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The Lindley-Poisson distribution in lifetime
analysis and its properties
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Abstract
In this paper, we introduce a new compounding distribution, named the
Lindley-Poisson distribution. We investigate its characterization and
statistical properties. The maximum likelihood inference using EM al-
gorithm is developed. Asymptotic properties of the MLEs are discussed
and simulation studies are performed to assess the performance of pa-
rameter estimation. We illustrate the proposed model with two real
applications and it shows that the new distribution is appropriate for
lifetime analyses.

2000 AMS Classification:

Keywords: Lindley distribution, Poisson distribution, Hazard function, Maxi-
mum likelihood estimation, EM algorithm, Fisher information matrix.

Received 08 : 08 : 2013 : Accepted 11 : 01 : 2014 Doi : 10.15672/HJMS.201427453

1. Introduction
The Lindley distribution was originally introduced by [16] to illustrate a difference

between fiducial distribution and posterior distribution. It has attracted a wide applica-
bility in survival and reliability. Its density function is given by

(1.1) f(t) =
θ2

1 + θ
(1 + t)e−θt, t, θ > 0.

We denoted this by writing LD(θ). The density in (1.1) indicates that the Lindley distri-
bution is a mixture of an exponential distribution with scale θ and a gamma distribution
with shape 2 and scale θ, where the mixing proportion is θ/(1 + θ).

∗Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN
55812, USA.
Email: wgui@d.umn.edu
†Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China.
‡Business School,Nankai University, Tianjin 300071, China.



[11] provided a comprehensive treatment of the statistical properties of the Lindley
distribution and showed that in many ways it performs better than the well-known ex-
ponential distribution. [20] discussed the discrete Poisson–Lindley distribution by com-
pounding the Poission distribution and the Lindley distribution. [10] investigated the
properties of the zero-truncated Poisson—Lindley distribution. [3] extended the Lindley
distribution by exponentiation. [22] introduced and analyzed a three-parameter general-
ization of the Lindley distribution, which was used by [17] to derive an extended version
of the compound Poisson distribution. [21] introduced a two-parameter Lindley distri-
bution of which the one-parameter LD(θ) is a particular case, for modeling waiting and
survival times data. [9] introduced a two-parameter power Lindley distribution (PL)
and discussed its properties. [18] proposed a generalized Lindley distribution (GL) and
provided comprehensive account of the mathematical properties of the distribution.

On the other hand, the studies and analysis of lifetime data play a central role in a
wide variety of scientific and technological fields. There have been developed several dis-
tributions by compounding some useful life distributions. [1] introduced a two-parameter
exponential-geometric (EG) distribution with decreasing failure rate by compounding an
exponential with a geometric distribution. [15] proposed an exponential-Poisson (EP)
distribution by mixing an exponential and zero truncated Poisson distribution and dis-
cussed its various properties. [5] introduced a new two-parameter distribution family with
decreasing failure rate by mixing power-series distribution and exponential distribution.

The aim of this paper is to propose an extension of the Lindley distribution which
offers a more flexible distribution for modeling lifetime data. In this paper, we introduce
an extension of the Lindley distribution by mixing Lindley and zero truncated Poisson
distribution. It differs from the discrete Poisson–Lindley distribution proposed by [20].
Since the Lindley distribution is not a generalization of exponential distribution, the
model EP in [15] can not be obtained as a particular case of the new model in this paper.
An interpretation of the proposed model is as follows: a situation where failure occurs
due to the presence of an unknown number, Z, of initial defects of same kind. Z is a zero
truncated Poisson variable. Their lifetimes, Y’s, follow a Lindley distribution. Then for
modeling the first failure X, the distribution leads to the Lindley–Poisson distribution.
We aim to discuss some properties of the proposed distribution.

The rest of this paper is organized as follows: in Section 2, we present the new
Lindley-Poisson distribution and investigate its basic properties, including the shape
properties of its density function and the hazard rate function, stochastic orderings and
representation, moments and measurements based on the moments. Section 3 discusses
the distributions of some extreme order statistics. The maximum likelihood inference
using EM algorithm and asymtotical properties of the estimates are discussed in Section
4. Simulation studies are also conducted in this Section. Section 5 gives a real illustrative
application and reports the results. Our work is concluded in Section 6.

2. Lindley-Poisson Distribution and its Properties
2.1. Density and hazard function. The new distribution can be constructed as fol-
lows. Suppose that the failure of a device occurs due to the presence of Z (unknown
number) initial defects of some kind. Let Y1, Y2, ..., YZ denote the failure times of the
initial defects, then the failure time of this device is given by X = min(Y1, ..., YZ).

