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ABSTRACT

This paper consists of two main sections. In the first part, we find the integrability conditions by
calculating Nijenhuis tensors of the horizontal lifts of F (2K + S, S)−structure Satisfying F 2K+S +
FS = 0. Later, we get the results of Tachibana operators applied to vector and covector fields
according to the horizontal lifts of F (2K + S, S)−structure in cotangent bundle T ∗(Mn). Finally,
we have studied the purity conditions of Sasakian metric with respect to the horizontal lifts of the
structure. In the second part, all results obtained in the first section were obtained according to the
complete and horizontal lifts of F (2K + S, S)−structure in tangent bundle T (Mn).
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1. Introduction

The investigation for the integrability of tensorial structures on manifolds and extension to the tangent
or cotangent bundle, whereas the defining tensor field satisfies a polynomial identity has been an actively
discussed research topic in the last 50 years, initiated by the fundamental works of Kentaro Yano and his
collaborators, see for example [26]. There are a lot of structures on n−dimensional differentiable manifold Mn.
Firstly, Ishıhara and Yano [12] have obtained the integrability conditions of a structure F satisfying F 3 + F = 0.
Gouli-Andreou [3] has studied the integrabilty conditions of a structure F satisfying F 5 + F = 0. Later, R.
Nivas and C.S. Prasad [16] studied on the form Fa(5, 1)−structure. Also Fλ(7, 1)−structure extended in Mn to
T ∗(Mn) by L. S. Das, R. Nivas and V. N. Pathak [14]. In 1989, V. C. Gupta [11] studied on more generalized
form F (K, 1)−structure satisfying FK + F = 0, where K is a positive integer > 2. Later, L. Das studied on
the structure f(2K + 4; 2) and the structure satisfying FK+1 − a2FK−1 = 0 [9, 10]. In addition, manifolds with
F (2K + S, S)−structure satisfying F 2K+S + FS = 0, (F 6= 0, fixed integer K 1 1, fixed odd integer S 1 1) have
been defined and studied by A. Singh [21] and the complete and horizontal lifts of F (2K + S, S)−structure
extended in Mn to tangent bundle by A. Singh, R. K. Pandey and S. Khare [22].

This paper consists of two main sections. In the first part, we find integrability conditions by calculating
Nijenhuis tensors of the horizontal lifts of F (2K + S, S) −structure satisfying F 2K+S + FS = 0, (F 6= 0, fixed
integer K 1 1, fixed odd integer S 1 1). Later, we get the results of Tachibana operators applied to vector and
covector fields according to the horizontal lifts of F (2K + S, S)−structure in cotangent bundle T ∗(Mn). Finally,
we have studied the purity conditions of Sasakian metric with respect to the horizontal lifts of the structure. In
the second part, all results obtained in the first section were obtained according to the complete and horizontal
lifts of F (2K + S, S)−structure in tangent bundle T (Mn). Also the Riemannian manifolds and the tangent
bundles studyed a lot of authors [1, 2, 4, 15, 17, 18, 19, 23, 24] too.

Let Mn be a differentiable manifold of class C∞ and F be a non-null tensor field of type (1, 1) satisfying

F 2K+S + FS = 0, (1.1)
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where K is a fixed integer greater than or equal to 1 and S is a fixed odd integer greater than or equal to 1. F is
of constant rank r everywhere in Mn. We call such a structure an F (2K + S, S)−structure of rank 2r.

Let the operators l and m be defined as

l = −F 2K ,m = I + F 2K , (1.2)

where I denotes the identity operator on Mn.
The operators l and m defined by (1.2) satisfy the following:

l2 = l, m2 = m, l +m = I, (1.3)
lm = ml = 0,

F l = lF = F ,Fm = mF = 0,

where I being the identity operator.
Consequently, if there is a tensor field F 6= 0 satisfying (1.1), then there exist on Mn two complementary

distributions L and M . Corresponding to l and m respectively. Let the rank of F be constant and be equal
to r ewerywhere, then the dimensions of L and M are r and n− r, respectively. We call such a structure a
‘F (2K + S, S)−structure of rank 2r’ and the manifold Mn with this structure a F (2K + S, S)−manifold,where
dim Mn = n.

In the manifold Mn endowed with F 2K+S + FS = 0, (F 6= 0, fixed integer K 1 1, fixed odd integer S 1 1)
structure, the (1, 1) tensor field ψ given by ψ = l −m = −I − 2F 2K gives an almost product structure.

