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ABSTRACT

In this paper, we characterize and classify helix surfaces with principal direction relatived to a
space-like and light-like, constant direction in the Minkowski 3-space.
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1. Introduction

It is well known that, a helix is a curve whose tangent lines make a constant angle with a fixed vector.
After the question ‘Are there any surface making a constant angle with some fixed vector direction?’ was
introduced in [5], the concept of constant angle surfaces, also called as helix surfaces, have been studied by
some geometers. Specially, if one can take the position vector of the surface instead of the fixed vector, in that
case, the surface is called as constant slope surface studied in [10, 11, 15].

The applications of constant angle surfaces in the theory of liquid crystals and layered fluids were firstly
considered in [1], where the study of surfaces about the Hamilton-Jacobi equation, correlating the surface and
the direction field, were used. Further, Munteanu and Nistor gave another approach to concern surfaces in
Euclidean spaces for which the unit normal makes a constant angle with a fixed direction in [16]. Moreover,
the study of constant angle surfaces was extended to the product spaces S2 ×R and H2 ×R, [5] and [6],
respectively. When the ambient space is the Minkowski space E3

1, some classification results on such surfaces
were obtained in [9, 13, 14]. Further results on higher dimensional Euclidean space were given in [3], where a
local construction of constant angle hypersurfaces are given. We want to note that some geometers call constant
angle hypersurfaces as helix hypersurfaces (See, for example, [3]).

One of common geometrical properties of constant angle surfaces is the following. If we denote the projection
of the fixed direction k on the tangent plane of the surface by UT , then UT is a principal direction of the
surface with the corresponding principal curvature 0. On the other hand, one another recent natural problem
appearing in the context of constant angle surfaces is to study those surfaces for which UT remains a principal
direction but the corresponding principal curvature is different from zero. This problem was studied in S2 ×R
[4] and H2 ×R [7]. Further, this problem has been recently studied in Euclidean spaces and semi-Euclidean
spaces, (see in [8, 9, 12, 17, 18]) where T is replaced by a constant direction k.

In the present paper, we would like to move the study of constant angle hypersurfaces in Minkowski 3-space
obtained in [13, 14] in which they obtained partial classification of these surfaces. This paper is organized as
follows. In Sect. 2, we introduce the notation that we will use and give a brief summary of basic definitions
in theory of submanifolds of semi-Euclidean spaces. In Sect. 3, we obtain some new characterizations and
classifications of helix surfaces with a principal direction relative to a space-like and light-like, constant
direction in the Minkowski 3-space.
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2. Helix Hypersurfaces in Minkowski spaces

In this section, we would like to give some basic equations and facts on hypersurfaces in Minkowski spaces,
before we consider on some geometrical properties of hypersurfaces in Minkowski 3-spaces, E3

1 endowed with
a canonical principal direction.

2.1. Basic facts and definitions

First, we would like to give a brief summary of basic definitions, facts and equations in the theory of
submanifolds of pseudo-Euclidean space (see for detail, [2, 19]).

Let Em
1 denote the Minkowski m-space with the canonical Lorentzian metric tensor given by

g̃ = 〈·, ·〉 =

m−1∑
i=1

dx2i − dx2m,

where x1, x2, . . . , xm are rectangular coordinates of the points of Em
1 . We denote the Levi-Civita connection of

Em
1 by ∇̃.
The causality of a vector in a Minkowski space is defined as following. A non-zero vector v in Em

1 is said to
be space-like, time-like and light-like (null) regarding to 〈v, v〉 > 0 , 〈v, v〉 < 0 and 〈v, v〉 = 0, respectively. Note
that v is said to be causal if it is not space-like.

Now, let M be an oriented hypersurface in En+1
1 by considering the case m = n+ 1. We denote by N and ∇,

the unit normal vector field and Levi-Civita connection of M , respectively. Note that Gauss and Weingarten
formulas are given by

∇̃XY =∇XY + h (X,Y ) ,

∇̃XN =− S(X),

respectively, whenever X,Y are tangent to M , where h and S are the second fundamental form and the shape
operator (or Weingarten map) ofM . The surfaceM is said to be space-like (resp. time-like) if the induced metric
g = g̃|M of M is Riemannian (resp. Lorentzian). This is equivalent to being time-like (resp. space-like) of N at
each point of M .

