 = A7 Oy YP) + e (DY) () (grad fr) o 1, ¥ X, Y1 € T (TM,)
h

<& 1) o 1 = dr (D Yf) + e (DY) (1) (grad f) o 1,

(szvz) oTp = d7p(DxyYy) + c%(mxvvz)(ff)(grad b)omh, Y Xo,Yo€T (TM,)

(B Y2) o 10 = d7p(UYy) + cI—f( Y1) (grad b) o 7.

Therfore, we have for ak;,Y,Z € ' (TM,) (i = 1,2).
X| (Gflfz (YI ZI)) Gflfz(DXi'YiI?Zil)+Gflf (YI D)<1I ) (16)
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Since,drsrjzi') =0,X'(f] ;) =0and foranyX € I' (TMy x My),

91,1, (X,2Z0) = ()% (d78(X), Z o 18) + c P 3X(F3)Zi(F)',

then the equationl@) is aquivalent to

(102, 20)' = (1% {0 (D% Z) + (%, (.20
where(i,1),(3—1,3) € {(1,h),(2,v)}.
Hence, the pair of affine connectiosand ID are conjugate with respect ¢p.

Proposition 3. Let (gi, [}, () be a dualistic structure on Mi = 1,2). Then there exists a dualistic structure on MM,
with respect to G t,.

Proof. Let 0 andd* be the connections dd; x M, given by

dm (OxY) = Bkdnl( )+ Y(InfY)dm (X )+X(Inf")dn1(Y}|-mhb—v{—fv—B (X,Y) —cbsfyB
fcfh —cB) [X(EMY (£Y) + X (FY)Y (] } (grad ) o mm,

AB(0xY) = RA7B(Y)+Y(In fh)drs(X )+ X )Y f s “;2 )~ 1By (X,Y)
fcf" 1—ch) [X(EMY (1Y) + X(£Y)Y ()]} (grad f) o 18 an

dm (0xY) =&“dn1( )+ Y(InfY)dm (X) +X(In £)drm (Y ) W{%B*fv(XY fcbzf"B* (X,Y)
—cfl(1—cby) [X(F)Y () +X(£Y)Y(fM)] } (grad fy) o 78,

dme (05 Y) :nz&“dnz(Y)—i—Y(lnflh)dnz( )+X(Inf1h)dn2(Y}km{ .3 B* p(XY) — e fIB"  (X,Y)
—cfy(1—cb) [X(FMY (1Y) + X ()Y ()]} (grad ) o 7

foranyX,Y € I' (TMg x Mz), whereB andB*(i = 1,2) the (0, 2) tensors fields ofi' are given respectively by

B (X.,Y)=cf' {X(Y(fi' )—g"* (Edn;(v), (gradf)o75) } +eX(fhy(fh) - f—ngi” (drg(X),dmg(Y)),
' i

and

%gi“ (dm(X),dm(Y)),

BUXY) =of {X(V(f]) ~ g (m(v), (grad ) o ) b+ ex(£v (1) -
: j

j=i—3and(i,1),(j,3) € {(1,h),(2,V)}. Or, for anyX,Y; € [ (TM) (i = 1,2)

Oya¥P = (G Y0 + Y8y, (X, Yo)Pgrad(£Y);

DYy = (GY2)" + 1By, (X, Yo)Vgrad( f1);

050 = (Y0P + £YB), (X, Ya)grad(£Y);

O3,y = (3 ¥2)" + 183, (%o, Yo)Vgrad(£);

OxpYy = D;lhvzv = —cXa(f1)Ya(f2)Y{ fYgrad(fl) + fhgrad(f))} + (Ya(In f ))"XI+ (Xy (In fg))hYz"
Oy X' = DX = Oy Yy

(18)

WhereBi andBi* (i=1,2) are the(0, 2) tensors fields of, given respectively by

B, 00 = of {XOU(1) = (1) b+ oX (1)4(1) - 805,
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and
67 06.%) = of { KO (1) ~ B () 40X (1M (1) -3 0%,
Let us assume tha(gi,lij,li]*) is a dualistic structures oll,, i = 1,2. Let A be a tensor field of typé0,3) defined for anyX,Y,Z €

I—(T Ml X Mz) by
AX,Y,Z) = X(Gflfz (Y,2)) - Gflfz(DXYv Z)— Gt 1, (v, D;(Z)v

if Xi,Yi,Zi e I (TM),i=1,2, then we have
X! (G, (4.2) = X ((3.)%a (. W)").
Sincedrg_i(X{ ) = 0, it follows thatd7s_j (X' )(fs_i = X! (f] ;) =0, and hence
X Gy, (Y. Z1) = (F1-)2(X(ai (%, 20)))",
as(gi, 'EL iD)‘ is dualistic structure, we have thus
X (G, (7.2) = ()% {20! + 0% 20,
From Equationsi3), (18), then it's easily observed that the following equationdsol