Suppose the failure times of the initial defects Y1, Y2, ..., YZ follow a Lindley distri-
bution LD(θ) and Z has a zero truncated Poisson distribution with probability mass
function as follows:

(2.1) p(Z = z) =
λze−λ

z!(1− e−λ)
, λ > 0, z = 1, 2, ...



By assuming that the random variables Yi and Z are independent, then the density of
X|Z = z is given by

f(x|z) =
θ2(x+ 1)ze−xzθ(θ + θx+ 1)z−1

(θ + 1)z
, x > 0,

and the marginal probability density function of X is

(2.2) f(x) =
θ2λ(x+ 1)e

λe−θx(θ+θx+1)
θ+1

−θx

(θ + 1) (eλ − 1)
, θ > 0, λ > 0, x > 0.

In the sequel, the distribution of X will be refered to as the LP, which is customary for
such a name given to the distribution arising via the operation of compounding in the
literature.

2.1. Theorem. Considering the LP distribution with the probability density function in
(2.2), we have the following properties:

(1) As λ goes to zero, LP (θ, λ) leads to the Lindley distribution LD(θ).
(2) If θ2(λ + 1) ≥ 1, f(x) is decreasing in x. If θ2(λ + 1) < 1, f(x) is a unimodal

function at x0, where x0 is the solution of the equation θ2λ(x+1)2+(θ+1)eθx(θ+
θx− 1) = 0.

Proof. 1. As λ goes to zero, then

lim
λ→0

f(x) = lim
λ→0

θ2λ(x+ 1)e
λe−θx(θ+θx+1)

θ+1
−θx

(θ + 1) (eλ − 1)

=
θ2(x+ 1)e−θx

θ + 1
,

which is the probability density distribution of LD(θ).

2. f(0) = θ2eλλ

(θ+1)(eλ−1)
and f(∞) = 0. The first derivative of log f(x) is

d log f(x)

dx
= −

e−θx
[
θ2λ(x+ 1)2 + (θ + 1)eθx(θ + θx− 1)

]
(θ + 1)(x+ 1)

.

Let s(x) = θ2λ(x+1)2+(θ+1)eθx(θ+θx−1), then s(0) = θ2(λ+1)−1 and s(∞) =∞,
s′(x) = θ2(x+ 1)

[
2λ+ (θ + 1)eθx

]
> 0.

If θ2(λ + 1) ≥ 1, then s(x) ≥ 0, d log f(x)
dx

≤ 0, i.e., f(x) is decreasing in x. If
θ2(λ+ 1) < 1, f(x) is a unimodal function at x0, where x0 is the solution of the equation
s(x) = 0.

�

The cumulative distribution of the LP distribution is given by

F (x) =
eλ − e

λe−θx(θ+θx+1)
θ+1

eλ − 1
, x > 0.(2.3)

The hazard rate function of the LP (θ, λ) distribution is given by

(2.4) h(x) =
θ2λ(x+ 1)e

λe−θx(θ+θx+1)
θ+1

−θx

(θ + 1)

[
e
λe−θx(θ+θx+1)

θ+1 − 1

] , x > 0.

2.2. Theorem. Considering the hazard function of the LP distribution, we have the
following properties:
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Figure 1. Plots of the LP density and hazard function for some pa-
rameter values.

(1) If −θ3λ+θ2λ+θ+1 > 0 and the equation (θ+1)eθx−θ2λ(x+1)2(θ+θx−1) = 0
has no real roots, then the hazard function is increasing.

(2) If −θ3λ+θ2λ+θ+1 < 0 and the equation (θ+1)eθx−θ2λ(x+1)2(θ+θx−1) = 0
has one real roots, then the hazard function is bathtub shaped.

Proof. h(0) = θ2eλλ
(θ+1)(eλ−1)

. For the LP distribution, we have

η(x) = −f
′(x)

f(x)
=
e−θx

[
θ2λ(x+ 1)2 + (θ + 1)eθx(θ + θx− 1)

]
(θ + 1)(x+ 1)

,

and its first derivative is

η′(x) =
e−θx

[
(θ + 1)eθx − θ2λ(x+ 1)2(θ + θx− 1)

]
(θ + 1)(x+ 1)2

.

Let t(x) = (θ + 1)eθx − θ2λ(x + 1)2(θ + θx − 1), then t(0) = −θ3λ + θ2λ + θ + 1 and
t(∞) =∞, the sign of η′(x) is the sign of t(x) and η′(x) = 0 if t(x) = 0. The properties
follow from the results in [12]. �

For the Lindley distribution LD(θ), its hazard function h(x) = θ2(1+x)
θ+1+θx

which is in-
creasing. For the exponential distribution, its hazard function h(x) = θ which is a con-
stant. (2.4) shows the flexibility of the LP distribution over the Lindley and exponential
distribution.