The Codazzi equation is given by
(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z) (2.1)

for any vector fields X,Y, Z tangent to M , where ∇̄h is defined by

(∇̄Xh)(Y, Z) = ∇⊥Xh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ).

IfM is space-like, then its shape operator S is diagonalizable, i.e., there exists a local orthonormal frame field
{e1, e2} of the tangent bundle of M such that Sei = kiei, i = 1, 2, . . . , n. In this case, the vector field ei and the
smooth function ki are called as a principal direction and a principal curvature of M , respectively.

Now, let M be a surface in the Minkowski 3-space. Then, its mean curvature and Gaussian curvature are
defined by H = traceS and K = detS, respectively. M is said to be flat if K vanishes identically. On the
other hand, if H = 0 and the surface M is space-like, then it is called maximal while a time-like surface with
identically vanishing mean curvature is said to be a minimal surface.

Before we proceed to the next subsection, we would like to notice the notion of angle in the Minkowski
3-space (see for example, [8, 11]):

Definition 2.1. Let v and w be space-like vectors in E3
1 that span a space-like vector subspace. Then, we have

|〈v, w〉| ≤ ‖v‖ ‖w‖ and hence, there is a unique real number θ ∈ [0, π/2] such that

|〈v, w〉| = ‖v‖ ‖w‖ cos θ.

The real number θ is called the Lorentzian space-like angle between v and w.

Definition 2.2. Let v and w be space-like vectors in E3
1 that span a time-like vector subspace. Then, we have

|〈v, w〉| > ‖v‖ ‖w‖ and hence, there is a unique positive real number θ such that

|〈v, w〉| = ‖v‖ ‖w‖ cosh θ.

The real number θ is called the Lorentzian time-like angle between v and w.
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2.2. A characterization of helix surfaces

First, we would like to recall the following definition (see for example, [9, 13, 14, 16]).

Definition 2.3. Let M be a non-degenerated hypersurface in En+1
1 and ζ a vector field in En+1

1 . M is said to
be a helix hypersurface relative to ζ if its tangential component is a principal direction corresponding with
principal curvature being zero. In particular if ζ = k for a fixed direction k in En+1

t , we will say that M is a
helix-hypersurface.

As we mentioned before, a surface M in E3 was said to be a constant angle surface (or helix surface), if its
unit normal vector field makes a constant angle with a fixed vector, [16] (see also [5, 6, 9]). Later, in [9, 13, 14],
this definition is extended to surfaces in Minkowski spaces with obvious restrictions on the causality of the
fixed vector and the normal vector because of the definition of ‘angle’ in the Minkowski space (see, Definition
2.1,Definition 2.2).

Remark 2.1. In fact, the shape operator of any helix hypersurface is singular (see [3]).

Remark 2.2. In fact, if the ambient space is pseudo-Euclidean, then a constant angle surface is a surface with a
principal direction corresponding principal curvature k1 = 0 (see [13, 14, 16]).

Note that Remark 2.2 can be consider as a result of Remark 2.1.
Let M be a hypersurface and k be a fixed direction in a Minkowski space En+1

1 . The fixed vector k can be
expressed as

k = U + 〈N,N〉 〈k,N〉N (2.2)

for a tangent vector U . We would like to give the following new characterization of helix hypersurfaces.

Proposition 2.1. Let M be an oriented hypersurface in the Minkowski space En+1
1 and k be a fixed vector on the tangent

plane to the surface. Consider a unit tangent vector field e1 along U . Then, M is a helix hypersurface if and only if a curve
α is a geodesic of M whenever it is an integral curve of e1.

Proof. We will consider three cases seperately subject to causality of U .
Case I. Let e1 be time-like. Thus, we have

k = −〈k, e1〉e1 + 〈k,N〉N.