A(Xileilvzil) 0

In the different lifts(i # j), we have
X! Gy, (1,2)) = e (1) X (R (Y ()
Gy, (D' Z]) = F{ehX (Y (F)) + X (fi)Yi(f) — 91 (%, Y0} Zi (1),
and
Gy, (05Z) Y1) = 9 (%, %) Zj () .

We add these equations and obtain
AX YL Z)) =0

Hence the same applies fatxy, ¥, z!) = A(X!,Y;’,Z}) = 0. This proves thali* is conjugate td] with respect t&5, , .

1 2
We recall that the connectialon M, x M, induced byllandon M, andM, respectively, is given by Equatiofh).

1 2
Proposition 4. (M,,00,g1) and (M,,[],g0) are statistical manifolds if and only ifM, x M, ;G ,,0) is a statistical
manifold.

Proof.Let us assume tha@M. , Iﬂ g,) (i=1,2) is statistical manifold.
Firstly, we show that] is torsion-free. Indeed; by Equatiohd), we have for an),Y € I (T My x M)
i Ui
dr(T(X,Y)) = Lxdm(Y) — kd7(X) —d7m([X,Y])
Since fori = 1,2, Ii]is torsion-free, then
Ui Ui
Rd7g(Y) — Hdm(X) = dr([X,Y])

Therefore, from RemarR.2, the connectiofl is torsion-free.
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Secondly, we show thaiGy, ¢, is symmetric. In fact; for = 1,2,

(DGflfz)(xil aYiI aZIJ) = XiI (Gflfz (YII 7Zi| )) - Gf1f2 (DX]'YII 7Zi| ) - Gf1f2 (YII Uy ZiI )

)(1.
by Equations 13) and (8) and since(lEgi), i =1,2, is symmetric, we have

(06, ) (4 Y. Z)) = (F1)2((Ce) (X, ¥, 2)!
(F3-0)2((Tg) (%, %, Z)"
= (DGf1f2>(Yil 7XII ’Zil )

In the different lifts, we have
fqf i Vi v &3—i) — fqf 3—iy N s &4 ) = fqf i 13-4 ) =Y
(0G,,,) (X Y',Z3) = (O0G, . )XY, Z) = (0G, ) (X!, Y3_;,Z) = 0
Therefore (UG, () is symmetric. ThugM, x M,,g, . ,[) is a statistical manifold.

Conversely, if(M, x Mz,Gflfz,D) is a statistical manifold, thetDGflfz) is symmetric and is torsion-free, particularly,
whenX;,Y;,Z € I (TM), we have

(DGflfz)(xilell azil) = (DGflfz)(Yilvxll ’Zil)a Vi= 15 25
T(Xi',Yi'):O, Vi=12,.

Then, by Equationsl@) and (8), we obtained, for=1,2, I[gi, is symmetric andll is torsion-free. ThereforéM;, Iﬂ g),
i = 1,2, is a statistical manifold.
4 Dualistic structure with respect to g, ,

Let c be an arbitrary real number and gt (i = 1,2) be a Riemannian metric tensors bl Given a smooth positive
function f; on M;, we define a metric tensor field &y x M, by

2
o~ C
Gy, i, = 0, + (1)°780, + < ()’ odf, (19)

wherers, (i = 1,2) is the projection oM, x M, ontoM, (see f]).
ForallX,Y € I' (T My x M), we have

Gr,.r, (X.Y) = glt(dm(X),dm(Y)) + (f1)?g72 (d7e(X),d7R(Y)) + (cB)?X ()Y (])).
The latter is the unique tensor fields such that for dny; € ' (TM;), (i=1,2)
Gy, r, X0 YY) = 01(%0, Y1)+ (e B)2Xa (f)Ya(f1)",

Gflf2 (X]}:]aYél) = gflfz (Yz\lvxj':l) = Oa (20)
gflf2 (X3,Y7) (flh)zgz(xz,Yz)v-

i
Proposition 5. Let (g, ,,[J,[)%) be a dualistic structure on Mx M,. Then there exists an affine connectiohsl*on M,

such that(g, ID, ID*) is a dualistic structure on M(i = 1,2).
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Proof. Taking the affine connections dt, (i = 1,2).