1.1. Horizontal Lift of the Structure Satisfying F 2K+S + FS = 0, (F 6= 0, fixed integer K 1 1, fixed odd integer
S 1 1) on Cotangent Bundle

Let F,G be two tensor field of type (1, 1) on the manifold Mn. If FH denotes the horizontal lift of F , we have
[14, 26]

FHGH +GHFH = (FG+GF )H . (1.4)

Taking F and G identical, we get
(FH)2 = (F 2)H ,

Continuing the above process of replacing G in equation (1.4) by some higher powers of F , we obtain

(FK)H = (FH)K (1.5)
(FS)H = (FH)S

(F 2K+S)H = (FH)2K+S

where F 6= 0, fixed integer K 1 1, fixed odd integer S 1 1. Also if G and H are tensors of the same type then

(G+H)H = GH +HH (1.6)

Taking horizontal lift on both sides of equation F 2K+S + FS = 0, we get

(F 2K+S)H + (FS)H = 0. (1.7)

In view of (1.5) and (1.6), we can write [14, 22]

(FH)2K+S + (FH)S = 0. (1.8)

Proposition 1.1. Let Mn be a Riemannian manifold with metric g, ∇ be the Levi-Civita connection and R be the
Riemannian curvature tensor. Then the Lie bracket of the cotangent bundle T ∗(Mn) of Mn satisfies the following

i) [ωV , θV ] = 0, (1.9)
ii)
[
XH , ωV

]
= (∇Xω)V ,

iii)
[
XH , Y H

]
= [X,Y ]

H
+ γR (X,Y ) = [X,Y ]

H
+ (pR (X,Y ))

V

for all X,Y ∈ =1
0 (Mn) and ω, θ ∈ =0

1 (Mn) . (See [26] p. 238, p. 277 for more details).
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2. Main Results

Definition 2.1. Let F be a tensor field of type (1, 1) admitting F 2K+S + FS = 0 structure in Mn. The Nijenhuis
tensor of a (1, 1) tensor field F of Mn is given by

NF = [FX,FY ]− F [X,FY ]− F [FX, Y ] + F 2 [X,Y ] (2.1)

for any X,Y ∈ =1
0(Mn) [5, 19, 20]. The condition of NF (X,Y ) = N(X,Y ) = 0 is essential to integrability

condition in these structures.
The Nijenhuis tensor NF is defined local coordinates by

Nk
ij∂k = (F si ∂

k
sF

k
j − F lj∂lF ki − ∂iF ljF kl + ∂jF

s
i F

k
s )∂k (2.2)

where X = ∂i, Y = ∂j , F ∈ =1
1(Mn).

2.1. The Nijenhuis Tensors of (F 2K+S)H on Cotangent Bundle T ∗(Mn)

Theorem 2.1. The Nijenhuis tensors of
(
F 2K+S

)H and FS denote by Ñ andN , respectively. Thus, taking account of the
definition of the Nijenhuis tensor, the formulas (1.9) stated in Proposition 1.1 and the structure (F 2K+S)H + (FS)H = 0,
we find the following results of computation.

i) Ñ(F 2K+S)H(F 2K+S)H
(
XH , Y H

)
= {[FSX,FSY ]− FS [FSX,Y ]− FS [X,FSY ]

+(FS)2[X,Y ]}H + γ{R(FSX,FSY )

−R(FSX,Y )FS −R(X,FSY )FS

+R(X,Y )(FS)2}.

ii) Ñ(F 2K+S)H(F 2K+S)H
(
XH , ωV

)
= {ω ◦ (∇FSXF

S)− (ω ◦ (∇XFS)FS}V ,

iii) Ñ(F 2K+S)H(F 2K+S)H
(
ωV , θV

)
= 0.

Proof. i)The Nijenhuis tensor Ñ(F 2K+S)H(F 2K+S)H (XH , Y H) of the horizontal lift (F 2K+S)H vanishes if FS is an
almost complex structure i.e., (FS)2 = −I and R(FSX,FSY ) = R(X,Y ).

Ñ(F 2K+S)H(F 2K+S)H (XH , Y H) = [(F 2K+S)HXH , (F 2K+S)HY H ]

−(F 2K+S)H [(F 2K+S)HXH , Y H ]

−(F 2K+S)H [XH , (F 2K+S)HY H ]

+(F 2K+S)H(F 2K+S)H [XH , Y H ]

= [(FS)HXH , (FS)HY H ]− (FS)H [(FS)HXH , Y H ]

−(FS)H [XH , (FS)HY H ] + ((FS)H)2[XH , Y H ]

= {[FSX,FSY ]− FS [FSX,Y ]− FS [X,FSY ]

+(FS)2[X,Y ]}H + γ{R(FSX,FSY )

−R(FSX,Y )FS −R(X,FSY )FS +R(X,Y )(FS)2}.

(F 2K+S)H is integrable if the curvature tensor R of ∇ satisfies R(FSX,FSY ) = R(X,Y ) and FS is an almost
complex structure, then we get R(FSX,Y ) = −R(X,FSY ). Hence using (FS)2 = −I , we find R(FSX,FSY )−
R(FSX,Y )F −R(X,FSY )F +R(X,Y )(FS)2 = 0. Therefore, it follows Ñ(F 2K+S)H(F 2K+S)H (XH , Y H) = 0.
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ii)The Nijenhuis tensor Ñ(F 2K+S)H(F 2K+S)H (XH , ωV ) of the horizontal lift (F 2K+S)H vanishes if ∇FS = 0.