Since ∇̃e1k = 0, this equation yields

0 = −〈k, e1〉 ∇̃e1e1 − 〈k, Se1〉N − 〈k,N〉Se1.

The tangential part of this equation yields Se1 = 0 if and only if∇e1e1 = 0 which is equivalent to being geodesic
of all integral curves of e1.

Case II. Let e1 be space-like. Thus, we have

k = 〈k, e1〉e1 + ε〈k,N〉N, (2.3)

where ε is either 1 or -1 regarding to being time-like or space-like of M , respectively.
Similar to Case I, we obtain Se1 = 0 if and only if ∇e1e1 = 0.
Case III. Let e1 be light-like. In this case, k can be decompose as

k = φ(e1 −N), (2.4)

for a non-constant function φ.
Similar to the other case, we obtain Se1 = 0 if and only if ∇e1e1 = 0.

3. New classifications of Helix Surfaces in E3
1

In this section, we want to give a new classification of helix surfaces in E3
1. We would like to note that the

complete classification of constant angle surfaces which relative to a time-like constant direction k = (0, 0, 1)
was obtained in [14].
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3.1. Helix surfaces relative to a space-like, constant direction.

In this subsection, we consider space-like helix surfaces which relative to a space-like, constant direction k.
In this case, up to a linear isometry of E3

1, we may assume that k = (1, 0, 0).
First, we will assume that M is a space-like surface which relative to k = (1, 0, 0). In this case, N is time-like

and (2.2) becomes
k = cosh θe1 + sinh θN (3.1)

where θ is a smooth function. Let e2 be a unit tangent vector field satisfying 〈e1, e2〉 = 0. Considering (3.1), we
obtain the following lemma by a simple computation.

Lemma 3.1. The Levi-Civita connection ∇ of M is given by

∇e1e1 = ∇e1e2 = 0, (3.2a)
∇e2e1 = tanh θk2e2, ∇e2e2 = − tanh θk2e1, (3.2b)

and the matrix representation shape operator S of M with respect to {e1, e2} is

S =

(
0 0
0 k2

)
(3.3)

for a function k2 satisfying

e1(k2) + tanh θk2
2 = 0. (3.4)

Proof. By considering (3.1), one can get

0 = X(cosh θ)e1 + cosh θ∇Xe1 + cosh θh(e1, X)− sinh θSX +X(sinh θ)N (3.5)

whenever X is tangent to M . (3.5) for X = e1 gives

∇e1e1 = 0, ∇e1e2 = 0,

e1(θ) = k1 = 0, (3.6)

while (3.5) for X = e2 is giving

∇e2e1 = tanh θk2e2, ∇e2e2 = − tanh θk2e1,

where e2 is the other principal direction of M with the corresponding principal curvature k2. Thus, we have
(3.2), (3.3) and so the second fundamental form of M becomes

h(e1, e1) = 0, h(e1, e2) = 0, h(e2, e2) = −k2N. (3.7)

By considering the Codazzi equation, we obtain (3.4).

Now, we would like to prove the following lemma.

Lemma 3.2. There exists a local coordinate system (s, t) defined in a neighborhood Np of p such that the induced metric
of M is

g = ds2 +m2dt2 (3.8)

for a function m satisfying
e1(m)− tanh θk2m = 0. (3.9)

Furthermore, the vector fields e1, e2 described as above become e1 = ∂s, e2 =
1

m
∂t in Np.

Proof. Because of (3.2), we have [e1, e2] = − tanh θk2e2. Thus, if m is a non-vanishing smooth function on M
satisfying (3.9), then we have [e1,me2] = 0. Therefore, there exists a local coordinate system (s, t) such that

e1 = ∂s and e2 =
1

m
∂t. Thus, the induced metric of M is as given in (3.8).

