
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 12 NO. 1 PAGE 116–125 (2019)

Some Notes Concerning Riemannian
Submersions and Riemannian Homogenous

Spaces
Mehmet Gülbahar ∗ Erol Kılıç and Sadık Keleş
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ABSTRACT

Riemannian submersions between Lie groups and Riemannian homogeneous spaces are
investigated. With the help of connections, some characterizations dealing these spaces are
obtained.
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1. Introduction

According to F. Klein, the main purpose of studying geometry is to investigate invariant properties of
geometrical shapes and figures under the actions of special group transformations. The groups which lead
to determine various geometries, known as Lie groups in the literature, are considered and developed by S.
Lie.

A smooth manifold possesses a smooth group structure is called a Lie group. The simple and best known
examples of Lie groups are the groups of isometries of the real Euclidean space En, the complex Euclidean
space Cn, the quaternion space Hn. Hence, these groups of isometries formed to rise of commonly used groups
such as the general linear groups GL(n,R) and GL(n,C), the orthogonal group O(n), the unitary group U(n),
the symplectic group Sp(n) etc.

Another important fact dealing Lie groups is to investigate the differential geometry of Lie algebras g which
are corresponding to tangent spaces of Lie groups. With the aid of smooth maps (such as immersions or
submersion etc.) between Lie algebras of any two Lie groups, some basic geometrical and algebraic properties
any two Lie algebras or Lie groups could be investigated and some basic relationships between Lie groups
could be proved. In this sense, there exist various papers analyzed the notions immersions (cf. [7, 8, 11, 12, 19])
and submersions (cf. [3, 4, 9, 16, 17, 20]) on Lie groups.

Motivated by this facts, we shall present some relations between a Lie group and a reductive Riemannian
homogeneous space whose tangent spaces always admits a submersion.

2. Riemannian Submersions

Let (M, g) and (B, g′) be m and n dimensionals Riemannian manifolds with Riemannian metrics g and g̃,
respectively. A smooth map π : (M, g)→ (B, g̃) is called a Riemannian submersion if

i) π has maximal rank.
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ii) The differential dπ preserves the lengths of horizontal vectors.

Let π : (M, g)→ (B, g′) be a Riemannian submersion. For any b ∈ B, π−1(b) becomes a closed r-dimensional
submanifold of M . The submanifolds π−1(b) are called as fibers. A vector field tangent to fibers is called vertical
and a vector field orthogonal to fibers is called horizontal. If we put

Vp = kernel(π∗) (2.1)

at a point p ∈M , then it can be obtained an integrable distribution V corresponding to the foliation of M
determined by the fibres of π. The distribution Vp is called vertical space at p ∈M . Sections of V are so-called
vertical vector fields and the set of all vertical vector fields is denoted by χv(M).

Let H be the complementary distribution of V determined by the Riemannian metric g. Then, we always
have the following orthogonal decomposition for a Riemannian submersion:

TM = V ⊕H. (2.2)

For any p ∈M , the distributionHp = (Vp)⊥ is called horizontal space on M [13]. Furthermore, every section of
H is so-called horizontal vector field and all horizontal vector fields set up a subspace χh(M) in χ(M).

A vector fieldE onM is called basic if it is horizontal and π− related to a vector fieldE′ onB i.e., π∗Ep = E′π(p)
for all p ∈M . The space of all π-related vector fields on B is denoted by χb(M). If E,F ∈ χb(M) are π−related
to E∗ and F∗ respectively, then one has

g(E,F ) = g′(E′, F ′) ◦ π. (2.3)

Now we recall the following proposition of [6]:

Proposition 2.1. Let π : (M, g)→ (B, g′) be a Riemannian submersion. Denote ∇ and ∇′ to be the Levi-Civita
connections of M and B, respectively. If X and Y are basic vector fields, π-related to X ′ and Y ′, respectively, one has

i) g(X,Y ) = g′(X ′, Y ′) ◦ π;

ii) h[X,Y ] is the basic vector field π-related to [X ′, Y ′];

iii) h∇XY is the basic vector field π-related to ∇′X′Y ′;

iv) [X,V ] is vertical for any vertical vector field V .