Ñ(F 2K+S)H(F 2K+S)H (XH , ωV ) = [(F 2K+S)HXH , (F 2K+S)HωV ]

−(F 2K+S)H [(F 2K+S)HXH , ωV ]

−(F 2K+S)H [XH , (F 2K+S)HωV ]

+(F 2K+S)H(F 2K+S)H [XH , ωV ]

= [(FSX)H , (ω ◦ FS)V ]− (FS)H [(FSX)H , ωV ]

−(FS)H [XH , (ω ◦ FS)V ] + ((FS)H)2(∇Xω)V

= {ω ◦ (∇FSXF
S)− (ω ◦ (∇XFS)FS}V ,

We now suppose∇FS = 0, then we see Ñ(F 2K+S)H(F 2K+S)H
(
XH , ωV

)
= 0, where FS ∈ =1

1(Mn),X ∈ =1
0(Mn),

ω ∈ =0
1(Mn).

iii)The Nijenhuis tensor Ñ(F 2K+S)H(F 2K+S)H (ωV , θV ) of the horizontal lift (F 2K+S)H vanishes.
Because of [ωV , θV ] = 0 for ω ◦ FS , θ ◦ FS , ω, θ ∈ =0

1(Mn) on T ∗(Mn), the Nijenhuis tensor
Ñ(F 2K+S)H(F 2K+S)H (ωV , θV ) of the horizontal lift (F 2K+S)H vanishes.

2.2. Tachibana Operators Applied to Vector and Covector Fields According to Lifts of F 2K+S + FS = 0 Structure on
T ∗(Mn)

Definition 2.2. Let ϕ ∈ =1
1(Mn), and =(Mn) =

∑∞
r,s=0=rs(Mn) be a tensor algebra over R. A map φϕ |r+s〉0 :

∗
=(Mn)→ =(Mn) is called as Tachibana operatör or φϕoperator on Mn if

a) φϕ is linear with respect to constant coefficient,

b) φϕ :
∗
=(Mn)→ =rs+1(Mn) for all r and s,

c) φϕ(K
C
⊗ L) = (φϕK)⊗ L+K ⊗ φϕL for all K,L ∈

∗
=(Mn),

d) φϕXY = −(LY ϕ)X for all X,Y ∈ =1
0(Mn), where LY is the Lie derivation with respect to Y (see [6, 8, 13]),

e)

(φϕXη)Y = (d(ıY η))(ϕX)− (d(ıY (ηoϕ)))X + η((LY ϕ)X) (2.3)
= φX(ıY η)−X(ıϕY η) + η((LY ϕ)X)

for all η ∈ =0
1(Mn) and X,Y ∈ =1

0(Mn), where ıY η = η(Y ) = η
C
⊗ Y,

∗
=rs(Mn) the module of all pure tensor fields

of type (r, s) on Mn with respect to the affinor field,
C
⊗ is a tensor product with a contraction C [5, 7, 19] (see

[20] for applied to pure tensor field).

Remark 2.1. If r = s = 0, then from c), d) and e) of Definition2.2 we have φϕX(ıY η) = φX(ıY η)−X(ıϕY η) for
ıY η ∈ =0

0(Mn), which is not well-defined φϕ−operator. Different choices of Y and η leading to same function

f = ıY η do get the same values. ConsiderMn = R2 with standard coordinates x, y. Let ϕ =

(
0 1
1 0

)
. Consider

the function f = 1. This may be written in many different ways as ıY η. Indeed taking η = dx, we may choose
Y = ∂

∂x
or Y = ∂

∂x
+ x ∂

∂y
. Now the right-hand side of φϕX(ıY η) = φX(ıY η)−X(ıϕY η) is (φX)1− 0 = 0 in the

first case, and (φX)1−Xx = −Xx in the second case. For X = ∂
∂x
, the latter expression is −1 6= 0. Therefore,

we put r + s > 0 [19].

Remark 2.2. From d) of Definition2.2 we have

φϕXY = [ϕX, Y ]− ϕ[X,Y ]. (2.4)

By virtue of
[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X (2.5)

for any f, g ∈ =0
0(Mn), we see that φϕXY is linear in X , but not Y [19].

Theorem 2.2. Let (F 2K+S)H be a tensor field of type (1, 1) on T ∗(Mn). If the Tachibana operator φϕ applied to vector
fields according to horizontal lifts of F 2K+S + FS = 0 structure defined by (1.7) on T ∗(Mn), then we get the following
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results.

i) φ(F 2K+S)HXHY H = ((LY F
S)X)H + (pR(Y, FSX))V

−((pR(Y,X) ◦ FS)V ,

ii) φ(F 2K+S)HXHωV = ((∇Xω) ◦ FS)V − (∇(FSX)ω)V ,

iii) φ(F 2K+S)HωV XH = (ω ◦ (∇XFS))V ,

iv) φ(F 2K+S)HωV θV = 0,

where horizontal lifts XH , Y H ∈ =1
0(T ∗(Mn)) of X,Y ∈ =1

0(Mn) and the vertical lift ωV , θV ∈ =1
0(T ∗(Mn)) of

ω, θ ∈ =0
1(Mn) are given, respectively.