Now, we are ready to obtain the classification theorem.

www.iejgeo.com 64

http://www.iej.geo.com


A. Kelleci, N. C. Turgay and M. Ergüt

Theorem 3.1. LetM be an oriented space-like surface in E3
1. Then,M is a helix surface endowed with a principal direction

relative to a space-like constant direction if and only if it is congruent to the surface given by one of the followings:

(i) A surface is an open part of the plane which is parallel to Oyz−plane.
(ii A flat surface is given by

x(s, t) = s cosh θ
(

1, 0, 0
)

+ s sinh θ
(

0, sinh t, cosh t
)

+ γ(t) (3.10a)

where γ is the E3
1-valued function given by

γ(t) = sinh θ

(
0,

∫ t

φ(τ) cosh τdτ,

∫ t

φ(τ) sinh τdτ

)
. (3.10b)

for a function φ ∈ C∞(M) and the angle θ is a non-zero constant;
(iii) A surface can be parametrized by

x(s, t) = s cosh θ
(

1, 0, 0
)

+ s sinh θ
(

0, sinh t0, cosh t0

)
+ γ0(t) (3.11)

where γ0(t) = t sinh θ (0, cosh t0, sinh t0) and t0 is a non-zero real constant.

Proof. Let M be a space-like helix surface relatived to a space-like fixed direction k. If the angle θ is vanishing
identically, then k is always normal to M . This gives Item (i).
Now, we would like to consider the angle θ being non-zero constant. In order to proof the necessary condition,
we assume that M is a space-like helix surface endowed with a principal direction relative to k = (1, 0, 0) with
the isometric immersion x : M → E3

1. Let {e1, e2;N} be the local orthonormal frame field described before
Lemma 3.1, k1, k2 be the principal curvatures of M and (s, t) be a local coordinate system given in Lemma
3.2.

Considering Lemma 3.2, we have
e1 = xs. (3.12)

Note that (3.4) and (3.9) become

(k2)s + k2
2 tanh θ = 0, (3.13)

ms −m tanh θk2 = 0, (3.14)

respectively. By combining (3.13) and (3.14), one could directly obtain the function m as given

m(s, t) = Ψ(t)
(

sinh θs+ φ(t)
)
, (3.15a)

or
m(s, t) = m(t), (3.15b)

for some smooth functions Ψ, φ depending only the parameter t.
Case 1. m satisfies (3.15a). In this case, the Levi-Civita connections of M given in (3.2) become

∇∂s
∂s = 0, ∇∂s

∂t =
ms

m
∂t,

∇∂t
∂t = −mms∂s +

mt

m
∂t.

By combining these equations with (3.7) and considering in Gauss formula, we obtain

xss = 0, (3.16)

xst =
1

s+ φ(t)
xt, (3.17)

xtt = −tanh2 θΨ2(t)
( 1

s+ φ(t)

)
xs +

(Ψ′(t)

Ψ(t)
+

φ′(t)

s+ φ(t)

)
xt − tanh θΨ2(t)(s+ φ(t))N. (3.18)

On the other hand, from the decomposition (3.1), we have 〈xs, k〉 = cosh θ and 〈xt, k〉 = 0. By considering these
equations, we can assume that x has the form of

x(s, t) = (scosh θ, x2(s, t), x3(s, t)) + γ(t) (3.19)
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for a E3
1-valued smooth function γ = (0, γ2, γ3). On the other hand, by considering 〈xs, xs〉 = 1 in (3.19), we

obtain

x(s, t) =scosh θ
(

1, 0, 0
)

+ ssinh θ
(

0, sinhϕ(t), coshϕ(t)
)

+ γ(t) (3.20)

for a smooth function ϕ = ϕ(t). Note that (3.20) implies

xs = cosh θ
(

1, 0, 0
)

+ sinh θ
(

0, sinhϕ(t), coshϕ(t)
)
,

xt = sϕ′(t) sinh θ
(

0, coshϕ(t), sinhϕ(t)
)

+
(

0, γ′2(t), γ′3(t)
)
. (3.21)

Because of 〈xs, xt〉 = 0, we have

(0, γ′2, γ
′
3) = h(t)(0, coshϕ(t), sinhϕ(t)) (3.22)

for a smooth function h = h(t). Therefore, (3.21) turns into

xt =
(
sϕ′(t) sinh θ + h(t)

)(
0, coshϕ(t), sinhϕ(t)

)
.