Suppose h and v are the projections of χ(M) onto χh(M) and χv(M) respectively. The fundamental tensor fields
A and T of π, are defined to be

AEF = h∇hEvF + v∇hEhF, (2.4)
TEF = h∇vEvF + v∇vEhF (2.5)

for any E,F ∈ χ(M).
Let us define the following mappings [10]:

TH : χv(M)× χv(M) → χh(M),

(U, V ) → TH(U, V ) = h∇UV, (2.6)

TV : χv(M)× χh(M) → χv(M),

(U,X) → TV(U,X) = v∇UX, (2.7)

and

AH : χh(M)× χv(M) → χh(M),

(X,U) → AH(X,U) = h∇XU, (2.8)
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AV : χh(M)× χh(M) → χv(M),

(X,Y ) → AV(X,Y ) = v∇XY, (2.9)

Then, it is clear from (2.4), (2.5), (2.6) and (2.9) that TH is a symmetric operator on χv(M)× χv(M) and AV is
an anti-symmetric operator on χh(M)× χh(M). Also, if we take into account (2.4) and (2.5) in (2.2), we can
write

∇UV = TH(U, V ) + v∇UV, (2.10)
∇VX = h∇VX + TV(U,X), (2.11)
∇XU = AH(X,U) + v∇XU, (2.12)
∇XY = h∇XY +AV(X,Y ) (2.13)

for any U, V ∈ χv(M) and X,Y ∈ χh(M).

Now we recall the following theorem [6]:

Theorem 2.1. Let π : (M, g)→ (B, g′) be a Riemannian submersion. Then the horizontal spaceH becomes an integrable
distribution if and only if the fundamental tensor A vanishes identically.

Remark 2.1. As a consequence of Theorem 2.1, we see that both AH and AV are related to integrability ofH, that
is, they are identically zero if and only if H is integrable.

Let R, R′ and R̂ be the curvature tensors on M , B and fibers π−1(b) respectively, and Ř(X,Y )Z denotes the
horizontal lift of R′π(b)(π∗pXb, π∗pYb)Zb at any point b ∈M satisfying

π∗(Ř(X,Y )Z) = R′(π∗X,π∗Y )π∗Z.

Then, the following relations between these tensors hold [18]:

R (U, V,W,G) = R̂ (U, V,W,G) + g
(
(TH(U,G), TH(V,W )

)
−g
(
TH(V,G), TH(U,W )

)
, (2.14)

R (X,Y, Z,H) = Ř(X,Y, Z,H)− 2g
(
AV(X,Y ), AV(Z,H)

)
+g
(
AV(Y, Z), AV(X,H)

)
−g
(
AV(X,Z), AV(Y,H)

)
, (2.15)

R (X,V, Y,W ) = g ((∇XT ) (V,W ) , Y ) + g ((∇VA) (X,Y ) ,W )

−g
(
TV(V,X), TV(W,Y )

)
+g
(
AH(X,V ), AH(Y,W )

)
, (2.16)

for any U, V,W,G ∈ χv(M) and X,Y, Z,H ∈ χh(M). With the help of (2.14)− (2.16) equations, we get

K (U, V ) = K̂ (U, V )−
∥∥TH(U, V )

∥∥2 + g
(
TH(U,U), TH(V, V )

)
, (2.17)

K(X,Y ) = Ǩ(X̌, Y̌ ) + 3‖AV(X,Y )‖2, (2.18)

K (X,V ) = −g ((∇XT ) (V, V ) , X) +
∥∥TV(V,X)

∥∥2
−
∥∥AH(X,V )

∥∥2 , (2.19)

where K, K̂ and Ǩ denote the sectional curvatures in M , any fiber π−1(b) and the horizontal distribution H
respectively.