Figure 1a shows some density functions of the LP (θ, λ) distribution with various
parameters. Figure 1b shows some shapes of the LP (θ, λ) hazard function with various
parameters.

2.2. Stochastic Ordering. In probability theory and statistics, a stochastic order
quantifies the concept of one random variable being “bigger" than another. A ran-
dom variable X is less than Y in the ususal stochastic order (denoted by X ≺st Y )
if FX(x) ≥ FY (x) for all real x. X is less than Y in the hazard rate order (denoted by
X ≺hr Y ) if hX(x) ≥ hY (x), for all x ≥ 0. X is less than Y in the likelihood ratio order
(denoted by X ≺lr Y ) if fX(x)/fY (x) increases in x over the union of the supports of X
and Y . It is known that X ≺lr Y ⇒ X ≺hr⇒ X ≺st Y , see [19].



2.3. Theorem. If X ∼ LP (θ, λ1) and Y ∼ LP (θ, λ2), and λ1 < λ2, then Y ≺lr X,
Y ≺hr X and Y ≺st X.

Proof. The density ratio is given by

U(x) =
fX(x)

fY (x)
=

(
eλ2 − 1

)
λ1 exp

(
λ1e
−θx(θ+θx+1)

θ+1
− λ2e

−θx(θ+θx+1)
θ+1

)
(eλ1 − 1)λ2

.

Taking the derivative with respect to x,

U ′(x) = −
θ2
(
eλ2 − 1

)
λ1 (λ1 − λ2) (x+ 1) exp

(
− e
−θx(−λ1(θ+θx+1)+λ2(θ+θx+1)+θ(θ+1)xeθx)

θ+1

)
(θ + 1) (eλ1 − 1)λ2

.

If λ1 < λ2, U ′(x) > 0, U(x) is an increasing function of x. The results follow. �

2.3. Moments and Measures based on moments. In this section, we consider the
moments and measures of the LP distribution X ∼ LP (θ, λ). The k-th raw moment of
X is given by, for k = 1, 2, ...,

µk = E(Xk) = k

∫ ∞
0

xk−1Ḡ(x)dx =

∫ ∞
0

kxk−1[e
λe−θx(θ+θx+1)

θ+1 − 1]

eλ − 1
dx.

E(Xk) cannot be expressed in a simple closed-form and need be calculated numerically.
Using numerical integration, we can find some measures based on the moments such as
mean, variance, skewness and kurtosis etc. For the skewness and kurtosis coefficients,
√
β1 =

µ3−3µ1µ2+2µ3
1

(µ2−µ2
1)

3/2 and β2 =
µ4−4µ1µ3+6µ2

1µ2−3µ4
1

(µ2−µ2
1)

2 .
The cumulative distribution of the LP distribution is given in (2.3). The qth (0 ≤ q ≤

1) quantile xq = F−1(q) of the LP (θ, λ) distribution is

xq =

−θ −W
(
− e
−θ−1(θ+1) log(eλ−eλq+q)

λ

)
− 1

θ
,

where W (a) giving the principal solution for w in a = wew is pronounced as Lambert W
function, see [14].

In particular, the median of the LP (θ, λ) distribution is given by

xm =

−θ −W
(
− e
−θ−1(θ+1) log( 1

2 (eλ+1))
λ

)
− 1

θ
.(2.5)

Figure 2a displays the mean and variance of the LP (θ, λ = 1) distribution. Figure 2b
shows the skewness and kurtosis coefficients of the LP (θ, λ = 1) distribution. From the
figures, it is found that the LP (θ, λ = 1) distribution has positive skewness and kurtosis
coefficients. The coefficients are increasing functions of θ.

3. Distributions of Order Statistics
Let X1, X2, ..., Xn be a random sample of size n from the LP (θ, λ) distribution. By

the usual central limit theorem, the same mean (X1 + ...+Xn)/n approaches the normal
distribution as n → ∞. Sometimes one would be interested in the asymptotics of the
sample minima X1:n = min(X1, ..., Xn) and the sample maxima Xn:n = max(X1, ..., Xn).
These extreme order statistics represent the life of series and parallel system and have
important applications in probability and statistics.
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Figure 2. (a) Plot of mean and variance of the LP (θ, λ = 1) distribu-
tion; (b) Plot of skewness and kurtosis coefficients of the LP (θ, λ = 1)
distribution.