By combining this equation with 〈xt, xt〉 = m2 and using (3.15a), we obtain ϕ′(t) = Ψ(t) and h(t) = Ψ(t)φ(t). So
these equations consider in (3.22), we get (3.10b) with an appropriate choice of the parameter t. Thus, we have
the Item (ii) of the theorem.

Case 2. m is given as (3.15b). Here, we can take m(s, t) = 1 by re-defining t properly. In this case, the induced
metric of M becomes g = ds2 + dt2 , the Levi Civita connection of M satisfies

∇∂s
∂s = 0, ∇∂s

∂t = 0, ∇∂t
∂t = 0 (3.23)

and (3.3) becomes S = 0. A straightforward computation yields that M is congruent to the surface given in
(3.11). Hence, the proof for the necessary condition is obtained.

The proof of sufficient condition follows from a direct computation.

Example 3.1. We take different choices of the function φ(t) in (3.10b).

1. Let φ(t) = 1. Then the parametrization of surface is

x(s, t) = s cosh θ
(

1, 0, 0
)

+ sinh θ
(

0, sinh t(s+ 1), cosh t(s+ 1)
)
. (3.24)

2. Let φ(t) =
1

cosh t
. Then the parametrization of surface is

x(s, t) = s cosh θ
(

1, 0, 0
)

+ s sinh θ
(

0, sinh t, cosh t
)

+ sinh θ (0, t, ln(cosh t)) . (3.25)

3. Let φ(t) =
1

sinh t
. Then the parametrization of surface is

x(s, t) = s cosh θ
(

1, 0, 0
)

+ s sinh θ
(

0, sinh t, cosh t
)

+ sinh θ (0, ln(sinh t), t) . (3.26)

Figure 1. Surfaces given by (3.24)-(3.26) (All pictures are realized by using Mathematica. ).
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3.2. Helix surfaces relative to a light-like, constant direction.

In this subsection we will consider helix hypersurfaces with the fixed vector k = (1, 0, 1) which is light-like.

Theorem 3.2. Let M be an oriented surface in E3
1 with diagonalizable shape operator. Then, M is a helix hypersurface

with a principal direction relative to a light-like, constant direction if and only if it is congruent to the surface given by

x(s, t) =s
( c

2
(1− ε− εt2) +

ε

c
, t,

c

2
(1− ε− εt2)

)
+

∫ t

0

a(τ) (−cετ, 1,−cετ) dτ (3.27)

where a is a smooth function depending on t, c is a constant and ε ∈ {−1, 1}. Moreover, the tangential vector field

e1 =
(1, 0, 1)T

‖(1, 0, 1)T ‖
is a principal direction of the surfaces given by (3.27).

Proof. Let N be the unit normal vector field of M associated with its orientation and x : M → E3
1 an isometric

immersion. In order to prove necessary condition, assume that M is a helix surface with a principal direction
relative to a light-like, constant direction k. Up to isometries of E3

1, we may assume k = (1, 0, 1). We put
ε = −〈N,N〉 and

e1 =
(1, 0, 1)T

‖(1, 0, 1)T ‖
.

Then, we have
(1, 0, 1) = ε(e1 −N). (3.28)

Note that we have 〈e1, e1〉 = ε.
Because of the assumption, e1 is a principal direction of M with corresponding principal curvature k1. By a

simple computation considering (3.28) we obtain

0 = ε∇Xe1 + εh(e1, X) + εSX, (3.29)

whenever X is tangent to M . Note that (3.29) for X = e1 gives

∇e1e1 = 0, (3.30a)
∇e1e2 = 0, (3.30b)

while (3.29) for X = e2 is giving

∇e2e1 = −k2e2, (3.30c)
∇e2e2 = εk2e1, (3.30d)

where e2 is the other principal direction of M with corresponding principal curvature k2 and 〈e2, e2〉 = 1. In
addition, the second fundamental form of M becomes

h(e1, e1) = 0, h(e1, e2) = 0, h(e2, e2) = −εk2N. (3.31)