3. Lie Groups and Algebras

Let G be a Lie group and V be a set. A mapping φ : G× V → V is called an action of G on V if, for all g, h ∈ G
and v ∈ V , the following relations hold:
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i) e · v = v.

ii) g · (h · v) = gh · v,

where φ(g, v) = g · v. Furthermore,

a) The set Gx = {g ∈ G : g · x = x} is called the isotropy group (subgroup) at x ∈ G.

b) The set G · x = {g · x : g ∈ G} is called orbit at a point x ∈ G.

A Lie group G acts on itself by the left and the right translations. Another important action G is the adjoint
action that a homomorphism Ig : G→ G defined by

Ig(a) = gag−1 for all a ∈ G. (3.1)

We note that the adjoint action is a group homomorphism on G whereas the right and the left translations
are not. Therefore, any curve through the identity element e of G mapped by the adjoint map to another (not
necessarily the same) curve through e since Ig(e) = e.

A vector field X is called left invariant if

dLa(Xe) = Xa, (3.2)

where e is the identity element of G. Here, La denotes a left translation on a ∈ G.

In a similar manner, a vector field X is called right invariant if

dRa(Xe) = Xa. (3.3)

Here, Ra denotes right translation on a ∈ G.

Let g be the set of all left (or right) invariant vector fields on G. We note that g is a vector space with the
usual addition of vector fields, and there exists a linear isomorphism between g and the tangent space TeG.
Furthermore, g is closed under the bracket operation and it is called the Lie algebra of G.

The exponential map exp : g→ G is defined by

exp(X) = ϕX(t), ∀t ∈ R (3.4)

where ϕX(t) denotes flows (one parameter transformation groups) generated by a vector fieldX in g satisfying
ϕX(0) = e and ϕ′X(0) = Xe.

Now, let K be a closed subgroup of G and k be its Lie algebra defined by

k = {X ∈ g : exp(tX) ∈ h, for all t ∈ R}. (3.5)

It is known from the Cartan’s subgroup theorem that K is a submanifold of G which is also called as Lie
subgroup of G [7].

Furthermore, the adjoint representation Adj : G→ Aut(g) is defined by

Ad(g) = dIg, (3.6)

where

Ad(g)X = dIg = d(Rg−1 ◦ Lg) (3.7)

for all X ∈ g [2]. Here Aut(g) denotes the set of all automorphisms on g. Therefore the adjoint representation
maps any vector (of a curve on G) in g to another vector in g. In contrast dLg and dRg map tangent vectors in
TeG to tangent vectors in TgG.

A Riemannian metric 〈, 〉 on a Lie group G is called left invariant if

〈X,Y 〉 = 〈dLaX, dLaY 〉 (3.8)

for all a ∈ G and X,Y ∈ g. The left invariant metrics clearly have property that the translations La are
isometries for all a ∈ G. Similarly, a Riemannian metric is called right invariant if each right translations on
G is a isometry.

A metric on G that is both left invariant and right invariant is called bi-invariant. We note that a compact Lie
group always admits a bi-invariant metric [2].
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Proposition 3.1. [2] Let G be a Lie group and g be its Lie algebra. Then, there is one-to-one correspondence between
bi-invariant metric on G and Ad-invariant scalar products on g i.e.,

〈Ad(g)X,Ad(g)Y 〉 = 〈X,Y 〉 (3.9)

for all g ∈ G and X,Y ∈ g.

Proposition 3.2. [2] Let G be a Lie group with a bi-invariant metric 〈, 〉. Then for all X,Y, Z ∈ g:

i) The Riemann connection is given by

∇XY =
1

2
[X,Y ]. (3.10)

ii) The Riemann curvature tensor is given by

R(X,Y )Z =
1

4
[[X,Y ], Z]. (3.11)

ii) The sectional curvature of a plane section Π spanned by X and Y is given by

K(Π) =
1

4

〈[X,Y ], [X,Y ]〉
〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2

. (3.12)

4. Riemannian Homogeneous Spaces

Let G be a Lie group and K be a closed subgroup of G. Consider the following quotient space

G/K = {gK : g ∈ G}. (4.1)

Then, it is said to be that G acts transitively in a natural way on G/K if, for every pair of elements x and y,
there exists a element g in G such that g · x = y.