Proof. i)

φ(F 2K+S)HXHY H = −(LY H (F 2K+S)H)XH

= −LY H (F 2K+S)HXH + (F 2K+S)HLY HXH

= LY H (FS)HXH − (FS)H([Y,X]H + (pR(Y,X))V )

= ((LY F
S)X)H + (pR(Y, FSX))V − ((pR(Y,X)) ◦ FS)V

ii)

φ(F 2K+S)HXHωV = −(LωV (F 2K+S)H)XH

= −LωV (F 2K+S)HXH + (F 2K+S)HLωV XH

= LωV (FSX)H + (FS)H(∇Xω)V

= −(∇(FSX)ω)V + ((∇Xω) ◦ FS)V

= ((∇Xω) ◦ FS)V − (∇(FSX)ω)V

iii)

φ(F 2K+S)HωV XH = −(LXH (F 2K+S)H)ωV

= −LXH (F 2K+S)HωV + (F 2K+S)HLXHωV

= LXH (ω ◦ FS)V − (FS)H(∇Xω)V

= (∇X(ω ◦ FS))V − ((∇Xω) ◦ FS)V

= (ω ◦ (∇XFS))V

vi)

φ(F 2K+S)HωV θV = −(LθV (F 2K+S)H)ωV

= −LθV (F 2K+S)HωV + (F 2K+S)H(LθV ω
V )

= LθV (ω ◦ FS)V

= 0

2.3. The Purity Conditions of Sasakian Metric with Respect to (F 2K+S)H

Definition 2.3. A Sasakian metric Sg is defined on T ∗(Mn) by the three equations

Sg(ωV , θV ) = (g−1(ω, θ))V = g−1(ω, θ)oπ, (2.6)

Sg(ωV , Y H) = 0, (2.7)
Sg(XH , Y H) = (g(X,Y ))V = g(X,Y ) ◦ π. (2.8)
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For each x ∈Mn the scalar product g−1 = (gij) is defined on the cotangent space π−1(x) = T ∗x (Mn) by

g−1(ω, θ) = gijωiθj ,

where X,Y ∈ =1
0(Mn) and ω, θ ∈ =0

1(Mn). Since any tensor field of type (0, 2) on T ∗(Mn) is completely
determined by its action on vector fields of type XH and ωV (see [26], p.280), it follows that Sg is completely
determined by equations (2.6), (2.7) and (2.8).

Theorem 2.3. Let (T ∗(Mn),S g) be the cotangent bundle equipped with Sasakian metric Sg and a tensor field (F 2K+S)H

of type (1, 1) defined by (1.7). Sasakian metric Sg is pure with respect to (F 2K+S)H if FS = I (I = identity tensor field
of type (1, 1)).

Proof. We put
S(X̃, Ỹ ) =S g((F 2K+S)HX̃, Ỹ )−S g(X̃, (F 2K+S)H Ỹ ).

If S(X̃, Ỹ ) = 0, for all vector fields X̃ and Ỹ which are of the form ωV , θV or XH , Y H , then S = 0. By virtue
of F 2K+S + FS = 0 and (2.6), (2.7), (2.8), we get
i)

S(ωV , θV ) = Sg((F 2K+S)HωV , θV )−S g(ωV , (F 2K+S)HθV )

= Sg(−(FS)HωV , θV )−S g(ωV ,−(FS)HθV )

= −(Sg((ω ◦ FS)V , θV )−S g(ωV , (θ ◦ FS)V )).

ii)

S(XH , θV ) = Sg((F 2K+S)HXH , θV )−S g(XH , (F 2K+S)HθV )

= Sg(−(FS)HXH , θV )−S g(XH ,−(FS)HθV )

= −(Sg((FSX)H , θV )−S g(XH , (ω ◦ FS)V ))

= 0.

iii)

S(XH , Y H) = Sg((F 2K+S)HXH , Y H)−S g(XH , (F 2K+S)HY H)

= Sg(−(FS)HXH , Y H)−S g(XH ,−(FS)HY H)

= −(Sg((FSX)H , Y H)−S g(XH , (FSY )H)).

Thus, FS = I , then Sg is pure with respect to (F 2K+S)H .