Therefore, the Codazzi equation gives

e1(k2) = k22 and e2(k1) = 0. (3.32)

Let p ∈M . First, we would like to prove the following claim.
Claim 1. There exists a neighborhood Np of p on which the induced metric of M becomes

g = εds2 + b2(t)(a(t) + s)2dt2 (3.33)

for some smooth functions depending only on t a, b such that e1 = ∂s, e2 =
1

b(t)(a(t) + s)
∂t.

Proof of Claim 1. Note that we have [e1, e2] = k2e2 because of (3.30b) and (3.30c). Therefore, if G is a non-
vanishing smooth function on M , then we have [e1, Ge2] = 0 such that

e1(G) = −k2G. (3.34)
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Therefore, there exists a local coordinate system (s, t) such that e1 = ∂s and e2 =
1

G
∂t. Thus, the induced metric

of M is
g = εds2 +G2dt2. (3.35)

Thus, the first equation in (3.32) and (3.34) become

(k2)s = k22 (3.36)

and
Gs = −k2G (3.37)

respectively. Now, getting derivative of (3.37) and considering (3.36) implies

G(s, t) = b(t)(s+ a(t)). (3.38)

for some smooth functions a, b. Therefore, (3.35) becomes (3.33).
Hence, the proof of the Claim 1 is completed. �
Now, let s, t be local coordinates described in the Claim 1. Note that we have

e1 = xs. (3.39)

Moreover, (3.30), (3.31) and (3.33) yield

xss = 0, (3.40a)

xst =
1

s+ a(t)
xt. (3.40b)

Considering the decomposition (3.28), we have 〈xs, k〉 = ε and 〈xt, k〉 = 0. Thus, we can assume that x has the
form given by

x(s, t) =
(
x3(s, t) +

ε

c
s, x2(s, t), x3(s, t)

)
. (3.41)

On the other hand, by considering (3.40a) in the last form yields

x(s, t) = s
(
β1(t) +

ε

c
, β2(t), β1(t)

)
+ γ(t) (3.42)

for some smooth functions β1, β2 and a E3
1-valued smooth function γ(t) = (γ1(t), γ2(t), γ1(t)). Now, by

considering 〈xs, xs〉 = ε in (3.42), we obtain

x(s, t) = s
( c

2
− εc

2
− εc

2
β2
2(t) +

ε

2
, β2(t),

c

2
− εc

2
− εc

2
β2
2(t)

)
+ γ(t) (3.43)

We may assume β2(t) = t without loss of generality, so (3.43) becomes

x(s, t) = s
( c

2
(1− ε− εt2) +

ε

c
, t,

c

2
(1− ε− εt2)

)
+ γ(t) (3.44)

Since (3.40b), we get directly the function γ as

γ(t) =

∫ t

0

a(τ) (−cετ, 1,−cετ) dτ. (3.45)

Considering the obtained function γ in (3.45), we obtain (3.27). Hence, the proof of Theorem 3.2 for the
necessary condition is obtained. The proof of sufficient condition follows from a direct computation.

Example 3.2. We take different choices of the function a(t) in (3.27).

1. Let a(t) = sin t. Then the parametrization of surface is

x(s, t) =
(
st2 − s

2
+ 2 sin t− 2t cos t, st+ 1 + cos t, st2 + 2 sin t− 2t cos t) (3.46)
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2. Let a(t) = ln t. Then the parametrization of surface is

x(s, t) =
(
st2 − s

2
+ t2 ln t− t2

2
, st+ t ln t− t, st2 + t2 ln t− t2

2
) (3.47)

Figure 2. Surfaces given by (3.46),(3.47) (All pictures are realized by using Mathematica. ).
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