A quotient space G/K acted by G transitively is called a homogeneous space [2].

Let G/K be a homogeneous space and π : G→ G/K be a projection such that

π : G→ G/K

g → π(g) = gK.

For each a ∈ G, let τa be the left translation on G/K that sends each gK to agK. If La is a left translation on
G then we have the following commutative diagram:

G G/K

G G/K

La

π

π

τa

Thus, we get

π ◦ La = τa ◦ π. (4.2)

LetG/K be a homogeneous space and π : G→ G/K be a projection. Now, we shall investigate the differential

dπe : g→ To(G/K),

where o = π(e) = K. We note that any quotient space G/K acted by G is a manifold iff π : G→ G/K is a
submersion [2].
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Now, let X ∈ g and the exponential map exp tX be the corresponding one-parameter subgroup. Then

dπe(X) =
d

dt
(π ◦ exp tX)|t=0 =

d

dt
((exp tX)K)|t=0. (4.3)

Denote the vertical distribution of g by Ve. Then, there exists the following canonical isomorphism:

g/Ve ∼= To(G/K) (4.4)

A homogeneous space is called ’reductive’ if there exists a subspace He of g such that

g = Ve ⊕He (4.5)

and He is invariant under adjoint representation of K. In this case, we have

He ∼= To(G/K). (4.6)

Here, H becomes the horizontal distribution of G with respect to π.

Example 4.1. Let us consider the special orthogonal group

SO(n+ 1) = {A ∈M(n+ 1) : AtA = In+1 and detA = 1}

Here, M(n+ 1) denotes the set of all (n+ 1)× (n+ 1) matrices, In+1 is the identity matrix and At is the
transpose of A.

The group SO(n+ 1) acts transitively on the unit sphere Sn:

In fact, let x, y ∈ Sn and {x, a1, a2, . . . an} and {y, b1, b2, . . . bn} are two orthonormal basis of Rn+1 with the
same orientation. The translation matrix lies in SO(n+ 1). Furthermore, isotropy subgroup of at the point
(1, 0, . . . , 0) consists of the matrices in form 1 0

0 A

 ∈ SO(n+ 1),

where A ∈ SO(n). This isotropy group is denoted by SO(n) and hence we have SO(n+ 1)/SO(n) = Sn for
n 6= 1.

For n = 1, consider the special orthogonal group SO(2) given by

SO(2) = {

 a b
−b a

 : a2 + b2 = 1, a, b ∈ R}.

Then a map on SO(2) to unit sphere S1 defined by a b
−b a

→ z = a+ ib = (a, b),

implies that SO(2) ∼= S1. Here we note that the unit sphere is a Lie group under multiplication in complex
number space C.

For n = 2, we see that SO(3)/SO(2) = S2. But S2 does not admit a topological group structure. Thus, S2 isn’t
a Lie group [14].

For n = 3, we see that SO(4)/SO(3) = S3. We note that S3 is a Lie group under multiplication in quaternion
space H.

Now, we shall show that π : SO(4)→ S3 is a Riemannian submersion.

Since the Lie algebra of SO(4) is the set of all 4× 4 anti-symmetric matrices denoted by so(4), the differential
dπ|e is a surjective mapping on so(4) to ToS3, where e = I4 and π(e) = o = (1, 0, 0, 0).
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Here, for any

X =


0 x1 x2 x3
−x1 0 x4 x5
−x2 −x4 0 x6
−x3 −x5 −x6 0

 ∈ so(4),

the deferential of π is defined by

dπ(X) = (0, x1, x2, x3).

In this case,

Ve = so(3),

where So(3) is a subspace of so(4) formed as
 0 0

0 A

 : A ∈ so(3)

 .

Furthermore, the horizontal space He at e ∈ SO(4) becomes

He =




0 x1 x2 x3
−x1
−x2 03
−x3

 : x1, x2, x3 ∈ R

 ,

where 03 denotes 3× 3 zero matrix.