3.1. Theorem. Let X1:n and Xn:n be the smallest and largest order statistics from the
LP (θ, λ) distribution. Then
(1) lim

n→∞
P (X1:n ≤ b∗nt) = 1− e−t, t > 0, where b∗n = F−1(1/n).

(2) lim
n→∞

P (Xn:n ≤ bnt) = e−t
−1

, t > 0, where bn = F−1(1− 1/n).

Proof. We apply the following asymptotical results for X1:n and Xn:n ([2]).
(1) For the smallest order statistic X1:n, we have

lim
n→∞

P (X1:n ≤ a∗n + b∗nt) = 1− e−t
c

, t > 0, c > 0,

(of the Weibull type) where a∗n = F−1(0) and b∗n = F−1(1/n) − F−1(0) if and only if
F−1(0) is finite and for all t > 0 and c > 0,

lim
ε→0+

F (F−1(0) + εt)

F (F−1(0) + ε)
= tc.

For the LP (θ, λ) distribution, its cumulative distribution function is

F (x) =
eλ − e

λe−θx(θ+θx+1)
θ+1

eλ − 1
, θ > 0, λ > 0, x > 0.

Let F (x) = 0, we have θ+θx+1 = eθx(θ+1) ≥ (1+θx)(θ+1), θx2 ≤ 0. Thus F−1(0) = 0
is finite. Furthermore,

lim
ε→0+

F (0 + εt)

F (0 + ε)
= t lim

ε→0+

f(εt)

f(ε)
= t.

Therefore, we obtain that c = 1, a∗n = 0 and b∗n = F−1(1/n) which is the 1
n
th quantile.

(2) For the largest order statistic Xn:n, we have

lim
n→∞

P (Xn:n ≤ an + bnt) = e−t
−d
, t > 0, d > 0



(of the Fréchet type) where an = 0 and b∗n = F−1(1 − 1/n) if and only if F−1(1) = ∞
and there exists a constant d > 0 such that

lim
x→∞

1− F (xt)

1− F (x)
= t−d.

For the LP (θ, λ) distribution, let F (x) = 1, then λe−θx(θ+θx+1)
θ+1

= 0, we have the solution
x =∞. Thus F−1(1) =∞. Furthermore,

lim
x→∞

1− F (xt)

1− F (x)
= t−1.

Therefore, we obtain that d = 1, an = 0 and bn = F−1(1−1/n) which is the the (1− 1
n

)th
quantile.

�

3.2. Remark. Let Q∗(t) and Q(t) denote the limiting distributions of the random vari-
ables (X1:n − a∗n)/b∗n and (Xn:n − an)/bn respectively, then for k > 1, the limiting
distributions of (Xk:n − a∗n)/b∗n and (Xn−k+1:n − an)/bn are given by, see [2],

lim
n→∞

P (Xk:n ≤ a∗n + b∗nt) = 1−
k−1∑
j=0

(1−Q∗(t)) [− log(1−Q∗(t))]j

j!
,

lim
n→∞

P (Xn−k+1:n ≤ an + bnt) =

k−1∑
j=0

Q(t)
[− logQ(t)]j

j!
.

4. Estimation and inference
4.1. Maximum likelihood estimation. Here, we consider the maximum likelihood
estimation about the parameters (θ, λ) of the LP model. Suppose yobs = {x1, x2, ..., xn}
is a random sample of size n from the LP (θ, λ) distribution. Then the log-likelihood
function is given by

l = log

n∏
i=1

fX(xi)

= λ

n∑
i=1

e−θxi +
θλ
∑n
i=1 xie

−θxi

θ + 1
− θ

n∑
i=1

xi +

n∑
i=1

log (xi + 1)

+2n log(θ)− n log(θ + 1)− n log
(
eλ − 1

)
+ n log(λ).(4.1)

The associated gradients are found to be

∂l

∂θ
= −

n∑
i=1

xi +
2n

θ
− n

θ + 1
−
θ(θ + 2)λ

∑n
i=1 xie

−θxi

(θ + 1)2
−
θλ
∑n
i=1 x

2
i e
−θxi

θ + 1
,(4.2)

∂l

∂λ
=

n∑
i=1

e−θxi +
θ
∑n
i=1 xie

−θxi

θ + 1
− neλ

eλ − 1
+
n

λ
.(4.3)

The estimates of the parameters maximize the likelihood function. Equalizing the
obtained gradients expressions to zero yield the likelihood equations. However, they do
not lead to explicit analytical solutions for the parameters. Thus, the estimates can
be obtained by means of numerical procedures such as Newton-Raphson method. The
program R provides the nonlinear optimization routine optim for solving such problems.