2.4. Complete Lift of F (2K + S, S)−Structure on Tangent Bundle T (Mn)

Let Mn be an n−dimensional differentiable manifold of class C∞ and TP (Mn) the tangent space at a point p
of Mn and

T (Mn) = U
p∈Mn

TP (Mn) (2.9)

is the tangent bundle over the manifold Mn.
Let us denote by T rs (Mn), the set of all tensor fields of class C∞ and of type (r, s) in Mn and T (Mn) be the

tangent bundle over Mn. The complete lift of FC of an element of T 1
1 (Mn) with local components Fhi has

components of the form [25]

FC =

[
Fhi 0
δhi Fhi

]
. (2.10)

Now we obtain the following results on the complete lift of F satisfying F 2K+S + FS = 0, (F 6= 0, fixed
integer K 1 1, fixed odd integer S 1 1).

Let F,G ∈ T 1
1 (Mn). Then we have [25]

(FG)C = FCGC . (2.11)

Replacing G by F in (2.11) we obtain

(FF )C = FCFC or (F 2)C = (FC)2. (2.12)
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Now putting G = F 4 in (2.11) since G is (1, 1) tensor field therefore F 4 is also (1, 1) so we obtain (FF 4)C =
FC(F 4)C which in view of (2.12) becomes

(F 5)C = (FC)5.

Continuing the above process of replacing G in equation (2.11) by some higher powers of F , we obtain

(FK)C = (FC)K ,

where fixed integer K 1 1. Also if G and H are tensors of the same type then

(G+H)C = GC +HC (2.13)

Taking complete lift on both sides of equation F 2K+S + FS = 0, we get

(F 2K+S + FS)C = 0

Using (2.13) and IC = I , we get
(F 2K+S)C + (FS)C = 0 (2.14)

(FC)2K+S + (FC)S = 0.

Let F satisfying (1, 1) be an F−structure of rank r in Mn. Then the complete lifts lC = −(F 2K)C of l
and mC = I + (F 2K)C of m are complementary projection tensors in T (Mn). Thus there exist in T (Mn) two
complementary distributions LC and MC determined by lC and mC , respectively.

Proposition 2.1. The (1, 1) tensor field ψ̃ given by ψ̃ = lC −mC = −2(F 2K)C − I gives an almost product structure
on T (Mn).

Proof. For lC = −(F 2K)C ,mC = I + (F 2K)C and ψ̃ = lC −mC = −2(F 2K)C − I, we have

ψ̃2 = 4(F 4K)C + 4(F 2K)C + I

= 4(F 2K)C(F 2K)C + 4(F 2K)C + I

= 4(−IC)(F 2K)C + 4(F 2K)C + I

= I,

where ψ̃ ∈ =1
1(T (Mn)), I = identity tensor field of type (1, 1).

2.5. Horizontal Lift of F (2K + S, S)−Structure on Tangent Bundle T (Mn)

Let Fhi be the component of F at A in the coordinate neighbourhood U of Mn. Then the horizontal lift FH of
F is also a tensor field of type (1, 1) in T (Mn) whose components F̃AB in π−1(U) are given by

FH = FC − γ(∇F ) =

(
Fhi 0

−Γht F
t
i + ΓtiF

h
t Fhi

)
. (2.15)

Let F , G be two tensor fields of type (1, 1) on the manifold M . If FH denotes the horizontal lift of F , we have

(FG)H = FHGH . (2.16)

Taking F and G identical, we get
(FH)2 = (F 2)H . (2.17)

Multiplying both sides by FH and making use of the same (2.17) , we get

(FH)3 = (F 3)H

Thus it follows that
(FH)4 = (F 4)H , (FH)5 = (F 5)H (2.18)

and so on. Taking horizontal lift on both sides of equation F 2K+S + FS = 0 we get

(F 2K+S)H + (FS)H = 0 (2.19)

view of (2.18), we can write
(FH)2K+S + (FH)S = 0.
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2.6. The Structure (F 2K+S)C + (FS)C = 0 on Tangent Bundle T (Mn)

Definition 2.4. Let X and Y be any vector fields on a Riemannian manifold (Mn, g), we have [26][
XH , Y H

]
= [X,Y ]

H − (R (X,Y )u)
V
,[

XH , Y V
]

= (∇XY )
V
,[

XV , Y V
]

= 0,

where R is the Riemannian curvature tensor of g defined by

R (X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

In particular, we have the vertical spray uV and the horizontal spray uH on T (Mn) defined by

uV = ui (∂i)
V

= ui∂i, u
H = ui (∂i)

H
= uiδi,

where δi = ∂i − ujΓsji∂s. uV is also called the canonical or Liouville vector field on T (Mn).

Theorem 2.4. The Nijenhuis tensors

Ñ(F 2K+S)C(F 2K+S)C
(
XC , Y C

)
, Ñ(F 2K+S)C(F 2K+S)C

(
XC , Y V

)
, Ñ(F 2K+S)C(F 2K+S)C

(
XV , Y V

)
of the complete lift (F 2K+S)C vanishes if the Nijenhuis tensor of the FS is zero.