For any two horizontal vector fields given by

X =


0 x1 x2 x3
−x1
−x2 03
−x3

 and Y =


0 y1 y2 y3
−y1
−y2 03
−y3


we have

〈X,Y 〉 =
1

4
trace

(
XtY

)
= x21 + x22 + x23

= 〈dπ(X), dπ(Y )〉.

Therefore, π is a Riemannian submersion.

Example 4.2. Consider the 3-dimensional Euclidean space E3 and the 1-dimensional Euclidean space E. Let us
define the following projection:

π : E3 → E

(x1, x2, x3) → π(x1, x2, x3) = x1.

Then, it is clear that π is a surjective homomorphism. Thus, we have

ker π = {(0, x2, x3) : x2, x3 ∈ R} ∼= E2

and

E3/E2 ∼= E.

By a straightforward computation, one can see that dπ is an local isometry and π is a Riemannian submersion.
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Further examples of Riemannian homogeneous spaces admitting a Riemannian submersions could be given
in projective spaces, quaternion spaces, Grassmann manifolds, Steifel manifolds, flag manifolds etc.

Let G/K be a reductive Riemannian homogeneous spacec. A metric 〈, 〉 on G/K is called G-invariant if, for
each a ∈ G and X,Y ∈ He, the following relation holds [2]:

〈X,Y 〉 = 〈dτa(X), dτa(Y )〉. (4.7)

Theorem 4.1. Let G/K be a Riemannian homogeneous space. If G/K posseses a G-invariant metric, then the mapping
π is a Riemannian submersion.

Proof. Let G/K be a Riemannian homogeneous space with a G invariant metric 〈, 〉. it is clear that π is
submersion since π is a covering map. Now we shall show that π is a Riemannian submersion.

From the definition of pushforward map, we have

d(τa ◦ π)X = X(τa ◦ π), ∀a ∈ G (4.8)

for any horizontal vector field X . Using the fact that τa ◦ π = π ◦ La (see Figure 1), it follows that

d(τa ◦ π)X = X(π ◦ La)

= d(π ◦ La)X (4.9)

Next, from (4.7) and (4.9), we obtain

〈d(π ◦ La)X, d(π ◦ La)Y 〉 = 〈X,Y 〉 (4.10)

for any horizontal vector fields X and Y . The last equation implies that π is a Riemannian submersion.

Let G/K be a reductive Riemannian homogeneous space with a G invariant metric 〈, 〉 and the Riemannian
connection ∇∗. Let X ∈ g and the exponential map exp(tX) be the corresponding one parameter subgroup (a
flow) generated by X . In this case, we write

dπ(X) = X∗o =
d

dt
(exp tX) · o|t=0, (4.11)

Here, we note that X∗ is a Killing field in ToG/K. Since the mapping π is a canonical projection, we may write
dπ(X) = X∗o and dπ(hX) = X∗o , where hX is the horizontal component of X ∈ g with respect to π. Also, since
X∗ is a Killing vector field, its flows are isometries and the following equations hold:

X∗〈Y,Z〉 = 〈[X∗, Y ]G/K , Z〉+ 〈Y, [X∗, Z]G/K〉, (4.12)

〈∇∗YX∗, Z〉+ 〈∇∗ZX∗, Y 〉 = 0 (4.13)

and

[X∗, Y ∗]G/K = −[X,Y ]∗ (4.14)

for all Y,Z ∈ χ(G/K). For more details, we refer to [1], [5] and [15].

Let X,Y ∈ He. Then

(∇∗X∗Y ∗)o = −1

2
h[X,Y ] + U(X,Y ) (4.15)

where U : H×H → H is determined by

2g(U(X,Y ), Z) = g(h[Z,X], Y ) + g(X,h[Z, Y ]) (4.16)

for all Z ∈ He.