The equation ∂l
∂θ

= 0 could be solved exactly for λ, namely

λ̂ =
(θ̂ + 1)

[
θ̂(θ̂ + 1)

∑n
i=1 xi − (θ̂ + 2)n

]
θ̂
[
−(θ̂ + 1)2

∑n
i=1 xie

−θ̂xi − θ̂(θ̂ + 1)
∑n
i=1 x

2
i e
−θ̂xi +

∑n
i=1 xie

−θ̂xi
] ,(4.4)

conditional on the value of θ̂, where θ̂ and λ̂ are the maximum likelihood estimators for
the parameters θ and λ, respectively.

In the following, Theorem 4.1 gives the condition for the existence and uniqueness of
λ̂ when θ is known.

4.1. Theorem. For the MLEs, let l2(λ; θ, yobs) denote the function on the RHS of the
expression in (4.3), if θ is known, then the root of l2(λ; θ, yobs) = 0, λ̂ , uniquely exists if∑n
i=1 e

−θxi +
θ
∑n
i=1 xie

−θxi

θ+1
> n

2
.

Proof. Notice that limλ→0 l2(λ; θ, yobs) =
∑n
i=1 e

−θxi +
θ
∑n
i=1 xie

−θxi

θ+1
− n

2
> 0 when∑n

i=1 e
−θxi+

θ
∑n
i=1 xie

−θxi

θ+1
> n

2
. On the other hand, we can show that limλ→∞ l2(λ; θ, yobs) =∑n

i=1 e
−θxi +

θ
∑n
i=1 xie

−θxi

θ+1
− n. Consider g(x) = e−θx + θ

θ+1
xe−θx − 1, g(0) = 0 and

g(∞) = −1, g′(x) = − θ
2(x+1)eθ(−x)

θ+1
< 0, therefore, limλ→∞ l2(λ; θ, yobs) < 0, there is at

least one root of l2(λ; θ, yobs) = 0. We need to prove that the function l2(λ; θ, yobs) is
decreasing in λ. Taking the first derivative

l′2(λ; θ, yobs) = −
[
−eλ

(
λ2 + 2

)
+ e2λ + 1

]
n

(eλ − 1)2 λ2
= −

eλ
[
−
(
λ2 + 2

)
+ eλ + e−λ

]
n

(eλ − 1)2 λ2
< 0.

This completes the proof.
�

4.2. An EM algorithm. An expectation–maximization (EM) algorithm ([7]) is a pow-
erful method for finding maximum likelihood estimates of parameters in statistical mod-
els, where the model depends on unobserved latent variables. The EM iteration alternates
between performing an expectation (E) step, which creates a function for the expectation
of the log-likelihood evaluated using the current estimate for the parameters, and a max-
imization (M) step, which computes parameters maximizing the expected log-likelihood
found on the E step. These parameter estimates are then used to determine the distribu-
tion of the latent variables in the next E step. We propose the use of the EM algorithm
in this section.

Assume that (X,Z) denotes a random vector, where X denotes the observed data
and Z denotes the missing data. To implement the algorithm we define the hypothetical
complete–data distribution with density function

f(x, z) = p(z)f(x|z) =
θ2(x+ 1)ze−xzθ(θ + θx+ 1)z−1

(θ + 1)z
λze−λ

z!(1− e−λ)
, x > 0, z = 1, 2, ...,

where θ > 0 and λ > 0 are parameters. It is straightforward to verify that the computa-
tion of the conditional expectation of (Z|X) using the pdf

p(z|x) =
(θ + 1)1−zλz−1(θ + θx+ 1)z−1 exp

(
−λe

−θx(θ+θx+1)
θ+1

+ θx− θxz
)

(z − 1)!
, z = 1, 2, ...

Then we have

E(Z|X) = 1 +
λe−θx(θ + θx+ 1)

θ + 1
.



The cycle is completed with the M–step which is essentially-full data maximum likelihood
over the parameters, with the missing Z′s replaced by their conditional expectations
E(Z|X). Thus, an EM iteration is given by

θ(t+1) = 2n[

n∑
i=1

xi + 1

θ(t) + θ(t)xi + 1
−

n∑
i=1

(xi + 1)w
(t)
i

θ(t) + θ(t)xi + 1
+

n∑
i=1

xiw
(t)
i +

∑n
i=1 w

(t)
i

θ(t) + 1
]−1,

λ(t+1) = n−1[1− e−λ
(t)

]

n∑
i=1

w
(t)
i ,

where w(t)
i = 1 + λ(t)e−θ

(t)xi (θ(t)+θ(t)xi+1)

θ(t)+1
.