)

(ﬁxlvl) o 1 = drm (DY) — (¢ B)2H T (X0, Y1) (grad fr) o 1, o1

(GoYy) om = dm (O thh) (cfY)2H*M (XD Yh)(grad f;) o
2
(Do) o 76 = i dre(0x ) 22)
2 *
(Ok,Y2) 0 T = (flﬁdnz(D%,Yz").

Therefore, we have for a;, Y,z € I (TM,) (i=1,2).
X! (@, (4.2Z0)) = 8y, (O Y. Z0) + Gy, (6. B Z). (23)

Since,dgjzi') =0,X'(f] ;) =0and foranyX € I (TM; x My),

61,0 0x,2)) = 3 9 (@700 ZeoTm) o (CHX(ENZ (1) I (1) = (L.h)
(f1)?022(de(X),Zz0 1), (i,1) = (2,V)

Substituting from Equation2(@) and @2) into Formula 23) we get

(Xa(01(Y1,21)))" = g7" (Eb(lYl’Zlonl)+g (EklZl,Yloﬂl)
(M2 (X2(92(Y2.Z2)))" = (f7)? {92 (Y2, Z20 1) + G2 (G Za, Yo 0 nz)},

Hence, the pair of affine connectionsand] are conjugate with respect ¢p.

i
Proposition 6. Let (gi, [, J) be a dualistic structure on Mi = 1,2). Then there exists a dualistic structure on MM,
with respect tdjs, 1,.

Proof. Let 0 and[0* be the connections dv; x M, given by

1 v
DY = (G Yo+ % (grad )" — c2£¥(Xy (In f1)Yz(In f1))N(grad f,)",

2 (X2,Y2)
Oy Yy = (D, Y2)¥ — %(grad )P,

D*hvh—@z )" %(gradm —fY(Xa(In f1)Ya(In f1))"(grad f)",

* 5 Y. fh (X2,Y2)
Ty = (G, >V——w;j’§cf52§ (grad )",
. Y (f2)V%a (F1) h
Oy ¥y = D ¥y = %(grad )"+ (Xa(In£,))"Yy,

Oy X[ = DRy XJ' = Oy Y3

(24)

1 1 * .
foranyX;,Y; € I (TM)) (i = 1,2) and whereH "t andH* " are the Hessian df, with respect tdJandrespectively.

Let us assume thagi,lELIm is a dualistic structure o, i = 1,2. LetA be a tensor field of typé0,3) defined for any
X.,Y,Z €l (TMy x My) by

A(X’Yv Z) = X(gflfz(YaZ)) - gflfz(DXYaZ) - gflfz(Y7 D;Z),
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Sincedrg_i(X!) = 0, it follows that
XiI (félfl) = d7T3,i(X1-I)(f3,i) =0, V(Ial)a (Jv‘]) € {(Ivh)v (2,V)},
and hence, for alk, Y,z € ' (TM;) (i = 1,2), we have

XD (61,1, (Y, ZD)) = (X(91(Y2,Z0)))" + (e £)2 {Ya(F1)Xa(Za(F1)) + Za(F)Xa (Ya(F2))}",
X3 (Gr0,(Y3,29)) = () (Xa(92(Y2,22)))".

as(gi, IIZL IDj is a dualistic structure and from Equatio2€), (24), then it's easily seen that the following equation holds

A(XII aYiI azil )

0, V(,l),(j,J) e{(i,h),(2,v)}.

In the different lifts(i # ), we have
X! (@, (%.2) =0,

Gryry (Oxn Y1, Z3) = —C2 13X (f1)"1(12)"Z2(12)",
gflfz (DXEIYZV’ Z?) =- f{]gz(XZYZ)VZl( fl)hv

and
{ G, (Y1, D;yz\zl) = X (f1)"a(f1)"Zo(F2)",

Gryr, (2, Oy ZD) = 192(Xe, Y2) Zu(f1)",

We add these equations and obtain
A(XiIaYilvz\jJ):Ov V(i,|),(j,\])E{(i,h),(Z,V)}.
Hence the same applies (X}, ¥, Z!) = A(X!,Y}’,Z!) = 0. This proves thaffl" is conjugate tdJ with respect tay .

1 2
We recall that the connectidiion M, x M, induced bydandO onM, andM, respectively, is given by Equatiof4).

1 2
Proposition 7. (M,,[,g1) and (M,,[],gz) are statistical manifolds if and only ifM, x M,,g; . ,0) is a statistical

manifold.