Proof. In consequence of Definition 2.1 and the formulations in Definition 2.4, the Nijenhuis tensors of(
F 2K+S

)C are given by
i)

Ñ(F 2K+S)C(F 2K+S)C
(
XC , Y C

)
= [

(
F 2K+S

)C
XC ,

(
F 2K+S

)C
Y C ]

−
(
F 2K+S

)C
[
(
F 2K+S

)C
XC , Y C ]

−
(
F 2K+S

)C
[XC ,

(
F 2K+S

)C
Y C ]

+
(
F 2K+S

)C (
F 2K+S

)C [
XC , Y C

]
= [

(
FSX

)C
,
(
FSY

)C
] + (FS)C [

(
FSX

)C
, Y C ]

−(FS)C [XC ,
(
FSY

)C
] + (FS)C(FS)C

[
XC , Y C

]
= NFS (X,Y )

C

ii)

Ñ(F 2K+S)C(F 2K+S)C
(
XC , Y V

)
= [

(
F 2K+S

)C
XC ,

(
F 2K+S

)C
Y V ]

−
(
F 2K+S

)C
[
(
F 2K+S

)C
XC , Y V ]

−
(
F 2K+S

)C
[XC ,

(
F 2K+S

)C
Y V ]

+
(
F 2K+S

)C (
F 2K+S

)C [
XC , Y V

]
= [

(
FSX

)C
,
(
FSY

)V
]− (FS)C [

(
FSX

)C
, Y V ]

−(FS)C [XC ,
(
FSY

)V
] + (

(
FS)2

)C
[X,Y ]

V

= NFS (X,Y )
V

iii) Because of
[
XV , Y V

]
= 0 and X,Y ∈M , easily we get

Ñ(F 2K+S)C(F 2K+S)C
(
XV , Y V

)
= 0.
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2.7. The Purity Conditions of Sasakian Metric with Respect to (F 2K+S)C on T (Mn)

Definition 2.5. The Sasaki metric Sg is a (positive definite) Riemannian metric on the tangent bundle T (Mn)
which is derived from the given Riemannian metric on Mn as follows [19]:

Sg
(
XH , Y H

)
= g (X,Y ) , (2.20)

Sg
(
XH , Y V

)
= Sg

(
XV , Y H

)
= 0,

Sg
(
XV , Y V

)
= g (X,Y )

for all X,Y ∈ =1
0 (Mn).

Theorem 2.5. The Sasaki metric Sg is pure with respect to
(
F 2K+S

)C if∇FS = 0 and FS = I , where I=ıdentity tensor
field of type (1, 1).

Proof. S(X̃, Ỹ ) =S g(
(
F 2K+S

)C
X̃, Ỹ )−S g(X̃,

(
F 2K+S

)C
Ỹ ) if S(X̃, Ỹ ) = 0 for all vector fields X̃ and Ỹ which

are of the form XV , Y V or XH , Y H then S = 0.
i)

S
(
XV , Y V

)
= Sg(

(
F 2K+S

)C
XV , Y V )−S g(XV ,

(
F 2K+S

)C
Y V )

= −Sg(
(
FSX

)V
, Y V ) +S g(XV ,

(
FSY

)V
)}

= −
(
g
(
FSX,Y

))V
+
(
g
(
X,FSY

))V
ii)

S
(
XV , Y H

)
= Sg(

(
F 2K+S

)C
XV , Y H)−S g(XV ,

(
F 2K+S

)C
Y H)

= Sg(XV ,
(
FSY

)H
+
(
∇γFS

)
Y H)

= Sg
(
XV ,

(
∇γFS

)
Y H
)

= Sg(XV ,
(((
∇FS

)
u
)
Y
)V

)

= (g
(
X,
((
∇FS

)
u
)
Y
)
)V

iii)

S
(
XH , Y H

)
= Sg(

(
F 2K+S

)C
XH , Y H)−S g(XH ,

(
F 2K+S

)C
Y H)

= − Sg((FS)CXH , Y H) +S g(XH , (FS)CY H)

= −Sg(
(
FSX

)H
+
(
∇γFS

)
XH , Y H)

+Sg(XH ,
(
FSY

)H
+
(
∇γFS

)
Y H)

= −g
((
FSX

)
, Y
)V

+ g
(
X,
(
FSY

))V

Theorem 2.6. Let φϕ be the Tachibana operator and the structure
(
F 2K+S

)C
+ (FS)C = 0 defined by Definition 2.2

and (2.14), respectively. If LY FS = 0, then all results with respect to
(
F 2K+S

)C is zero, where X,Y ∈ =1
0 (Mn), the

complete lifts XC , Y C ∈ =1
0 (T (Mn)) and the vertical lift XV , Y V ∈ =1

0 (T (Mn)).

i) φ(F 2K+S)CXCY C =
((
LY F

S
)
X
)C

ii) φ(F 2K+S)CXCY V =
((
LY F

S
)
X
)V

iii) φ(F 2K+S)CXV Y C =
((
LY F

S
)
X
)V

iv) φ(F 2K+S)CXV Y V = 0
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Proof. i)