4.3. Asymtotic variance and covariance of MLEs. It is known that under some
regular conditions, as the sample size increases, the distribution of the MLE tends to the
bivariate normal distribution with mean (θ, λ) and covariance matrix equal to the inverse
of the Fisher information matrix, see [6]. The bivariate normal distribution can be used
to construct approximate confidence intervals for the parameters θ and λ.

Let I = I(θ, λ; yobs) be the observed matrix with elements Iij with i, j = 1, 2. The
elements of the observed information matrix are found as follows:

I11 = −
(
(θ + 1)2 − 2λ

)∑n
i=1 x

2
i e
−θxi

(θ + 1)2
−
θλ
∑n
i=1 x

3
i e
−θxi

θ + 1
+

2λ
∑n
i=1 xie

−θxi

(θ + 1)3
+

2n

θ2
− n

(θ + 1)2
,

l12 = l21 =
θ(θ + 2)

∑n
i=1 xie

−θxi

(θ + 1)2
+
θ
∑n
i=1 x

2
i e
−θxi

θ + 1
,

l22 = − eλn

(eλ − 1)2
+

n

λ2
.

The expectation J = E(I(θ, λ; yobs)) is taken with respect to the distribution of X. The
Fisher information matrix is given by

J(θ, λ) = n

(
J11 J12
J21 J22

)
where

J11 = −
(
(θ + 1)2 − 2λ

)
E(X2e−θX)

(θ + 1)2
− θλE(X3e−θX)

θ + 1
+

2λE(Xe−θX)

(θ + 1)3
+

2

θ2
− 1

(θ + 1)2
,

J12 = J21 =
θ(θ + 2)E(Xe−θX)

(θ + 1)2
+
θE(X2e−θX)

θ + 1
,

J22 =
1

λ2
− eλ

(eλ − 1)2
.

The inverse of J(θ, λ), evaluated at θ̂ and λ̂ provides the asymptotic variance–covariance
matrix of the MLEs. Alternative estimates can be obtained from the inverse of the ob-
served information matrix since it is a consistent estimator of J−1.



4.4. Simulation study. The random data X from the proposed distribution can be
generated as follows:

(1) Generate Z ∼ zero truncated Poisson (λ).
(2) Generate Ui ∼ Uniform(0, 1), i = 1, ..., Z.
(3) Generate Vi ∼ Exponential(θ), i = 1, ..., Z.
(4) Generate Wi ∼ Gamma(2, θ), i = 1, ..., Z.
(5) If Ui ≤ θ/(1 + θ), then set Yi = Vi, otherwise, set Yi = Wi, i = 1, ..., Z.
(6) Set X = min(Y1, ..., YZ).

In order to assess the performance of the approximation of the variances and covari-
ances of the MLEs determined from the information matrix, a simulation study (based
on 10000 simulations) has been conducted.

For each value of (θ, λ), the parameter estimates have been obtained by the EM
iteration in Section 4.2 with different initial values. The convergence is assumed when
the absolute differences between successive estimates are less than 10−5.

The simulated values of V ar(θ̂), V ar(λ̂) and Cov(θ̂, λ̂) as well as the approximate
values determined by averaging the corresponding values obtained from the expected and
observed information matrices are given in Table 1. We can see that for large values of
n, the approximate values determined from expected and observed information matrices
are quite close to the corresponding simulated values. The approximation becomes quite
accurate as n increases. As expected, variances and covariances of the MLEs obtained
from the observed information matrix are quite close to that of the expected information
matrix for large values of n.

Table 1. Variances and covariances of the MLEs.

n (θ, λ)
Simulated From expected information From observed information
V ar(θ̂) V ar(λ̂) Cov(θ̂, λ̂) V ar(θ̂) V ar(λ̂) Cov(θ̂, λ̂) V ar(θ̂) V ar(λ̂) Cov(θ̂, λ̂)

50 (0.5, 1.0) 0.1263 5.1246 -0.5943 0.0669 4.6146 -0.5249 0.0675 5.5077 -0.5827
50 (1.0, 0.5) 0.1809 2.3515 -0.7432 0.2009 2.6355 -0.8070 0.1112 1.9026 -0.7148
50 (0.5, 2.0) 0.0854 3.0085 -0.4022 0.0755 3.4085 -0.4615 0.0503 2.6381 -0.3235
50 (2.0, 0.5) 0.7783 3.3421 -1.5915 0.7578 3.0401 -1.3959 0.8382 3.6288 -1.6234
50 (2.0, 2.0) 0.7069 2.5474 -1.1334 0.7001 2.0854 -1.0336 0.7149 3.4743 -1.2402