The manifold G/K is called naturally reductive Riemannian homogeneous space if U = 0.
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Proposition 4.1. Let G/K be a Riemannian homogeneous space. If X∗ and Y ∗ are Killing vector fields on ToG/K such
that π(e) = o. Then we have

∇∗X∗Y ∗ = −1

2
[X,Y ]∗ + U(X,Y ) (4.17)

for any X,Y ∈ He.

Proof. Let X and Y are any horizontal ( or basic) vector fields in g related X∗ and Y ∗ in To(G/K), that is,

dπ(X) = X∗ and dπ(Y ) = Y ∗. (4.18)

Using (4.14), we get

dπ(h[X,Y ]) = −[X∗, Y ∗]G/K . (4.19)

From (4.15) and (4.19), the proof of proposition is straightforward.

Taking into account of Proposition 2.1 and Proposition 4.1, we get the following:

Corollary 4.1. Let G/K be a Riemannian homogeneous space. If π : G→ G/K is a Riemannian submersion, then there
exists a Lie algebra isomorphism between He and To(G/K).

Proposition 4.2. Let G/K is a naturally reductive Riemannian homogeneous space. For any vector fields X , Y and Z
in He which are π related to X∗, Y ∗ and Z∗, respectively, we have

i) (∇∗X∗Y ∗)o = − 1
2 [X,Y ]∗,

ii) R∗(X∗, Y ∗)Z∗ = 1
4 [Y, [X,Z]]

∗ − 1
4 [X, [Y, Z]]

∗
+ 1

2 [[X,Y ], Z]
∗.

iii) If He is integrable, then R∗(X∗, Y ∗)Z∗ = − 3
4 [X,Y ], Z]∗.

Here, R∗ denotes the Riemannian curvature tensor on G/K.

Proof. Using U = 0 in (4.15) and taking into consideration to Proposition 4.1, we find (i).

From the statement (i), we get

R∗(X∗, Y ∗)Z∗ = ∇∗Y ∗∇∗X∗Z∗ −∇∗X∗∇∗Y ∗Z∗ +∇∗[X,Y ]∗Z
∗

= ∇∗Y ∗
(
−1

2
[X,Z]∗

)
−∇∗X∗

(
−1

2
[Y, Z]∗

)
− 1

2
[[X,Y ], Z]

∗

=
1

4
[Y, [X,Z]]

∗ − 1

4
[X, [Y,Z]]

∗ − 1

2
[[X,Y ], Z]

∗
. (4.20)

which completes the proof of (ii).

Taking into account of Corollary 4.1 and using the Jakobi property for Lie brackets in (4.20), the proof of (iii)
is straightforward.

From (3.11) and the statement (iii) of Corollary 4.2, we get the following corollary:

Corollary 4.2. Let G be a Lie group with a bi-invariant metric and G/K be a naturally reductive Riemannian
homogeneous space. If He is an integrable distribution, then we have

π∗ (R(X,Y )Z) = −3R∗(X∗, Y ∗)Z∗ (4.21)

for any X , Y and Z in He which are dπ related to X∗, Y ∗ and Z∗, respectively.

Using (3.12) and Corollary 3.12, we have the following:

Proposition 4.3. Let G be a Lie group with a bi-invariant metric and G/K be a naturally reductive Riemannian
homogeneous space. Then we have

‖AV(X,Y )‖2 =
1

3
〈[[X,Y ], Y ], X〉 (4.22)

for any linearly independent vector fields X and Y in He.
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Proof. Let X,Y ∈ He and Π = Span{X,Y } be a plane section. Under the assumption, since G is a Lie group
with a bi-invariant metric, we have

K(Π) =
1

4
〈[[X,Y ], Y ], X)〉. (4.23)

Using Proposition 3.2 and Proposition 4.2 in (2.17), we find (4.22).

Corollary 4.3. Let π be a mapping from a Lie group with a bi-invariant metric to a naturally reductive Rimannian
homogeneous space. Then we have the following statements

i) G is flat if and only if the tensor AV vanishes identically.
ii) If π has minimal fibers, then G is flat.
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