Proof. Let us assume thaM. ,IELgi) (i=1,2) is a statistical manifold. Firstly, we show thatis torsion-free. Indeed; by
Equation R4), we have for anyX,Y € I (T My x M)

Ui U
dr(T(X,Y)) = Rd7(Y) — Bdm(X) —dr(X,Y])
Since fori = 1,2, iDis torsion-free, then
Ui g
Rdm(Y) — ¥drm(X) = dr([X,Y])
Therefore, from RemarR.2, the connectiof is torsion-free.
Secondly, we show thaiGy, t, is symmetric. In fact; fo(i,I) € {(i,h),(2,v)},

(0d,,,) (4 Y20 =X (G, (. Z) = Gy, (D% Z) = G, (W, D Z)
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by EquationsZ20), (24) and since(l[gi), i =1,2, is symmetric, we have

(Dgflfz)(xil 7Yi| 7Zil) - (Dgflfz)(Yil axil 7Zi| )

In the different lifts, for all(i, 1), (j,J) € {(i,h),(2,v)}, we have

(Dgflfz)(xil aYiI aZ:"‘]:fi) = (Dg )(XS |7YI Z )= (DGflfz)(Xil 7Y3invzi|) =0.

Therefore (0§, . ) is symmetric. ThugM, x M,.§, . .0) is a statistical manifold.

Conversely, if(M, x M,,§; ,,,0) is a statistical manifold, the(ilg, . ) is symmetric and is torsion-free, particularly,
whenX;,Y;,Z € I (TM;), we have

(06,,,,) (¢ 4.2 = (0§, ., ) (% X.Z), Vi=1,2,
T}, Y)=0.

Then, by Equation20) and @4), we obtain, fori = 1,2, '[gi, is symmetric andll is torsion-free. ThereforeﬁMi,lELgi),
i = 1,2, is statistical manifold.

1 2
At first, note thatM; x Mz,gflfz,lj) is the statistical manifold induced froWi1, g1, 0) and(Mz, gz, 0).

1 2 1 2
Now Iet( 1,301) and(M,, 0 g2) be two statistical manifolds and l&, % andZ be the curvature tensors with respect
to D Dandl:l respectively.

Proposition 8. Let (M., D D@i ), (i=1,2) be a connected statistical manifold. Assume that the gradie f; is parallel
with respect tdljandlﬂ*(i =1,2). Thenforany XYi,Zi € ' (TM) (i = 1,2) we have

(1) 202 (" (%, Y0)Z0)",

(2) 2%, Y2")Zo'= (% (Xo,Y2)Z2)" — ﬁzv)zbl {(X2 g, Yz)Zz}v+
() 2(X"Y."Z,'=0,

(4) %(th,Yz )Z4 ho 02X1(|n f1)12Z3(In f1)™o( )" (grad )",

1+(cfY)2by
where the wedge produXs Ag, Y2)Zo = g2(Y2,22) X2 — 02(X2, Z2)Ya.

2y

oo (e Y2)%2) (f2)}" (grad f)",

Proof. After long and straightforward calculations, as in proopodposal (2), and where it uses the fact that connections
are compatible with the metric, we obtain the same resuits (@3, knowing we use only the connections are symmetrical.

Corollary 2. Let (Mi,DEjgi ), (i=1,2) be a connected statistical manifold. Assume thais fa non-constant positive
function and ¢#£ 0.

%

« ) 11, X 2 2 .
If (0,0 ,Qflfz) is a dually flat structure theqJ O0g; ) is also dually flat and((J g, ) has a constant sectional

curvature.

Proof.Let (O, D*,Qflfz) be a dually flat structure. By Propositi@nfor anyXi,Y1,Z1 € I (TM,), we have
1
H(X1,Y1)Z1 =0,
1
From EquationT), Since(M,,0 1) (i = 1,2) is a statistical manifold, we have

1
Z (X1,Y1)Z1 = 0.
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11, ..
Hence(M,,00g;) is dually flat. By 4. of Propositio8, for anyX;,Z; € ' (TM,) andY € ' (TM,) , we have

C2X1(|n fl)hzl(ln f]_)hYz( fz)v
1+ (cfY)2by

(gradf;)V=0

So f;, is a constant function sinch is a non-constant function ari, is assumed to be connected. Moreover, by 2. of
PropositiorB, for anyX»,Y>,Z> € ' (TM, ), we have

2 by

\%
H(X2,Y2)Z5 = T+ (cfY)%b; {Xery 222},

2 2 * .
Sinceb; and f, are constants, it follows from the previous equality tfi@t(]g, ) has a constant sectional curvature
by
T+(ct)2by -
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