100 (0.5, 1.0) 0.0365 2.9019 -0.3419 0.0476 2.9411 -0.3599 0.0334 2.3195 -0.3281
100 (1.0, 0.5) 0.0901 1.7915 -0.3829 0.0996 1.9011 -0.4122 0.0925 1.643 -0.3645
100 (0.5, 2.0) 0.0234 1.4168 -0.1738 0.0289 1.4896 -0.1882 0.0252 1.2935 -0.162
100 (2.0, 0.5) 0.2743 1.2773 -0.5513 0.2824 1.2676 -0.5510 0.2605 1.2929 -0.511
100 (2.0, 2.0) 0.3602 1.0218 -0.5014 0.3588 1.0148 -0.5218 0.349 0.9358 -0.4904

500 (0.5, 1.0) 0.0064 0.4256 -0.0506 0.0063 0.4238 -0.0496 0.0065 0.4462 -0.052
500 (1.0, 0.5) 0.0545 0.943 -0.2255 0.0522 0.9426 -0.2201 0.0567 0.9446 -0.2278
500 (0.5, 2.0) 0.0028 0.2001 -0.0211 0.0027 0.2009 -0.0209 0.0029 0.1998 -0.0213
500 (2.0, 0.5) 0.0899 0.3562 -0.1753 0.0888 0.3596 -0.1761 0.0938 0.3548 -0.1749
500 (2.0, 2.0) 0.0419 0.1672 -0.0723 0.0418 0.1672 -0.0733 0.0416 0.1673 -0.0723

In addition, simulations have been conduced to investigate the convergence of the
proposed EM algorithm in Section 4.2. Ten thousand samples of size 100 and 500 of
which are randomly sampled from the LP distribution for each of the five values of (θ, λ)
are generated.

The results are presented in Table 2, which gives the averages of the 10000 MLEs,
av(θ̂), av(λ̂), and average number of iterations to convergence, av(h), together with their



standard errors, where

av(θ̂) =
1

10000

10000∑
i=1

θ̂i, se(θ̂) =

√√√√ 1

10000

10000∑
i=1

(θ̂i − av(θ̂))2,

av(λ̂) =
1

10000

10000∑
i=1

λ̂i, se(λ̂) =

√√√√ 1

10000

10000∑
i=1

(λ̂i − av(λ̂))2,

av(ĥ) =
1

10000

10000∑
i=1

ĥi, se(ĥ) =

√√√√ 1

10000

10000∑
i=1

(ĥi − av(ĥ))2.

From Table 2, it is observed that convergence has been achieved in all cases, even when
the initial values are far from the true values and this endorses the numerical stability of
the proposed EM algorithm. The EM estimates performed consistently. Standard errors
of the MLEs decrease when sample size n increases.

Table 2. The means and standard errors of the EM estimator and iter-
ations to convergence with initial values (θ(0), λ(0)) from 10000 samples.

n θ λ θ(0) λ(0) av(θ̂) av(λ̂) se(θ̂) se(λ̂) av(h) se(h)

100 0.5 1 0.5 1 0.470 1.493 0.103 1.206 481.949 423.532
100 1 0.5 1 0.5 0.897 0.733 0.171 1.070 435.405 363.209
100 0.5 2 0.5 2 0.525 2.061 0.142 1.469 516.551 318.547
100 2 0.5 2 0.5 1.840 0.854 0.364 1.078 404.442 412.249
100 2 2 2 2 2.093 2.123 0.593 1.346 484.928 489.149

100 0.5 1 0.1 0.1 0.481 1.406 0.107 1.249 537.204 452.071
100 1 0.5 0.1 0.1 0.920 0.807 0.179 1.086 453.290 382.990
100 0.5 2 0.1 0.1 0.523 2.011 0.133 1.288 589.371 498.996
100 2 0.5 0.1 0.1 1.780 0.724 0.366 1.143 445.348 379.776
100 2 2 0.1 0.1 2.130 1.981 0.583 1.271 534.251 462.154

500 0.5 1 0.5 1 0.496 1.106 0.068 0.781 443.485 405.746
500 1 0.5 1 0.5 0.977 0.631 0.085 0.415 327.897 145.757
500 0.5 2 0.5 2 0.507 2.061 0.094 0.979 592.532 380.115
500 2 0.5 2 0.5 1.970 0.576 0.165 0.341 293.798 112.133
500 2 2 2 2 2.020 2.087 0.387 0.954 560.947 576.358