φ(F 2K+S)CXCY C = −(LY C

(
F 2K+S

)C
)XC

= LY C

(
FSX

)C − (FS)CLY CXC

=
((
LY F

S
)
X
)C

ii)

φ(F 2K+S)CXCY V = −(LY V

(
F 2K+S

)C
)XC

= −LY V

(
F 2K+S

)C
XC +

(
F 2K+S

)C
LY V XC

= LY V

(
FSX

)C − (FS)CLY V XC

=
((
LY F

S
)
X
)V

iii)

φ(F 2K+S)CXV Y C = −(LY C

(
F 2K+S

)C
)XV

= −LY C

(
F 2K+S

)C
XV +

(
F 2K+S

)C
LY CXV

= LY C

(
FSX

)V − (FS)CLY CXV

=
((
LY F

S
)
X
)V

iv)

φ(F 2K+S)CXV Y V = −(LY V

(
F 2K+S

)C
)XV

= −LY V

(
F 2K+S

)C
XV +

(
F 2K+S

)C
LY V XV

= 0

Theorem 2.7. If LY FS = 0 for Y ∈Mn , then its complete lift Y C to the tangent bundle is an almost holomorfic vector
field with respect to the structure

(
F 2K+S

)C
+ (FS)C = 0.

Proof. i)

(LY C

(
F 2K+S

)C
)XC = LY C

(
F 2K+S

)C
XC −

(
F 2K+S

)C
LY CXC

= −LY C

(
FSX

)C
+ (FS)CLY CXC

= −
((
LY F

S
)
X
)C

ii)

(LY C

(
F 2K+S

)C
)XV = LY C

(
F 2K+S

)C
XV −

(
F 2K+S

)C
LY CXV

= −LY C

(
FSX

)V
+ (FS)CLY CXV

= −
((
LY F

S
)
X
)V

2.8. The Structure
(
F 2K+S

)H
+ (FS)H = 0 on Tangent Bundle T (Mn)

Theorem 2.8. The Nijenhuis tensor Ñ(F 2K+S)H(F 2K+S)H
(
XH , Y H

)
of the horizontal lift

(
F 2K+S

)H vanishes if
the Nijenhuis tensor of the FS is zero and {−(R̂

(
FSX,FSY

)
u) + (FS(R̂

(
FSX,Y

)
u)) + (FS(R̂

(
X,FSY

)
u)−

((FS)2(R̂ (X,Y )u))}V = 0.
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Proof.

Ñ(F 2K+S)H(F 2K+S)H
(
XH , Y H

)
= [

(
F 2K+S

)H
XH ,

(
F 2K+S

)H
Y H ]

−
(
F 2K+S

)H
[
(
F 2K+S

)H
XH , Y H ]

−
(
F 2K+S

)H
[XH ,

(
F 2K+S

)H
Y H ]

+
(
F 2K+S

)H (
F 2K+S

)H [
XH , Y H

]
= [

(
FSX

)H
,
(
FSY

)H
]−
(
FS
)H

[
(
FSX

)H
, Y H ]

−
(
FS
)H

[XH ,
(
FSY

)H
] +
(
FS
)H (

FS
)H [

XH , Y H
]

= (NFS (X,Y ))
H − (R̂

(
FSX,FSY

)
u)V

+(FS(R̂
(
FSX,Y

)
u))V + (FS(R̂

(
X,FSY

)
u))V

−((FS)2(R̂ (X,Y )u))V .

If NFS (X,Y ) = 0 and {−(R̂
(
FSX,FSY

)
u) + (FS(R̂

(
FSX,Y

)
u)) + (FS(R̂

(
X,FSY

)
u)−

((FS)2(R̂ (X,Y )u))}V = 0, then we get N(F 2K+S)H(F 2K+S)H
(
XH , Y H

)
= 0, where R̂ denotes the curvature

tensor of the affine connection ∇̂ defined by ∇̂XY = ∇YX + [X,Y ] (see [26] p.88-89).

Theorem 2.9. The Nijenhuis tensor Ñ(F 2K+S)H(F 2K+S)H
(
XH , Y V

)
of the horizontal lift (F 2K+S)H vanishes if the

Nijenhuis tensor of the FS is zero and ∇FS = 0.

Proof.

Ñ(F 2K+S)H(F 2K+S)H
(
XH , Y V

)
= [

(
F 2K+S

)H
XH ,

(
F 2K+S

)H
Y V ]

−
(
F 2K+S

)H
[
(
F 2K+S

)H
XH , Y V ]

−
(
F 2K+S

)H
[XH ,

(
F 2K+S

)H
Y V ]

+
(
F 2K+S

)H (
F 2K+S

)H [
XH , Y V

]
=

[
FSX + FSY

]V − (FS [FSX,Y ])V
−
(
FS
[
X,FSY

])V
+ (
(
FS
)2

[X,Y ])V

+
(
∇FSY F

SX
)V − (FS (∇Y FSX))V

−
(
FS (∇FSYX)

)V
+ (
(
FS
)2∇YX)V

= (NFS (X,Y ))
V

+ (
(
∇FSY F

S
)
X)V

−
(
FS
((
∇Y FS

)
X
))V

.