500 0.5 1 0.1 0.1 0.495 1.097 0.066 0.705 572.473 428.584
500 1 0.5 0.1 0.1 0.989 0.586 0.083 0.453 377.760 171.738
500 0.5 2 0.1 0.1 0.508 2.057 0.096 0.952 823.717 605.764
500 2 0.5 0.1 0.1 1.969 0.591 0.167 0.383 347.611 175.877
500 2 2 0.1 0.1 2.041 2.053 0.401 0.962 736.315 735.316

5. Illustrative Examples
In this section, we consider two numerical applications to test the performance of the

new distribution. First, we consider the time intervals of the successive earthquakes taken
from University of Bosphoros, Kandilli Observatory and Earthquake Research Institute-
National Earthquake Monitoring Center. The data set has been previously studied by



[15]. The second dataset originally due to [4], which has also been analyzed previously
by [13]. The data represent the survival times of guinea pigs injected with different doses
of tubercle bacilli.

Table 3. Maximum likelihood parameter estimates(with (SE)) of the
LP, LD, PL and GL models for the two datasets.

Example Model Estimations loglik AIC K-S statistic p-value

1 (n = 24)

LP 0.6515 2.7778 −32.0766 68.1532 0.1667 0.9024
(0.2112) (0.1578)

LD 1.0420 − −34.5092 71.0184 0.2500 0.4490
(0.1612) −

PL 0.6215 1.0898 −32.6134 69.2268 0.2083 0.6860
(0.1026) (0.1745)

GL 0.5940 0.7701 −32.3633 68.7266 0.1667 0.9024
(0.1567) (0.1895)

2 (n = 72)

LP 0.0112 2.9545 −392.4274 788.8548 0.1111 0.7658
(0.0033) (0.1496)

LD 0.0198 − −394.5197 791.0394 0.1528 0.3701
(0.0016) −

PL 0.8451 0.0387 −396.8082 797.6164 0.1667 0.2700
(0.0503) (0.1745)

GL 1.1389 0.0212 −394.2822 792.5644 0.1528 0.3701
(0.2101) (0.0026)

We fit the data sets with the Lindley–Poisson distribution LP (θ, λ), Lindley distri-
bution LD(θ), Power Lindley distribution PL(α, β) and generalized Lindley distribution
GL(α, λ) and examine the performances of the distributions.

Those probability density functions are given below:

PL : f(x|Θ1) =
αβ2

β + 1
(1 + xα)xα−1e−βx

α

, Θ1 = (α, β), x > 0,

GL : f(x|Θ2) =
αλ2

1 + λ
(1 + x)[1− 1 + λ+ λx

1 + λ
e−λx]α−1, Θ2 = (α, λ), x > 0.

The maximum likelihood estimates of the parameters are obtained and the results are
reported in Table 3. The Akaike information criterion (AIC) is computed to measure the
goodness of fit of the models. AIC = 2k − 2 logL, where k is the number of parameters
in the model and L is the maximized value of the likelihood function for the estimated
model. Given a set of candidate models for the data, the preferred model is the one
with the minimum AIC value. The Kolmogorov-Smirnov (K-S) statistics and the p-
values for these models are also presented. The K-S test compares an empirical and a
theoretical model by computing the maximum absolute difference between the empirical
and theoretical distribution functions: D = maxx |Fn(x) − F (x)|. The associated the
p-value is the chance that the value of the Komogorov-Smirnov D statistic would be as
large or larger than observed. The computation of p-value can be found in [8].

For the first dataset, the K-S statistics for the LP and GL models are same and smaller
than those for the LD and PL models. For the LP model, AIC=68.1532 is smaller than
that obtained for the GL model. Log-likelihood value=−32.0766 is larger than those for
the GL model. It indicates that the LP model performs a best fit for this dataset. The
good performance of the LP model can also be supported by the second dataset.
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Figure 3. P-P plots for the first dataset.

Figure 3 and 4 display the probability-probability (P-P) plot for the two datasets.

6. Concluding Remarks
In this article, we have introduced a continuous Lindley-Poisson distribution by com-

pounding the Lindley distribution and zero truncated Poisson distribution. The proper-
ties, including the shape properties of its density function and the hazard rate function,
stochastic orderings, moments and measurements based on the moments are investigated.
The distributions of some extreme order statistics are also derived. Maximum likelihood
estimation method using EM algorithm is developed for estimating the parameters. As-
ymptotic properties of the MLEs are studied. We conduct intensive simulations and the
results show that the estimation performance is satisfied as expected. We apply the model
to two real datasets and the results demonstrate that the proposed model is appropriate
for the datasets.
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Figure 4. P-P plots for the second dataset.
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