Theorem 2.10. The Nijenhuis tensor Ñ(F 2K+S)H(F 2K+S)H
(
XV , Y V

)
of the horizontal lift (F 2K+S)H vanishes.

Proof. Because of
[
XV , Y V

]
= 0 for X,Y ∈Mn, easily we get

Ñ(F 2K+S)H(F 2K+S)H
(
XV , Y V

)
= 0.

Theorem 2.11. The Sasakian metric Sg is pure with respect to
(
F 2K+S

)H if FS = I , where I =ıdentity tensor field of
type (1, 1).

Proof. S(X̃, Ỹ ) =S g(
(
F 2K+S

)H
X̃, Ỹ )−S g(X̃,

(
F 2K+S

)H
Ỹ ) if S(X̃, Ỹ ) = 0 for all vector fields X̃ and Ỹ which

are of the form XV , Y V or XH , Y H then S = 0.
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i)

S
(
XV , Y V

)
= Sg(

(
F 2K+S

)H
XV , Y V )−S g(XV ,

(
F 2K+S

)H
Y V )

= −Sg(
(
FSX

)V
, Y V ) +S g(XV ,

(
FSY

)V
)

= −
(
g
(
FSX,Y

))V
+
(
g
(
X,FSY

))V }
ii)

S
(
XV , Y H

)
= Sg(

(
F 2K+S

)H
XV , Y H)−S g(XV ,

(
F 2K+S

)H
Y H)

= Sg(XV ,
(
FSY

)H
)

= 0

iii)

S
(
XH , Y H

)
= Sg(

(
F 2K+S

)H
XH , Y H)−S g(XH ,

(
F 2K+S

)H
Y H)

= − (Sg
(
FSX

)H
, Y H) +S g(XH ,

(
FSY

)H
)

= −
(
g
(
FSX

)
, Y
)V

+ (g(X,
(
FSY

)H
))V

Theorem 2.12. Let φϕ be the Tachibana operator and the structure
(
F 2K+S

)H
+ (FS)H = 0 defined by Definition

2.2 and (2.19), respectively. if LY FS = 0 and FS = I , then all results with respect to
(
F 2K+S

)H is zero, where
X,Y ∈ =1

0 (Mn), the horizontal lifts XH , Y H ∈ =1
0 (T (Mn)) and the vertical lift XV , Y V ∈ =1

0 (T (Mn)) .

i) φ(F 2K+S)HXHY H = −
((
LY F

S
)
X
)H

+ (R̂
(
Y, FSX

)
u)V

−(FS(R̂ (Y,X)u))V ,

ii) φ(F 2K+S)HXHY V =
((
LY F

S
)
X
)V − ((∇Y FS)X)V ,

iii) φ(F 2K+S)HXV Y H =
((
LY F

S
)
X
)V

+ (∇FSXY )
V −

(
FS (∇XY )

)V
,

iv) φ(F 2K+S)HXV Y V = 0.

Proof. i)

φ(F 2K+S)HXHY H = −(LY H

(
F 2K+S

)H
)XH

= −LY C

(
F 2K+S

)H
XH +

(
F 2K+S

)H
LY HXH

=
[
Y, FSX

]H − γR̂ [Y, FSX]
−
(
FS [Y,X]

)H
+ (FS)H(R̂ (Y,X)u)V

= −
((
LY F

S
)
X
)H

+ (R̂
(
Y, FSX

)
u)V

−(FS(R̂ (Y,X)u))V

ii)

φ(F 2K+S)HXHY V = −(LY V

(
F 2K+S

)H
)XH

= −LY V

(
F 2K+SX

)H
+
(
F 2K+S

)H
LY V XH

=
[
Y, FSX

]V − (∇Y FSX)V
−
(
FS [Y,X]

)V
+
(
FS (∇YX)

)V
=

((
LY F

S
)
X
)V − ((∇Y FS)X)V
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iii)

φ(F 2K+S)HXV Y H = −(LY H

(
F 2K+S

)H
)XV

= −LY H

(
F 2K+SX

)V
+
(
F 2K+S

)H
LY HXV

= −
[
Y, FSX

]V
+ (∇FSXY )

V

−
(
FS [Y,X]

)H − (FS (∇XY )
)V

=
((
LY F

S
)
X
)V

+ (∇FSXY )
V −

(
FS (∇XY )

)V
iv)

φ(F 2K+S)HXV Y V = −(LY V

(
F 2K+S

)H
)XV

= LY V

(
FSX

)V − (FS)HLY V XV

= 0
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